Advanced Data Visualization

- CS 6965
- Fall 2019
- Prof. Bei Wang Phillips University of Utah

Dim Reduction & Vis t-SNE

Announcement

Project 1 has been posted on the schedule webpage:
 <u>http://www.sci.utah.edu/~beiwang/teaching/cs6965-fall-2019/schedule.html</u>
 Please start early
 Project 1 is due on Sep. 27. Monday, before the start of the class

Project 1 is due on Sep. 27, Monday, before the start of the class

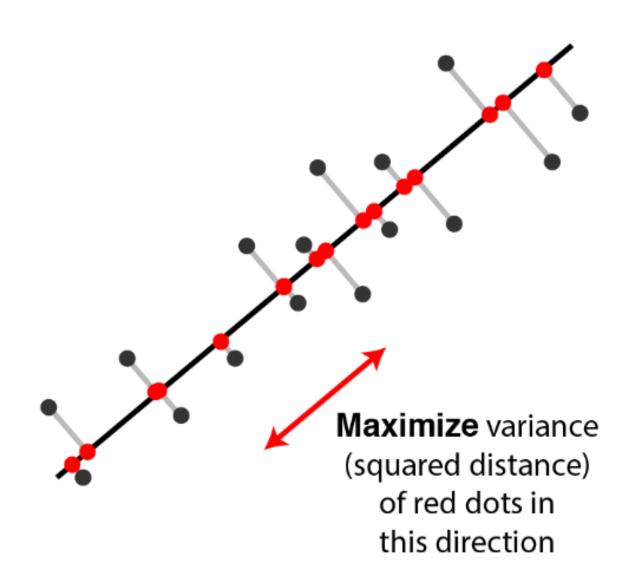
Vis + DR: PCA

Revisited

Two interpretation of PCA

PCA can be interpreted in two different ways:

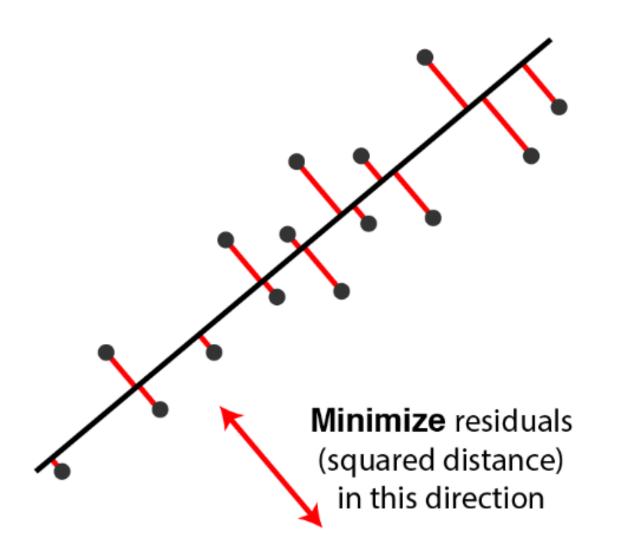
- (dimension).
- between the original data and its projected coordinates.



Two equivalent views of principal component analysis. http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/#some-things-you-maybe-didnt-know-about-pca

Maximize the variance of projection along each component

Minimize the reconstruction error, that is, the squared distance



iPCA: interactive PCA

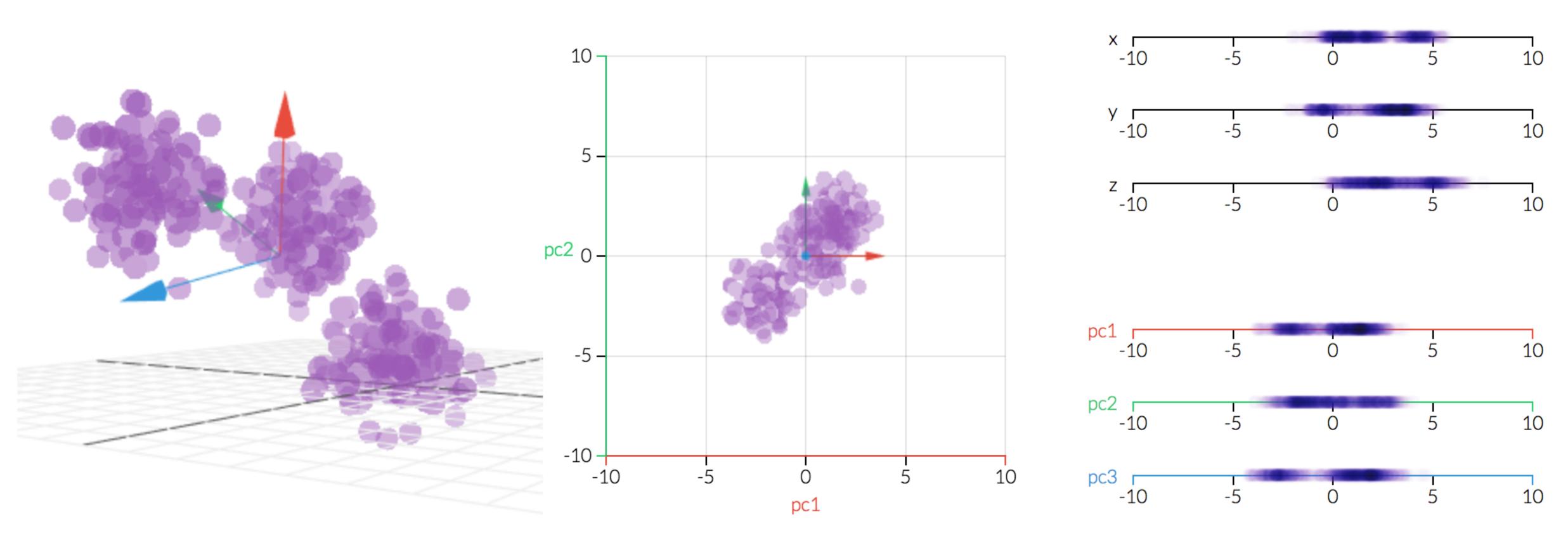
UNC Charlotte Dong Hyun Jeong Caroline Ziemkiewicz William Ribarsky Remco Chang

Source: http://www.knowledgeviz.com/iPCA/ [JeongZiemkiewiczFisher2009] Video also available at: http://www.cs.tufts.edu/~remco/publication.html

iPCA: An Interactive System for PCA-based Visual Analytics

Simon Fraser University **Brian Fisher**

Visually explaining PCA



Source: http://setosa.io/ev/principal-component-analysis/

Additional thoughts on Vis+PCA

- Use visualization to explain the inner-working of PCA algorithms (or any other DR algorithms)
- Manipulate algorithm input and output and observe its behavior, e.g. add/delete/move data points, rescaling, etc.
- Observe the algorithmic process, e.g. eigenvectors, etc.

Vis + DR: t-SNE

A case study with a nonlinear DR method

[vanderMaatenHinton2008] The material from this section is heavily drawn from Jaakko Peltonen http://www.uta.fi/sis/mtt/mtts1-dimensionality_reduction/drv_lecture10.pdf

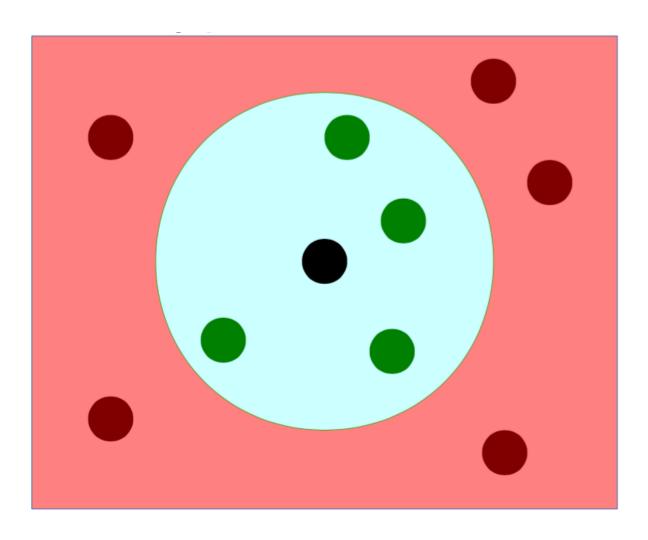
DR: preserving distances $C = \frac{1}{a} \sum_{ij} w_{ij} (d_X(x_i, x_j) - d_Y(y_i, y_j))^2$

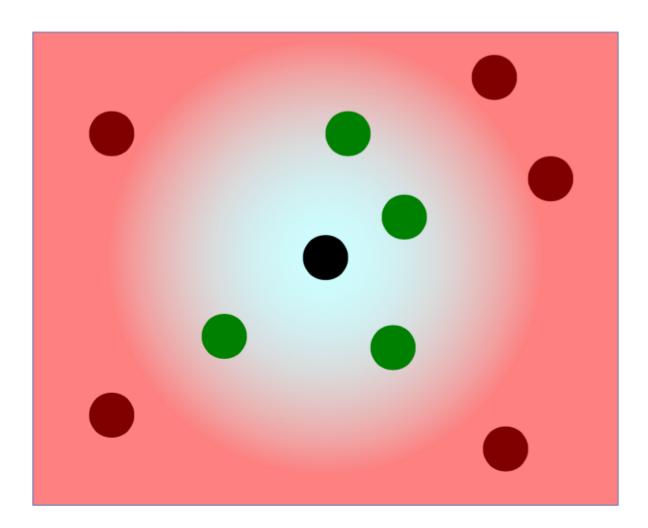
Many DR methods focus on preserving distances, e.g. the above is the cost function for a particular DR method called metric MDS

An alternative idea is preserving neighborhoods.

DR: preserving neighborhoods

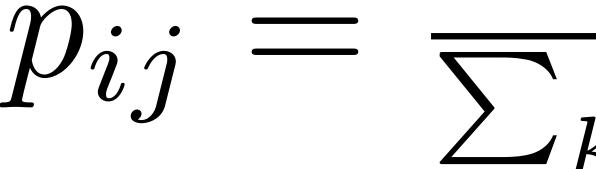
- Neighbors are an important notion in data analysis, e.g.social networks, friends, twitter followers...
- Object nearby (in a metric space) are considered neighbors
- Consider hard neighborhood and soft neighborhood
- Hard: each point is a neighbor (green) or a non-neighbor (red)
- Soft: each point is a neighbor (green) or a non-neighbor (red) with some weight





Probabilistic neighborhood

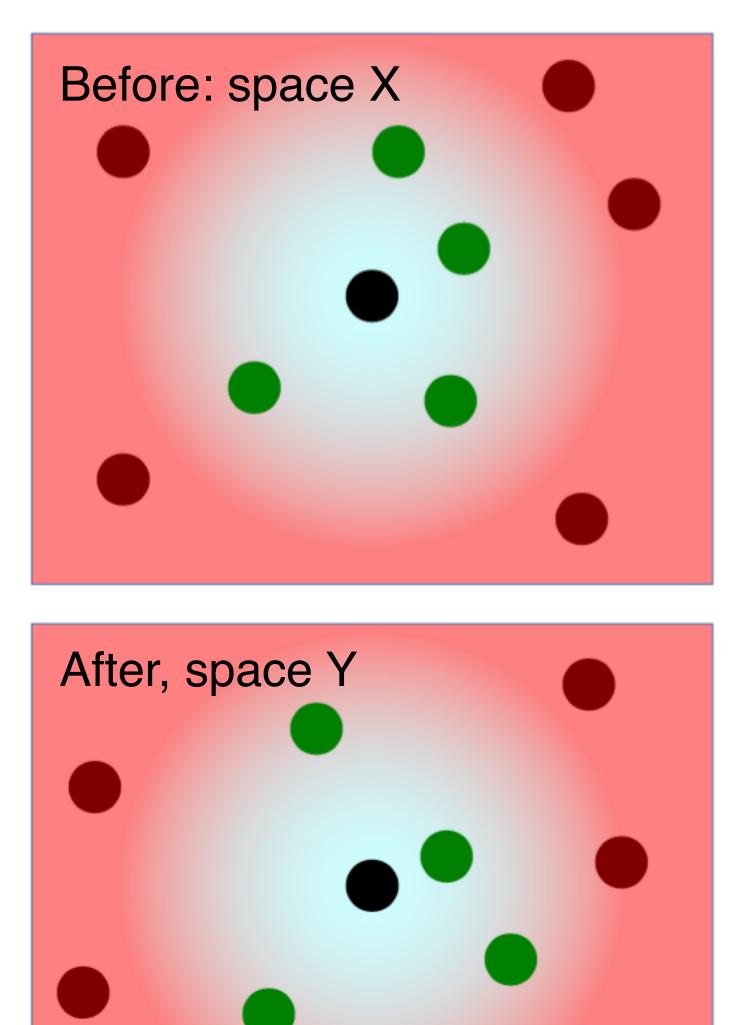
input space



Our Derive a probability of point j to be picked as a neighbor of i in the

 $p_{ij} = \frac{exp(-d_{ij}^2)}{\sum_{k \neq i} exp(-d_{ik}^2)}$

Preserving nbhds before & after DR



 p_{ij} =

Probability to be picked as a neighbor in space X (input coordinates)

 q_{ij}

Probabilistic output neighborhood: Probability to be picked as a neighbor in space Y (display coordinates)

$$= \frac{exp(-||x_i - x_j||^2)}{\sum_{k \neq i} exp(-||x_i - x_k||^2)}$$

Probabilistic input neighborhood:

$$= \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq i} exp(-||y_i - y_k||^2)}$$

Stochastic neighbor embedding

Compare neighborhoods between the input and output!
Using Kullback-Leibler (KL) divergence
KL divergence: relative entropy (amount of surprise when encounter items from 1st distribution when they are expected to come from the 2nd)
KL divergence is nonnegative and 0 iff the distributions are equal
SNE: minimizes the KL divergence using gradient descent

 q_{ij}

$$C = \sum_{i} \sum_{j} p_{ij} \log p_{ij}$$

SNE: choose the size of a nbhd

$$d_{ij}^2 = -$$

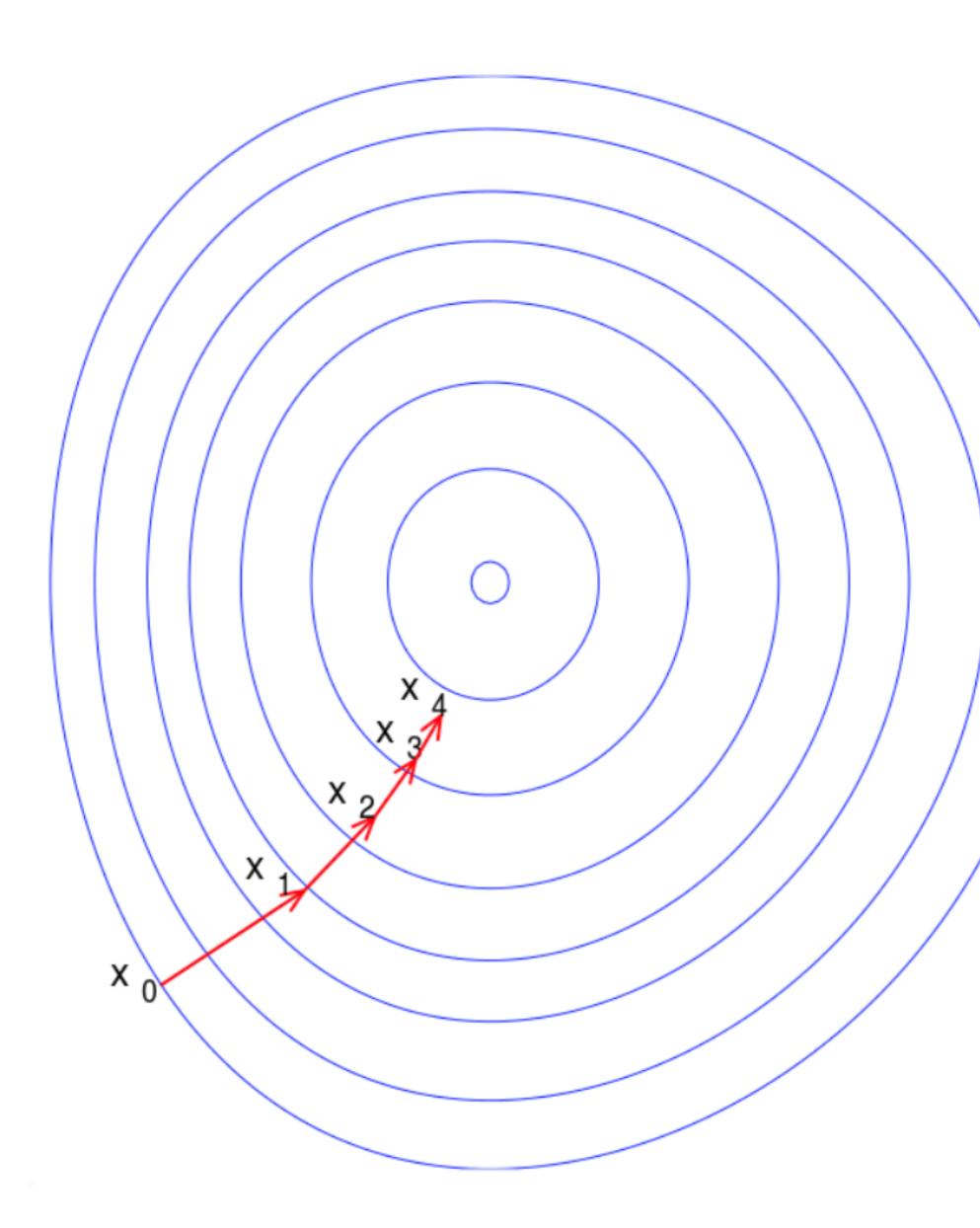
- The scale parameter can be chosen without knowing much about the data, but...
- It is better to choose the parameter based on local neighborhood properties, and for each point
- E.g., in sparse region, distance drops more gradually

 \circ How to set the size of a neighborhood? Using a scale parameter: σ_i

$$\frac{||x_i - x_j||^2}{2\sigma_i^2}$$

SNE: choose a scale parameter

Choose an effective number of neighbors:
In a uniform distribution over k neighbors, the entropy is log(k)
Find the scale parameter using binary search so that the entropy of *Pij* becomes log(k) for a desired value of k.



Gradient descent

https://en.wikipedia.org/wiki/Gradient_descent

t

SNE: gradient descent

Adjusting the output coordinates using gradient descent

Start from a random initial output configuration, then iteratively take steps along the gradient Intuition: using forces to pull and push pairs of points to make input and output probabilities more similar

$$\frac{\partial C}{\partial y_i} = 2\sum_j (y_i - y_j)(p_{ij} - q_{ij} + p_{ji} - q_{ji})$$

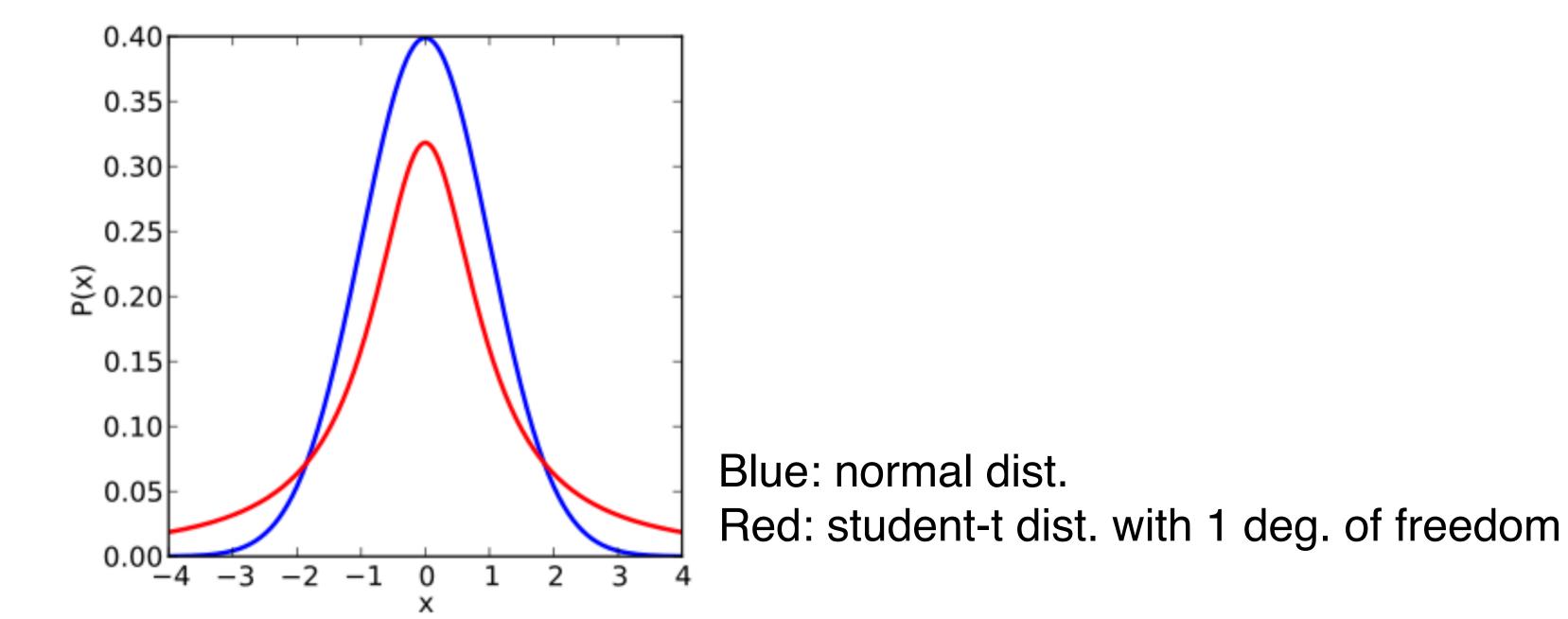
Gradient descent: iterative process to find the minimal of a function

SNE: the crowding problem

- When embedding neighbors from a high-dim space into a low- dim space, there is too little space near a point for all of its close-by neighbors.
- Some points end up too far-away from each other
- Some points that are neighbors of many far-away points end up crowded near the center of the display.
- In other words, these points end up crowded in the center to stay close to all of the far-away points.
- It is the transformation of the distribution of the crowding problem
 It is the transformation of the display, to resolve the crowding problem

t-distributed SNE

distribution in the low-dim output space than in the input space. I-SNE (joint prob.); SNE (conditional prob.)



Avoids crowding problem by using a more heavy-tailed neighborhood Neighborhood probability falls off less rapidly; less need to push some points far off and crowd remaining points close together in the center. Use student-t distribution with 1 degree of freedom in the output space

t-SNE: pres **Before: space X** $p_{j|i|}$

After, space Y



$$= \frac{exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

Probabilistic input neighborhood:

Probability to be picked as a neighbor in space X (input coordinates)

$$= \frac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k\neq l} (1+||y_k-y_l||^2)^{-1}}$$

Probabilistic output neighborhood:

Probability to be picked as a neighbor in space Y (display coordinates)

t-SNE minimization

$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$

Minimize divergence between symmetric probabilities

[vanderMaatenHinton2008]

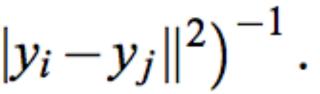
Various Components of t-SNE alg. $\frac{2\sigma_i^2}{2\sigma_i^2},$ (1)

$$p_{j|i} = \frac{\exp\left(-\|x_i - x_j\|^2/2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2\right)}$$

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$$

 $C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}.$

$$\frac{\delta C}{\delta y_i} = 4 \sum_j (p_{ij} - q_{ij})(y_i - y_j) \left(1 + \|y_i\|_{j}\right)$$



[vanderMaatenHinton2008]

Implementing t-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set $X = \{x_1, x_2, ..., x_n\}$,

cost function parameters: perplexity *Perp*, optimization parameters: number of iterations T, learning rate η , momentum $\alpha(t)$. **Result**: low-dimensional data representation $\mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}$. begin

compute pairwise affinities $p_{i|i}$ with perplexity *Perp* (using Equation 1) set $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$ sample initial solution $\mathcal{Y}^{(0)} = \{y_1, y_2, \dots, y_n\}$ from $\mathcal{N}(0, 10^{-4}I)$ for t=1 to T do compute low-dimensional affinities q_{ij} (using Equation 4) compute gradient $\frac{\delta C}{\delta \gamma}$ (using Equation 5) set $\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)$ end

end

where $H(P_i)$ is the Shannon entropy of P_i measured in bits $H(P_i) = -$

> \odot Perform a binary search for the value of σ that produces a Pi with a fixed perplexity that is specified by the user \bigcirc Perplexity increases monotonically with the variance σ i. I-SNE determines the local neighborhood size for each datapoint separately based on the local density of the data (by forcing each conditional probability distribution Pi to have the same perplexity).

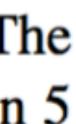
What is Perplexity?

- $Perp(P_i) = 2^{H(P_i)},$

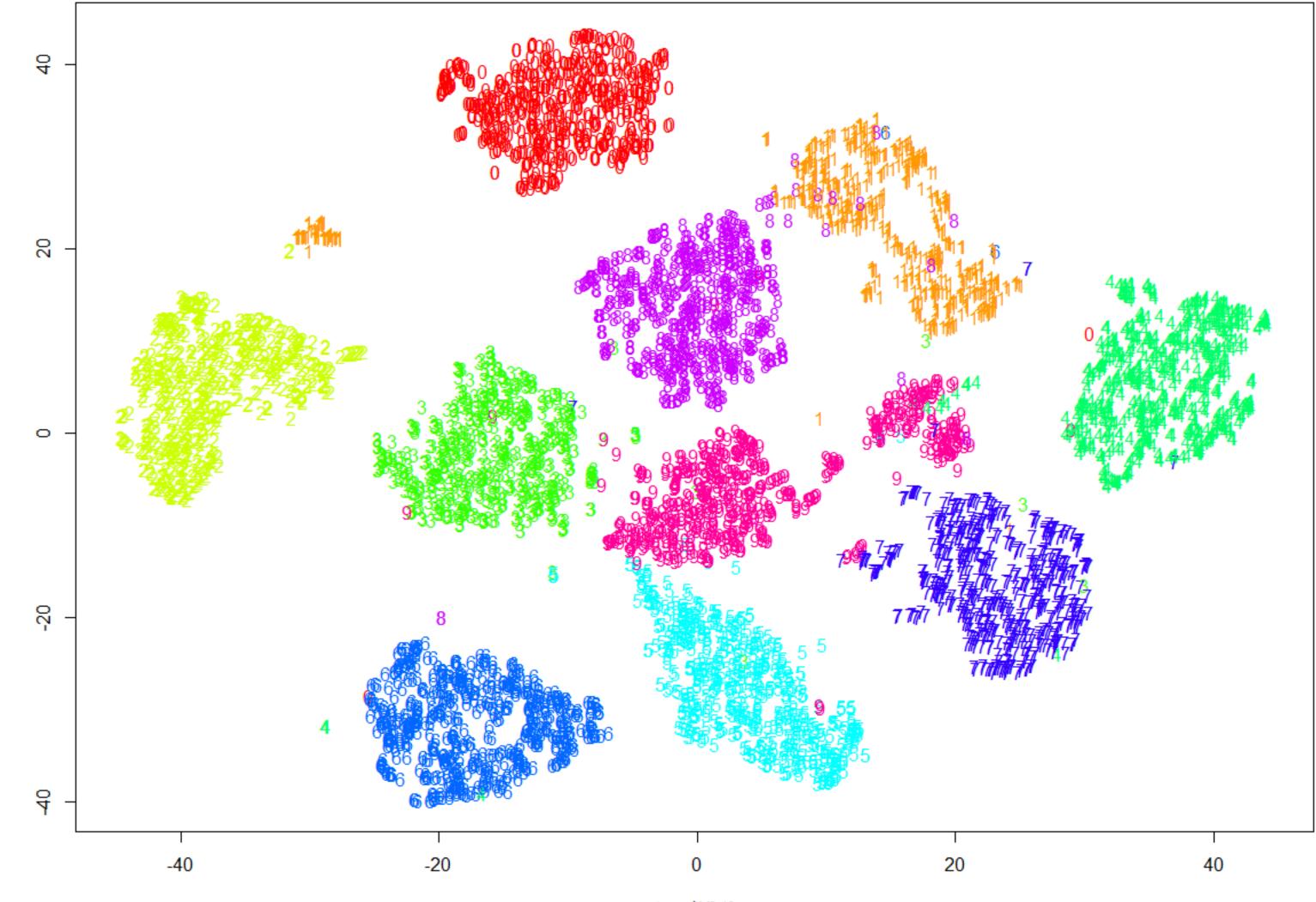
$$-\sum_j p_{j|i} \log_2 p_{j|i}.$$

The perplexity can be interpreted as a smooth measure of the effective number of neighbors. The performance of SNE is fairly robust to changes in the perplexity, and typical values are between 5 and 50.

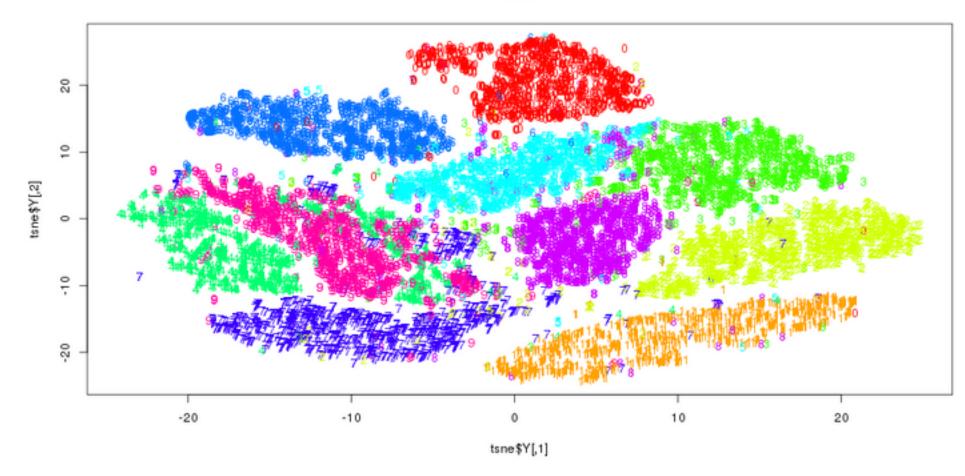
What is Perplexity?

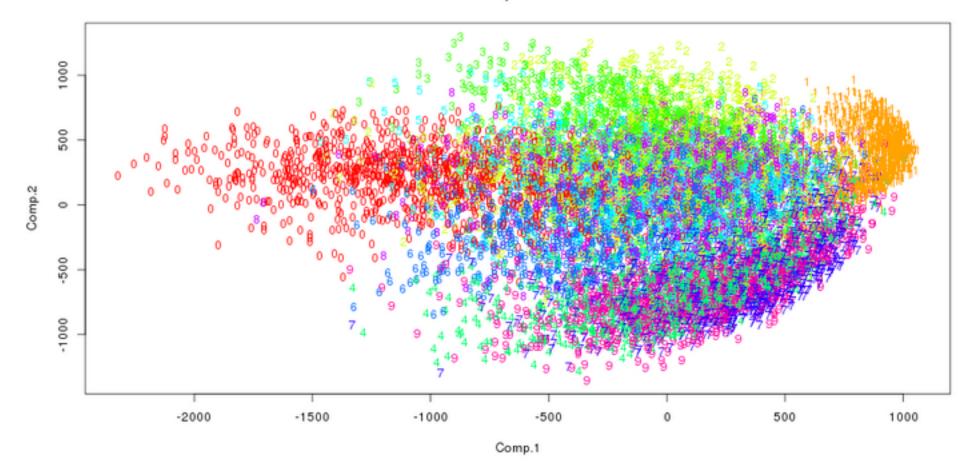


Classic t-SNE result



tsne\$Y[,1]



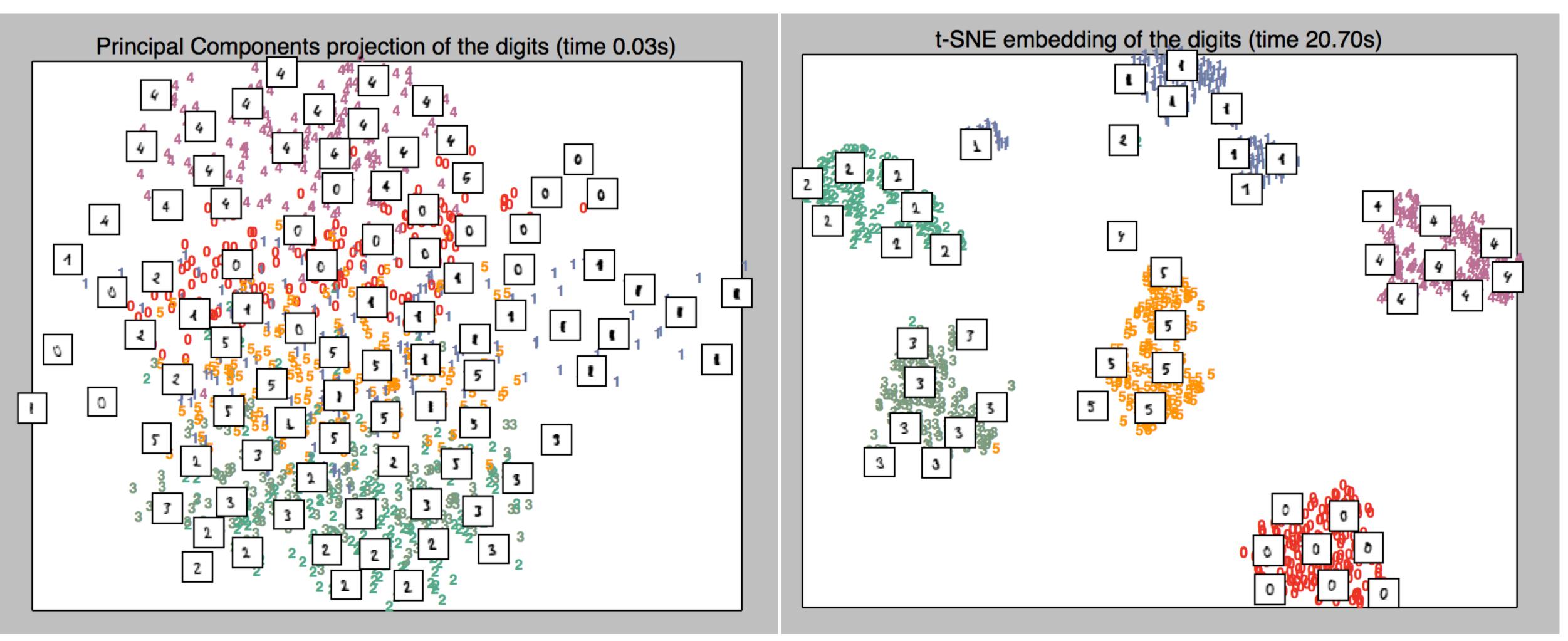


t-SNE vs PCA

tsne

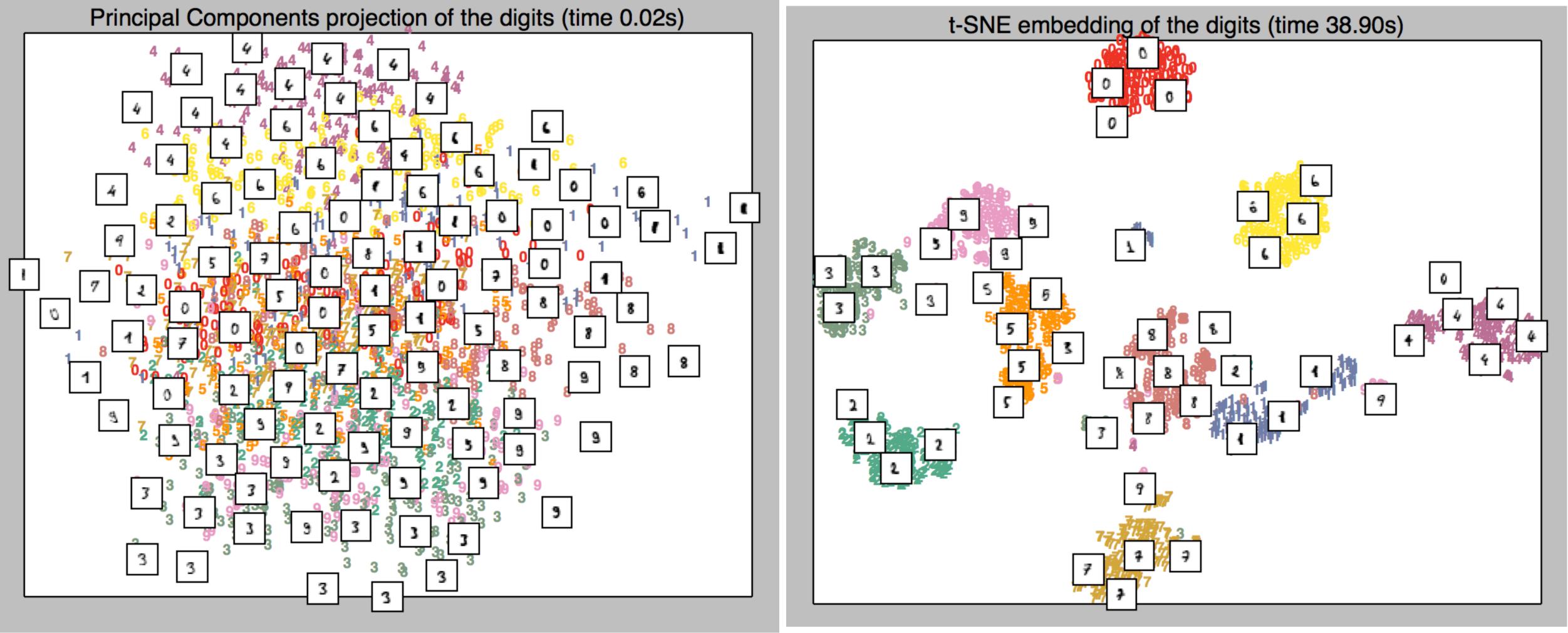
pca

t-SNE with scikit-learn: demo



http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html

t-SNE with scikit-learn: demo 2



http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html

- t-SNE: minimize KL divergence.
- Nonlinear DR.
- has.
- range between 5 and 50." (Laurens van der Maaten)

t-SNE in a nutshell

Perform diff. transformation on diff. regions: main source of confusing. • Parameter: perplexity, how to balance attention between local and global aspects of your data; guess the # of close neighbor each point

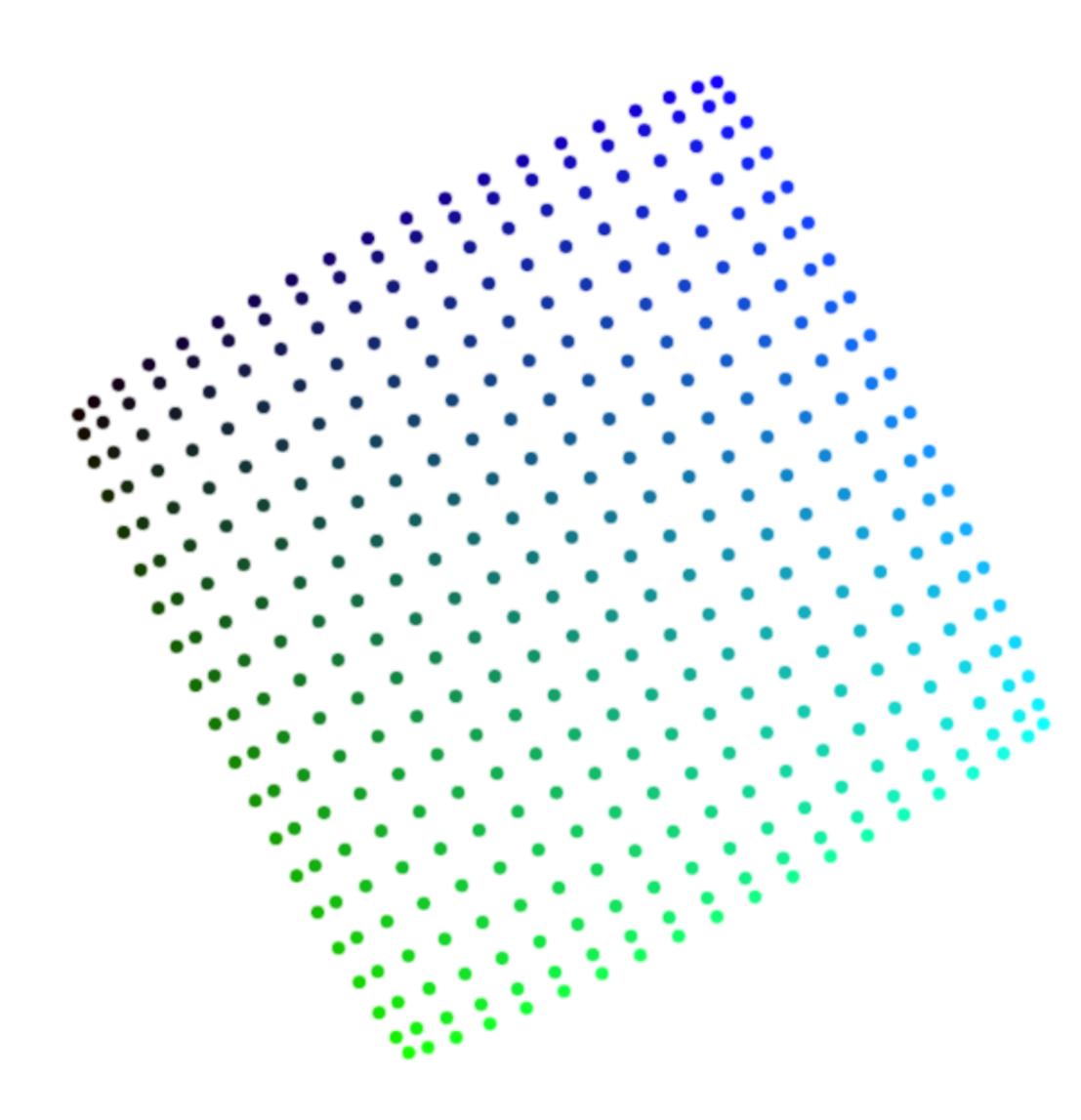
"The performance of t-SNE is fairly robust under different settings of the perplexity. The most appropriate value depends on the density of your data. Loosely speaking, one could say that a larger / denser dataset requires a larger perplexity. Typical values for the perplexity

Source: https://distill.pub/2016/misread-tsne/

What is perplexity anyway?

• "Perplexity is a measure for information that is defined as 2 to the power of the Shannon entropy. The perplexity of a fair die with k sides is equal to k. In t-SNE, the perplexity may be viewed as a knob that sets the number of effective nearest neighbors. It is comparable with the number of nearest neighbors k that is employed in many manifold learners."

Source: https://lvdmaaten.github.io/tsne/



How not to misread t-SNE

Points Per Side 20

Perplexity 10

Epsilon 5

Step

A square grid with equal spacing between points. Try convergence at different sizes.

Source: https://distill.pub/2016/misread-tsne/

Playing with t-SNE further

 http://scikit-learn.org/stable/auto_examples/manifold/ plot_t_sne_perplexity.html
 https://lvdmaaten.github.io/tsne/

Weakness of t-SNE

Not clear how it performs on general DR tasks Not guaranteed to converge to global minimum

- Local nature of t-SNE makes it sensitive to intrinsic dim of the data

Take home message

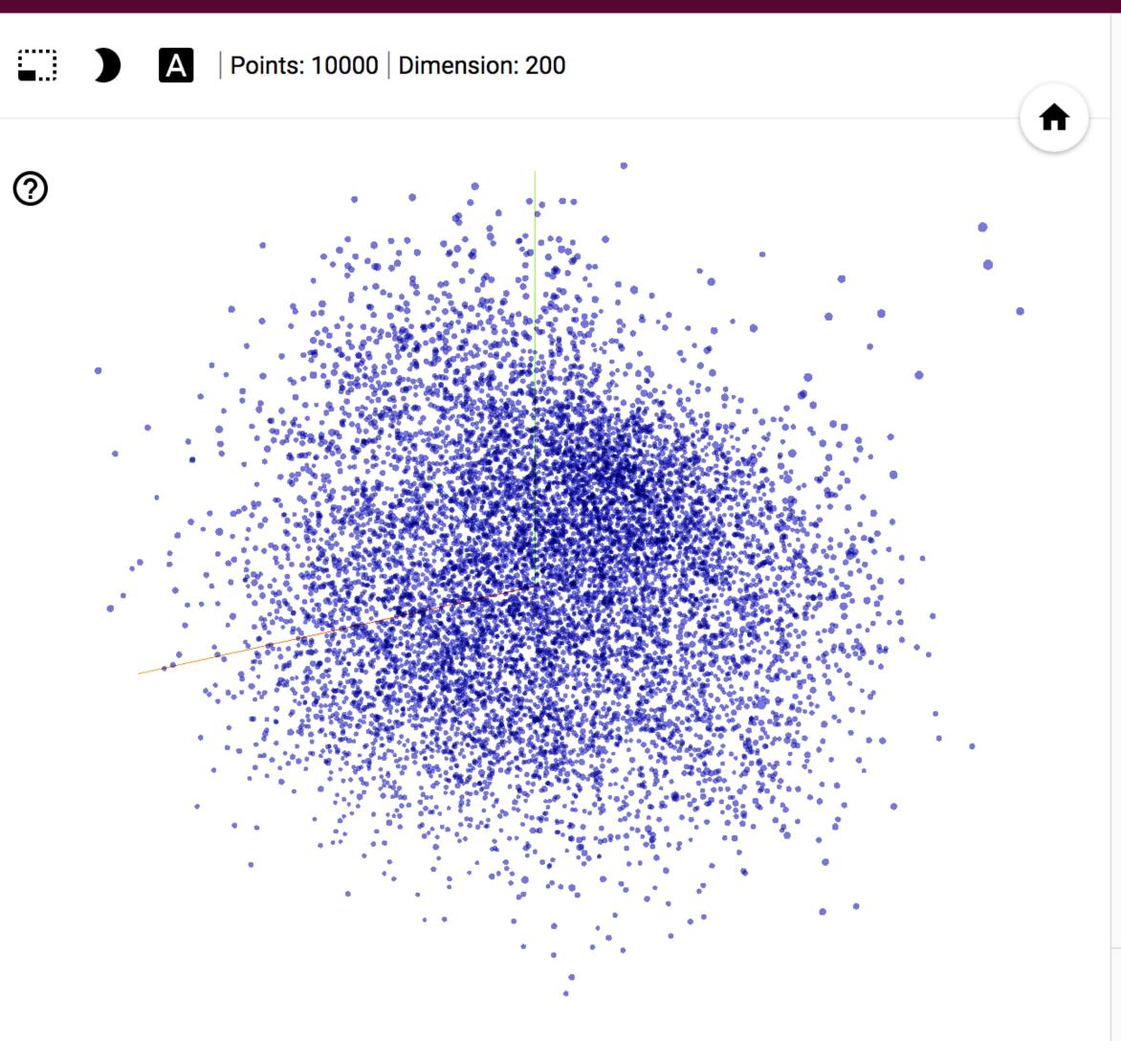
- Even a simple DR method like PCA can have interesting visualization aspects to it
- at the same time understanding the interworking of the algorithm
- Using visualization to manipulate the input to the ML algorithm, and Cooperative analysis, mobile devices, virtue reality?
- Is useful, but only when you know how to interpret it Those hyper-parameters, such as perplexity, really matter Use visualization to interpret the ML algorithm Educational purposes to distill algorithms as glass boxes

Source: https://distill.pub/2016/misread-tsne/

Embedding Projector

Embedding Projector

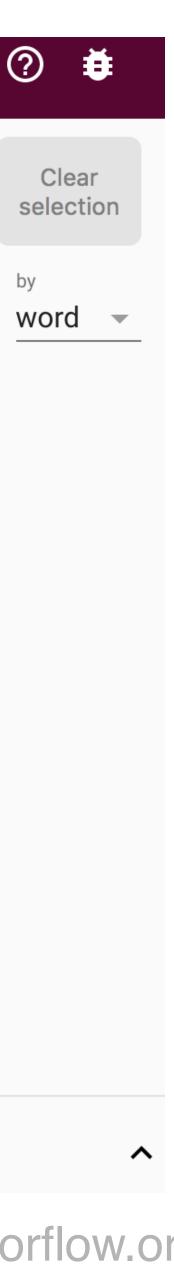
DATA					
5 tensors found Word2Vec 10K	-				
Label by word	-				
Color by No color map	~				
✓ Sphereize data 🕜					
	5 I II I				
T-SNE PC	CUSTOM				
T-SNE PC	Y CUSTOM				
X	Y				
× Component #1	Y				
X Component #1 <	Y Component #2 💌				



Show All Data	Isolate selection		Clear selection	
Search		*	^{by} word	•

BOOKMARKS (0)

http://projector.tensorflow.org/



Potential Final Projects Inspired by:

- http://setosa.io/ev/principal-component-analysis/ https://distill.pub/2016/misread-tsne/
- Extending Embedding Projector: Interactive Visualization and Interpretation of Embeddings
 - https://opensource.googleblog.com/2016/12/open-sourcingembedding-projector-tool.html
 - http://projector.tensorflow.org/ https://www.tensorflow.org/versions/r1.2/get_started/
 - embedding_viz

of two linear DR and two nonlinear DR techniques?

Can you create a web-based tools that give good visual interpretation

Getting ready for Project 1

- Scikit-learn tutorial:
- http://scikit-learn.org/stable/tutorial/basic/tutorial.html Install and read the documentation of kepler-mapper: https://github.com/MLWave/kepler-mapper
- Play with examples provided by kepler-mapper
- Install and play with UMAP

You can find me at: beiwang@sci.utah.edu

Thanks!

Any questions?

CREDITS

Special thanks to all people who made and share these awesome resources for free:

- Vector Icons by Matthew Skiles

Presentation template designed by <u>Slidesmash</u>

Photographs by <u>unsplash.com</u> and <u>pexels.com</u>

Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www.1001fonts.com/oswald-font.html

https://www.fontsquirrel.com/fonts/open-sans

Colors used