Deep Learning and Vis
Part I
The goal of this lecture

- Not a complete overview of neural networks or deep learning
- But rather a high level view of the technique and its connection to visualization
Deep learning tutorial

- http://neuralnetworksanddeeplearning.com/
- http://deeplearning.stanford.edu/tutorial/
- http://www.deeplearningbook.org/
- And many more…
TensorFlow

- TensorFlow programming environment:
 - https://www.tensorflow.org/get_started/get_started_for_beginners
 - https://www.tensorflow.org/get_started/premade_estimators
Multi-Layer Neural Network in a nutshell

A review based on materials from UFLDL Tutorial and Michael Nielsen

http://neuralnetworksanddeeplearning.com/
http://ufldl.stanford.edu/tutorial/
A single neuron

This “neuron” is a computational unit that takes as input x_1, x_2, x_3 (and a +1 intercept term), and outputs

$$h_{w,b}(x) = f(W^T x) = f(\sum_{i=1}^{3} W_i x_i + b),$$

where $f : \mathbb{R} \mapsto \mathbb{R}$ is called the activation function. In these notes, we will choose $f(\cdot)$ to be the sigmoid function:

$$f(z) = \frac{1}{1 + \exp(-z)}.$$
A neural network is put together by hooking together many of our simple “neurons,” so that the output of a neuron can be the input of another. For example, here is a small neural network:

A Neural Network

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
A Neural Network

http://neuralnetworksanddeeplearning.com/chap1.html
Forward propagation

- Multiplying input with weights and add bias before applying activation function at each node

\[
\begin{align*}
 a_1^{(2)} &= f(W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{13}^{(1)}x_3 + b_1^{(1)}) \\
 a_2^{(2)} &= f(W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2 + W_{23}^{(1)}x_3 + b_2^{(1)}) \\
 a_3^{(2)} &= f(W_{31}^{(1)}x_1 + W_{32}^{(1)}x_2 + W_{33}^{(1)}x_3 + b_3^{(1)}) \\
 h_{W,b}(x) &= a_1^{(3)} = f(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)})
\end{align*}
\]

\[
\begin{align*}
 z^{(2)} &= W^{(1)}x + b^{(1)} \\
 a^{(2)} &= f(z^{(2)}) \\
 z^{(3)} &= W^{(2)}a^{(2)} + b^{(2)} \\
 h_{W,b}(x) &= a^{(3)} = f(z^{(3)})
\end{align*}
\]

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
Learning with gradient descent

\[C(w, b) \equiv \frac{1}{2n} \sum_x \|y(x) - a\|^2. \]

- Cost function
 - \(x\): input
 - \(y(x)\): approximate
 - \(w\): collection of all weights
 - \(b\): all the biases
 - \(n\): total number of training inputs
 - \(a\): the vector of outputs from the network when \(x\) is input

http://neuralnetworksanddeeplearning.com/chap1.html
Learning with gradient descent

Summing up, the way the gradient descent algorithm works is to repeatedly compute the gradient ∇C, and then to move in the opposite direction, "falling down" the slope of the valley. We can visualize it like this:
Back propagation Algorithm

Cost function with a single training example:

\[J(W, b; x, y) = \frac{1}{2} \| h_{W,b}(x) - y \|^2. \]

Cost function with m training examples:

\[
J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} J(W, b; x^{(i)}, y^{(i)}) \right] + \frac{\lambda}{2} \sum_{l=1}^{n_{l-1}} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}} (W_{ji}^{(l)})^2 \\
= \left[\frac{1}{m} \sum_{i=1}^{m} \left(\frac{1}{2} \| h_{W,b}(x^{(i)}) - y^{(i)} \|^2 \right) \right] + \frac{\lambda}{2} \sum_{l=1}^{n_{l-1}} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}} (W_{ji}^{(l)})^2
\]

One iteration of gradient descent updates the parameters \(W, b \) as follows:

\[
W_{ij}^{(l)} = W_{ij}^{(l)} - \alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b) \\
b_{i}^{(l)} = b_{i}^{(l)} - \alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W, b)
\]

Back propagation algorithm: gives an efficient way to compute these partial derivatives.

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
Feature convolution

Image

Convolved Feature

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
Pooling

Aggregate statistics of convolved features at various locations

http://ufldl.stanford.edu/tutorial/supervised/Pooling/
Pooling

Formally, after obtaining our convolved features as described earlier, we decide the size of the region, say $m \times n$ to pool our convolved features over. Then, we divide our convolved features into disjoint $m \times n$ regions, and take the mean (or maximum) feature activation over these regions to obtain the pooled convolved features. These pooled features can then be used for classification.
Convolutional Neural Network

- A CNN consists of an input and an output layer, as well as multiple hidden layers.
- The hidden layers of a CNN typically consist of convolutional layers, pooling layers, fully connected layers and normalization layers.
Stochastic Gradient Descent

The standard gradient descent algorithm updates the parameters θ of the objective $J(\theta)$ as,

$$\theta = \theta - \alpha \nabla \theta E[J(\theta)]$$

where the expectation in the above equation is approximated by evaluating the cost and gradient over the full training set. Stochastic Gradient Descent (SGD) simply does away with the expectation in the update and computes the gradient of the parameters using only a single or a few training examples. The new update is given by,

$$\theta = \theta - \alpha \nabla \theta J(\theta; x^{(i)}, y^{(i)})$$

with a pair $(x^{(i)}, y^{(i)})$ from the training set.

http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/
Visualization for Deep Learning
Directly visualizing the activations and parameters in intuitive aggregates
Visualizing weights as features
Visualizing gradient aggregates during training
Improving interpretability of networks
Localizing “responsibility” in the network for particular outputs
Sensitivity/stability of network behavior
Visualizing loss function geometry and the trajectory of the gradient descent process
Visual representation of the input-output mapping of the network
Visualizing alternative structures and their performance
Monitoring/debugging the training process, i.e. to detect saddle points or local optima, saturation units
Visualizing distributed training methods across a cluster
Using animation in network visualization
Interactive visualizations for exploration or parameter tuning
Software architectures for effective visualization
Visualization and interaction user interfaces

https://icmlviz.github.io/icmlviz2016/
Visualizing the inner workings of neurons
Deep Vis

http://yosinski.com/deepvis#toolbox
Multifaceted Feature Vis

Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks

Figure 1. Top: Visualizations of 8 types of images (feature facets) that activate the same “grocery store” class neuron. Bottom: Example training set images that activate the same neuron, and resemble the corresponding synthetic image in the top panel.
(a) *Movie theater:* outside (day & night) and inside views.

(b) *Convertible:* with different colors and both front & rear views.

(c) *Pool table:* Up close & from afar, with different backgrounds.

Figure 4. Multifaceted visualization of fc8 units uncovers interesting facets. We show 4 different facets for each neuron. In each pair of images, the bottom is the facet visualization that represents a cluster of images from the training set, and the top is the closest image to the visualization from the same cluster.
Visualizing the Data flow of DL algorithms
A data flow graph (DFG) is a graph which represents a data dependencies between a number of operations.

```plaintext
quad( a, b, c)
t1 = a*c;
t2 = 4*t1;
t3 = b*b;
t4 = t3 - t2;
t5 = sqrt( t4);
t6 = -b;
t7 = t6 - t5;
t8 = t7 + t5;
t9 = 2*a;
r1 = t7/t9;
r2 = t8/t9;
```
A TensorFlow model is a data flow graph that represents a computation. Nodes in the graph represent various operations: addition, matrix multiplication, summary variable operations for storing model parameters, etc.

Edges in TensorFlow:
- Data dependency edges represent tensors, or multidimensional arrays, that are input and output data of the operations.
- Reference edges, or outputs of variable operations, represent pointers to the variable rather than its value.
- Control dependency edges do not represent any data but indicate that their source operations must execute before their tail operations can start.
Simplifying data flow graph

Given a low-level directed data flow graph of a model as input, produce an interactive visualization that shows the high-level structure of the model. Enables user to explore its nested structure on demand.

Fig. 5. Build a hierarchical clustered graph. (a) A hierarchy showing only train and weights namespaces from tf.mnist.simple in Figure 4. (b) A high-level diagram showing dependency between train and weights. Hovering over the train namespace shows a button for expansion. (c) A diagram with train and weights expanded.
Fig. 1. The TensorFlow Graph Visualizer shows a convolutional network for classifying images (tf.cifar). (a) An overview displays a dataflow between groups of operations, with auxiliary nodes extracted to the side. (b) Expanding a group shows its nested structure.
Techniques employed

- **Overview:** a clustered graph by grouping nodes based on their hierarchical namespaces
- **Exploration:** edge bundling that supports expansion of clusters
- **Declutter:** heuristics to extract non-critical nodes
- **Detect and highlight:** repeated structures
- **Overlay:** the graph with additional quantitative information to help developers inspect their models.
Learn more on deep learning

- Stanford deep learning tutorial:
 - http://deeplearning.stanford.edu/tutorial/
 - http://neuralnetworksanddeeplearning.com/
Further Reading

- Workshop on Visualization for Deep Learning
 - http://icmlviz.github.io/
 - https://icmlviz.github.io/icmlviz2016/
Thanks!

Any questions?

You can find me at: beiwang@sci.utah.edu
CREDITS

Special thanks to all people who made and share these awesome resources for free:

▷ Presentation template designed by Slidesmash
▷ Photographs by unsplash.com and pexels.com
▷ Vector Icons by Matthew Skiles
Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:
https://www.fontsquirrel.com/fonts/open-sans

Colors used