Advanced Data Visualization

- CS 6965
- Fall 2019
- Prof. Bei Wang Phillips University of Utah

Deep Learning and Vis Dart.

The goal of this lecture

Not a complete overview of neural networks or deep learning
 But rather a high level view of the technique and its connection to visualization

Deep learning tutorial

- http://neuralnetworksanddeeplearning.com/
- http://deeplearning.stanford.edu/tutorial/
- http://www.deeplearningbook.org/
- And many more...

earning.com/ lu/tutorial/ org/

TensorFlow

TensorFlow programming environment:
 https://www.tensorflow.org/get_started/get_started_for_beginners
 https://www.tensorflow.org/get_started/premade_estimators

Multi-Layer Neural Network in a nutshell

http://neuralnetworksanddeeplearning.com/ http://ufldl.stanford.edu/tutorial/

A review based on materials from UFLDL Tutorial and Michael Nielsen

notes, we will choose $f(\cdot)$ to be the sigmoid function:

f(z) =

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

A single neuron

This "neuron" is a computational unit that takes as input x_1, x_2, x_3 (and a +1 intercept term), and outputs $h_{W,b}(x) = f(W^T x) = f(\sum_{i=1}^3 W_i x_i + b)$, where $f : \Re \mapsto \Re$ is called the **activation function**. In these

$$=\frac{1}{1+\exp(-z)}.$$

A Neural Network

A neural network is put together by hooking together many of our simple "neurons," so that the output of a neuron can be the input of another. For example, here is a small neural network:

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

A Neural Network

http://neuralnetworksanddeeplearning.com/chap1.html

input layer

Forward propagation

activation function at each node

Multiplying input with weights and add bias before applying

$$a_{1}^{(2)} = f(W_{11}^{(1)}x_{1} + W_{12}^{(1)}x_{2} + W_{13}^{(1)}x_{3} + b_{1}^{(1)})$$

$$a_{2}^{(2)} = f(W_{21}^{(1)}x_{1} + W_{22}^{(1)}x_{2} + W_{23}^{(1)}x_{3} + b_{2}^{(1)})$$

$$a_{3}^{(2)} = f(W_{31}^{(1)}x_{1} + W_{32}^{(1)}x_{2} + W_{33}^{(1)}x_{3} + b_{3}^{(1)})$$

$$h_{W,b}(x) = a_{1}^{(3)} = f(W_{11}^{(2)}a_{1}^{(2)} + W_{12}^{(2)}a_{2}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + b_{13}^{(2)}a_{3}^{(2)} +$$

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

Learning with $C(w, b) \equiv -\frac{1}{2}$

- Cost function
 - x: input
 - o y(x): approximate
 - w: collection of all weights
 - b: all the biases
 - on: total number of training inputs
 - a: the vector of outputs from the network when x is input

http://neuralnetworksanddeeplearning.com/chap1.html

Learning with gradient descent

 $C(w,b) \equiv \frac{1}{2n} \sum_{n} ||y(x) - a||^2.$

outs the network when x is input

Summing up, the way the gradient descent algorithm works is to repeatedly compute the gradient ∇C , and then to move in the opposite direction, "falling down" the slope of the valley. We can visualize it like this:

Learning with gradient descent

http://neuralnetworksanddeeplearning.com/ chap1.html

Back propagation Algorithm

Cost function with a single training example:

Cost function with m training examples: J(W, b) =

One iteration of gradient descent updates the parameters *W*, *b* as follows:

 $W_{ij}^{(l)} = W_{ij}^{(l)}$

 $b_i^{(l)} = b_i^{(l)}$

Back propagation algorithm: gives an efficient way to compute these partial derivatives.

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

$$I(W, b; x, y) = \frac{1}{2} \|h_{W,b}(x) - y\|^2.$$

$$= \left[\frac{1}{m}\sum_{i=1}^{m}J(W,b;x^{(i)},y^{(i)})\right] + \frac{\lambda}{2}\sum_{l=1}^{n_l-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}}\left(W_{ji}^{(l)}\right)^2$$
$$= \left[\frac{1}{m}\sum_{i=1}^{m}\left(\frac{1}{2}\|h_{W,b}(x^{(i)}) - y^{(i)}\|^2\right)\right] + \frac{\lambda}{2}\sum_{l=1}^{n_l-1}\sum_{i=1}^{s_l}\sum_{i=1}^{s_{l+1}}\left(W_{ji}^{(l)}\right)^2$$

$$\int_{j}^{(l)} -\alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b)$$
$$\int_{j}^{(l)} -\alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W,b)$$

Feature convolution

Image

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

4	3	

Convolved Feature

Pooling

Convolved Pooled feature feature

Aggregate statistics of convolved features at various locations

http://ufldl.stanford.edu/tutorial/supervised/Pooling/

Pooling

Formally, after obtaining our convolved features as described earlier, we decide the size of the region, say $m \times n$ to pool our convolved features over. Then, we divide our convolved features into disjoint $m \times n$ regions, and take the mean (or maximum) feature activation over these regions to obtain the pooled convolved features. These pooled features can then be used for classification.

Aggregate statistics of convolved features at various locations

http://ufldl.stanford.edu/tutorial/supervised/Pooling/

- hidden layers.

Convolutional Neural Network

A CNN consists of an input and an output layer, as well as multiple

The hidden layers of a CNN typically consist of convolutional layers, pooling layers, fully connected layers and normalization layers

Stochastic Gradient Descent

The standard gradient descent algorithm updates the parameters θ of the objective $J(\theta)$ as,

where the expectation in the above equation is approximated by evaluating the cost and gradient over the full training set. Stochastic Gradient Descent (SGD) simply does away with the expectation in the update and computes the gradient of the parameters using only a single or a few training examples. The new update is given by,

 $\theta = \theta - \alpha \nabla_{\theta} J(\theta; x^{(i)}, y^{(i)})$

with a pair $(x^{(i)}, y^{(i)})$ from the training set.

http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/

 $\theta = \theta - \alpha \nabla_{\theta} E[J(\theta)]$

Visualization for Deep Learning

- Original Directly visualizing the activations and parameters in intuitive aggregates
- Visualizing weights as features
- Visualizing gradient aggregates during training Improving interpretability of networks
- Localizing "responsibility" in the network for particular outputs
- Sensitivity/stability of network behavior
- Visualizing loss function geometry and the trajectory of the gradient descent process
- Sisual representation of the input-output mapping of the network Visualizing alternative structures and their performance Monitoring/debugging the training process, i.e to detect saddle
- points or local optima, saturation units
- Visualizing distributed training methods across a cluster
- Using animation in network visualization
- Interactive visualizations for exploration or parameter tuning Software architectures for effective visualization
- Visualization and interaction user interfaces

Topics

https://icmlviz.github.io/icmlviz2016/

Visualizing the inner workings of neurons

Activation		Regularization		Regularization rate	Э	Problem type	
Tanh	•	None	•	0	•	Classification	•

Show test data

Discretize output

			6
		-	5
		-	4
		-	3
		-	2
•		-	1
		-	0
	•	-	-1
•		-	-2
		-	-3
		-	-4
		-	-5
1 4	 5	6	-6
+	0	0	

Deep Vis

http://yosinski.com/deepvis#toolbox

Reconstructions of multiple feature types (facets) recognized by the same "grocery store" neuron

Corresponding example training set images recognized by the same neuron as in the "grocery store" class

Figure 1. Top: Visualizations of 8 types of images (feature facets) that activate the same "grocery store" class neuron. Bottom: Example training set images that activate the same neuron, and resemble the corresponding synthetic image in the top panel.

Multifaceted Feature Vis

Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks

NguyenYosinskiClune2016

(a) *Movie theater*: outside (day & night) and inside views.

(b) *Convertible*: with different colors and both front & rear views.

a cluster of images from the training set, and the top is the closest image to the visualization from the same cluster.

NguyenYosinskiClune2016

Visualizing the Data flow of DL algorithms

Data flow graph

 A data flow graph (DFG) is a graph which represents a data dependencies between a number of operations.

http://bears.ece.ucsb.edu/research-info/DP/dfg.html

Dataflow graph in TensorFlow

- parameters, etc.
- Edges in TensorFlow:
 - Data dependency edges represent tensors, or multidimensional arrays, that are input and output data of the operations.
 - Reference edges, or outputs of variable operations, represent pointers to the variable rather than its value
 - Ontrol dependency edges do not represent any data but indicate that
 Indi their source operations must execute before their tail operations can start.

A TensorFlow model is a data flow graph that represents a computation. Nodes in the graph represent various operations: addition, matrix multiplication, summary variable operations for storing model

Simplifying data flow graph

Build a hierarchical clustered graph. (a) A hierarchy show-Fig. 5. ing only train and weights namespaces from tf_mnist_simple in Figure 4. (b) A high-level diagram showing dependency between train and weights. Hovering over the train namespace shows a button for expansion. (c) A diagram with train and weights expanded.

Given a low-level directed data flow graph of a model as input, produce an interactive visualization that shows the high-level structure of the model. Enables user to explore its nested structure on demand.

WongsuphasawatSmilkovWexler2018

(a)

Fig. 1. The TensorFlow Graph Visualizer shows a convolutional network for classifying images (tf_cifar). (a) An overview displays a dataflow between groups of operations, with auxiliary nodes extracted to the side. (b) Expanding a group shows its nested structure.

WongsuphasawatSmilkovWexler2018

Techniques employed

- Overview: a clustered graph by grouping nodes based on their hierarchical namespaces
- Exploration: edge bundling that supports expansion of clusters
- Outputter: heuristics to extract non-critical nodes
- Detect and highlight repeated structures
- Overlay the graph with additional quantitative information to help developers inspect their models.

Learn more on deep learning

Stanford deep learning tutorial:
 http://deeplearning.stanford.edu/tutorial/
 http://neuralnetworksanddeeplearning.com/

Further Reading

Workshop on Visualization for Deep Learning http://icmlviz.github.io/ https://icmlviz.github.io/icmlviz2016/

WongsuphasawatSmilkovWexler2018

You can find me at: beiwang@sci.utah.edu

Thanks!

Any questions?

CREDITS

Special thanks to all people who made and share these awesome resources for free:

- Vector Icons by Matthew Skiles

Presentation template designed by <u>Slidesmash</u>

Photographs by <u>unsplash.com</u> and <u>pexels.com</u>

Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www.1001fonts.com/oswald-font.html

https://www.fontsquirrel.com/fonts/open-sans

Colors used