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Deep Learning and Vis
Part I




Exploring Neural Networks
with Activation Atlases

https://distill.pub/2019/activation-atlas/


https://distill.pub/2019/activation-atlas/

Activation Atlas

-~ Use feature inversion to visualize millions of activations from an
image classification network

- An explorable activation atlas of features the network has learned
which can reveal how the network typically represents some
concepts
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INDIVIDUAL NEURONS

Visualizing individual neurons make
hidden layers somewhat meaningful,
but misses interactions between
neurons — it only shows us one-
dimensional, orthogonal probes of the
high-dimensional activation space.

PAIRWISE INTERACTIONS

Pairwise interactions reveal interaction
effects, but they only show two-
dimensional slices of a space that has
hundreds of dimensions, and many of
the combinations are not realistic.

SPATIAL ACTIVATIONS
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sub-manifold
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Spatial activations show us important
combinations of many neurons by
sampling the sub-manifold of likely
activations, but they are limited to
those that occur in the given example
image.

ACTIVATION ATLAS

Activation atlases give us a bigger
picture overview by sampling more of
the manifold of likely activations.




grey whale : great white shark

kKiller whale : baseball
great white shark : grey whale

gar : sombrero




InceptionV1: a convolutional network

3a 3b 43 4b 4c 4d 4e ha 5b

input softmax

InceptionV1 builds up its understanding of images over several layers (see overview from [2]). It was trained on ImageNet ILSVRC [11]. Each layer actually has several component
parts, but for this article we'll focus on these larger groups.




Visualize how the network sees an image

- Feed the image into the network and run it through to the layer of
Interest.

- Collect the activations — the numerical values of how much each
neuron fired. Positive activation value if a neuron is excited by the
iInput.

- Use feature visualization that transform vectors of activation values
to an idealized image of what the network thinks and sees.

- Starting with an activation vector at a particular layer, we create an
iImage through an iterative optimization process.




INPUT IMAGE

IMAGE PATCH ACTIVATIONS
neuron O: 0.20332
neuron 1: -0.03420
neuron 2: -0.13004
—  neuron 3: -0.01860
neuron 4: 0.28272
neuron 512: -0.04184
Overlapping patches We record a single
of the input image are activation value for each
evaluated one by one. of the 512 neurons.

(values shown are mocked)

FEATURE VISUALIZATION

We then produce a
feature visualization
and place them on a grid.

ACTIVATION GRID
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https://distill.pub/2017/teature-visualization/appendix/


https://distill.pub/2017/feature-visualization/appendix/

How the network sees different parts of an image
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Input image from ImageNet. Activation grid from InceptionV1, layer mixed4d.



Aggregation multiple images
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A randomized set of one million images is fed through
the network, collecting one random spatial activation per
image.

0565,0321 .] —

[0.446 0.627,.] —

The activations are fed through UMAP to reduce them to
two dimensions. They are then plotted, with similar
activations placed near each other.

We then draw a grid and average the activations that fall
within a cell and run feature inversion on the averaged
activation. We also optionally size the grid cells
according to the density of the number of activations
that are averaged within.
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You'll immmediately notice that the
early layer is very nonspecific in
comparison to the others. The
icons that emerge are of patterns
and splotches of color. It is
suggestive of the final class, but
not particularly evocative.
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By the middle layer, icons definitely
resemble leaves, but they could be
any type of plant. Attributions are
focused on plants, but are a little all
over the board.
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FIREBOAT

STREETCAR

At mixed4d, Both
"streetcar" and "fireboat"
contain activations for
what look like windows.

Both classes contain
activations for crane-like
apparatuses, though they
are less prominent than
the window activations.

"Fireboat" activations have
much stronger attributions
from water than
"streetcar", where there is
virtually no positive
evidence.

The activations for
"streetcar" have much
stronger attributions from
buildings than does
"fireboat".




SUMMIT: Scaling Deep Learning
Interpretabllity by Visualizing Activation ana
Attribution Summarizations

https://arxiv.org/abs/1904.02323


https://distill.pub/2019/activation-atlas/

MODE NSTANCES

SUMMIT Inéebtuonv1 ImageNet 1,000 1,281,02

LAYER = X CLASS NSTANCES ACCURACY PROBABILITIES - FILTER GRAPH ADJUST WIDTH ADJUST HEIGHT
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Fig. 1. With Summit, users can scalably summarize and interactively interpret deep neural networks by visualizing what features a
network detects and how they are related. In this example, INCEPTIONV 1 accurately classifies images of tench (yellow-brown fish).
However, SUMMIT reveals surprising associations in the network (e.g., using parts of people) that contribute to its final outcome: the
“tench” prediction is dependent on an intermediate “hands holding fish” feature (right callout), which is influenced by lower-level features
like “scales,” ‘person,” and “fish”. (A) Embedding View summarizes all classes’ aggregated activations using dimensionality reduction.
(B) Class Sidebar enables users to search, sort, and compare all classes within a model. (C) Attribution Graph View visualizes
highly activated neurons as vertices (“scales,” “fish”) and their most influential connections as edges (dashed purple edges).
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Fig. 9. With attribution graphs, we can compare classes throughout layers of a network. Here we compare two similar classes: black bear and
brown bear. From the intersection of their attribution graphs, we see both classes share features related to bear-ness, but diverge towards the end
of the network using fur color and face color as discriminable features. This feature discrimination aligns with how humans might classify bears.




GAN Lab: Understanding Complex Deep
Generative Models using Interactive Visual
Experimentation

https://arxiv.org/abs/1809.01587


https://distill.pub/2019/activation-atlas/
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Each dot is a 2D data sample: real samples; fake samples.

Background colors of grid cells represent discriminator's classifications.
Samples in green regions are likely to be real; those in purple regions likely fake.

Opacity encodes density: darker purple means more samples in smaller area.

Pink lines from fake samples represent gradients for generator.
& This sample needs to move upper right to decrease generator's loss.

https://poloclub.github.1i0/ganlab/
https://www.youtube.com/watch?v=eTq9T_sPTYQ
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https://www.youtube.com/watch?v=eTq9T_sPTYQ
https://poloclub.github.io/ganlab/

Visual Analytics in Deep Learning
Survey

https://arxiv.org/abs/1801.06889


https://distill.pub/2019/activation-atlas/

Why do we want to visualize deep learning?
Why and for what purpose would one want to use
visualization in deep learning?

Who wants to visualize deep learning?
Who are the types of people and users that would use
and stand to benefit from visualizing deep learning?

What can we visualize in deep learning?
What data, features, and relationships are inherent to
deep learning that can be visualized?

How can we visualize deep learning?
How can we visualize the aforementioned data, fea-
tures, and relationships?

When can we visualize deep learning?
When in the deep learning process is visualization
used and best suited?

Where is deep learning visualization being used?
Where has deep learning visualization been used?




Visual Analytics in Deep Learning
B WHY D WHAT

Why would one want to use

visualization in deep learning?
Interpretability & Explainability
Debugging & Improving Models

Comparing & Selecting Models
Teaching Deep Learning Concepts
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@ WHO

Who would use and benefit
from visualizing deep learning?

Model Developers & Builders
Model Users

Non-experts

HOW

What data, features, and relationships
in deep learning can be visualized?

Computational Graph & Network Architecture
Learned Model Parameters

Individual Computational Units

Neurons In High-dimensional Space

How can we visualize deep learning
data, features, and relationships?
Node-link Diagrams for Network Architecture

Dimensionality Reduction & Scatter Plots
Line Charts for Temporal Metrics

Interrogative Survey Overview

3 WHEN

When in the deep learning
process is visualization used?

During Training
After Training

) WHERE

Where has deep learning
visualization been used?

Application Domains & Models
A Vibrant Research Community

Instance-based Analysis & Exploration

Interactive Experimentation

Algorithms for Attribution & Feature Visualization




Technical Term

Synonyms

Meaning

Neural Network
Neuron

Weights
Layer

Computational
Graph

Activation
Functions

Activations

Convolutional
Neural Network

Long Short-Term
Memory

Loss Function

Embedding

Recurrent Neural
Network

Generative
Adversarial
Networks

Epoch

Artificial neural net,
net

Computational unit,
node

Edges
Hidden layer

Dataflow graph
Transform function
Internal

representation
CNN, convnet

LSTM

Objective function,
cost function, error

Encoding

RNN

GAN

Data pass

Biologically-inspired models that form the basis of deep learning; approximate functions dependent
upon a large and unknown amount of inputs consisting of layers of neurons

Building blocks of neural networks, entities that can apply activation functions

The trained and updated parameters in the neural network model that connect neurons to one another

Stacked collection of neurons that attempt to extract features from data; a /ayer’s input is connected to
a previous layer's output

Directed graph where nodes represent operations and edges represent data paths; when implement-
iIng neural network models, often times they are represented as these

Functions embedded into each layer of a neural network that enable the network represent complex
non-linear decisions boundaries

Given a trained network one can pass in data and recover the activations at any layer of the network
to obtain its current representation inside the network

Type of neural network composed of convolutional /ayers that typically assume image data as input;
these layers have depth unlike typical layers that only have width (number of neurons in a layer); they
make use of filters (feature & pattern detectors) to extract spatially invariant representations

Type of neural network, often used in text analysis, that addresses the vanishing gradient problem by
using memory gates to propagate gradients through the network to learn long-range dependencies

Also seen in general ML contexts, defines what success looks like when learning a representation,
l.e., a measure of difference between a neural network’s prediction and ground truth

Representation of input data (e.g., images, text, audio, time series) as vectors of numbers in a high-
dimensional space; oftentimes reduced so data points (i.e., their vectors) can be more easily analyzed
(e.g., compute similarity)

Type of neural network where recurrent connections allow the persistence (or “memory“) of previous
iInputs in the network’s internal state which are used to influence the network output

Method to conduct unsupervised learning by pitting a generative network against a discriminative
network; the first network mimics the probability distribution of a training dataset in order to fool the
discriminative network into judging that the generated data instance belongs to the training set

A complete pass through a given dataset; by the end of one epoch, a neural network will have seen
every datum within the dataset once




WHY Visualize Deep Learning

o Interpretability & Explainability

- Debugging & Improving Models

- Comparing & Selecting Models

- Teaching Deep Learning Concepts



Network Dissection: Quantifying interpretability of

deep visual representations

Input image Network being probed

Pixel-wise segmentation
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Freeze trained network weights Upsample target layer Evaluate on segmentation tasks

Figure 3. Illustration of network dissection for measuring semantic alignment of units in a given CNN. Here one unit of the last convolutional
layer of a given CNN is probed by evaluating its performance on 1197 segmentation tasks. Our method can probe any convolutional layer.

https://arxiv.org/abs/1704.05796
https://www.youtube.com/watch?v=62010x04REA

https://www.youtube.com/watch?v=Xy6RcjXMa2c



https://www.youtube.com/watch?v=3BhkeY974Rg
https://www.youtube.com/watch?v=62O10xo4REA
https://arxiv.org/abs/1704.05796

Visualization for Classification in Deep Neural Networks

953+ m Train
904% = Validatio 9205 (E) 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0- 1.0-
854 S

§ 0.8 - 0.8- 0.8- 0.8 - 0.8- 0.8 - 0.8- 0.8- 0.8 - 0.8- 0.8-
801&
75~ 0.6 - 0.6- 0.6- 0.6- 0.6- 0.6 - 0.6
704
65 0.4- 0.4- 0.4- 0.4- 0.4 044 0.4-
60-
g5 0.2- 0.2- 0.2- 0.2- 02~ 2
04 v v v v oo 0.0 00 —%00- - 0

1 23456 7 8 91011121314 ' -~ : '

c340 [P =El 50 c50.9

(A) Epoch (F)

R ——— — (] )

n
1 2 3 4 S 8 S 10 n 12 13 14

: E7poch

o (&
§ ® n
1

n

n

g

(C)

1 2 3 4 S 6 7 8 S 10 n 12 13 14

Mis-prediction Threshold

ue| Jaddnisealq

' hnes 3 medwal hardware  metalic - rermceal
e 9 conssstent s only dagnoss
- new  supenor marg:n  nght excrsion

Dssue Wthout  BagNOStIC <unic>
new medal margn  nght exCrsion

! Dssue Wthout  Bagnostic abrormaity

A hne 18 goss descnpton rumber o Pecmen  COMBMNES

e 17 .

T e s ’4
hne 19 a foattoken gam nght smple  mastectomy - |
hne 20 white - sin eolpse foattoken x foattoken om

1.0+
0.8-
0.6+
0.4
0.2+
c349
R —_
[ [
PR =
[
= Q
J—
[ —
[ — O
[ — o
[— o)
[— -
= o)
e =
| — o
e —
| —
[—
N
I
I
BN
I
I
NN
NN
N
N
I —
e
I
I
B E—
I
N
NN

(D)

Figure 1: A visual analytics tool to understand classification results and suggest potential directions during the development of a
Deep Neural Networks model.

https://vadl2017.github.io/paper/vadlO101_new.pdt


https://www.youtube.com/watch?v=3BhkeY974Rg
https://www.youtube.com/watch?v=62O10xo4REA

Visualization for Classification in Deep Neural Networks
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Figure 2: 2D-embedding of cancer pathology reports using PCA. The
colors of the points denote their classes.

https://vadl2017.github.io/paper/vadlO101_new.pdt
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https://www.youtube.com/watch?v=62O10xo4REA

Visualization for Classification in Deep Neural Networks
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Figure 2: 2D-embedding of cancer pathology reports using PCA. The
colors of the points denote their classes.

https://vadl2017.github.io/paper/vadlO101_new.pdt


https://www.youtube.com/watch?v=3BhkeY974Rg
https://www.youtube.com/watch?v=62O10xo4REA

Visualization for Classification in Deep Neural Networks
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Figure 3: Classification View: Samples (small narrow boxes) are visu-
alized according to their predicted classes. The box colors represent
their predicted scores. Outlined boxes are incorrectly predicted sam-
ples. Small triangles denote the samples whose the misclassified
number is more than mis-prediction threshold value.

https://vadl2017.github.io/paper/vadlO101_new.pdt


https://www.youtube.com/watch?v=3BhkeY974Rg
https://www.youtube.com/watch?v=62O10xo4REA

Teachable machines

A.l. Experiments: Teachable Machine

https:// www.youtube.com/watch?v=3BhkeY974Rg


https://www.youtube.com/watch?v=3BhkeY974Rg

Visualizing MNIST

play

Visualizing MNIST with MDS in 3D
(click and drag to rotate)

http://colah.github.i0/posts/2014-10-Visualizing-MNIST/


http://colah.github.io/posts/2014-10-Visualizing-MNIST/

From MATLAB (commercial tools)
Interactively Build, Visualize, and Edit Deep Learning Networks
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https:// www.youtube.com/watch?v=vX9rw6KIMag


http://colah.github.io/posts/2014-10-Visualizing-MNIST/

Thanks!

Any questions?

You can find me at: beiwang@sci.utah.edu


mailto:beiwang@sci.utah.edu?subject=
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Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:
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