Dim Reduction & Vis
Visualization is the secret weapon for Machine learning.
Roles of ML in HD data visualization

From **Black Box** to **Glass Box**:
- ML as part of data transformation in the visualization pipeline
- Visualization increase the **interpretability** of the algorithmic results (visualizing algorithm output)
- Visualization increases the **interpretability** of ML algorithms (visualizing algorithmic processes)
- (Interactive) visualization becomes part of the ML algorithm
ML algorithms in a nutshell
Not a full-blown ML class, but

How to best incorporate vis into ML algorithms?
- A simple approach is to treat the ML algorithm as a black box, and build vis surrounding its input/output
- Not knowing the interworking of the algorithm (e.g. a glass box) may lead to misinterpretation of the algorithm output
- We need to have a good understanding of the core of some ML algorithms
- We will review some ML algorithms with a focus on their inner-workings so as to think about how visualization can be incorporated
- You are encouraged to read about ML in general (see recommended reading, and talk to the instructor)
- Keep in mind, our focus is ML+Vis
ML algorithm by learning styles

Supervised Learning
Problems: Classification Regression

Unsupervised Learning
Problems: Clustering Dimensionality Reduction

Semi-supervised Learning
Problems: Classification Regression

Source: https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
ML algorithm by similarity (how they work)

Source: https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
Advances in HD Vis
Visualization pipeline for high-dim data

[LiuMaljovecWang2017]
Visualization pipeline for HD data

Source Data → Data Transformation → Transformed Data

Data Transformation

- Dimension Reduction
 - Linear Projection [23], [25], Nonlinear DR [26], [30], Control Points Projection [34], [37], Distance Metric [38, 39], Precision Measures [42], [44]
- Subspace Clustering
 - Dimension Space Exploration [47], [48], [49], Subset of Dimension [51], [53], Non-Axis-Parallel Subspace [56], [57], [58]
- Regression Analysis
 - Optimization & Design Steering [61], [62], [63], Structural Summaries [67], [68]
- Topological Data Analysis
 - Morse-Smale Complex [166], [168], [169], [170], Reeb Graph [174], [175], [181], Contour Tree [179], [180], Topological Features [191], [192]

User Interactions

- User
 - User Interactions

Visual Mapping

- Axis-Based
 - Scatterplot Matrix [70], Parallel Coordinate [77], Radial Layout [89], [90], Hybrid Construction [93], [94], [95], [96]
- Glyphs
 - Per-Element Glyphs [99], [100], [101], [102], Multi-Object Glyphs [103], [104], [105]
- Pixel-Oriented
 - Jigsaw Map [109], Pixel Bar Charts [108], Circle Segment [107], Value & Relation Dispaly [110]
- Hierarchy-Based
 - Dimension Hierarchy [113], Topology-Based Hierarchy [197], [198], Others [115], [117]
- Animation
 - GGob i[119], TripAdvisorND [52], Rolling the Dice [120]
- Evaluation
 - Scatterplot Guideline [122], [123], Parallel Coordinates Effectiveness [124], Animation [127]

View Transformation

- Views
 - Views

Continuous Visual Representation

- Continuous Scatterplot [134], [135], Continuous Parallel Coordinates [136], Splatterplots [138], Splatting in Parallel Coordinates [136]

Accurate Color Blending

- Hue-Preserving Blending [140], Weaving vs. Blending [141]

Image Space Metrics

- Clutter Reduction [142], [143], Pargnostics [144], Pixnostic [145]

[LIU Maljovec Wang 2017]
<table>
<thead>
<tr>
<th>Source Data</th>
<th>Transform Data</th>
<th>Transformed Data</th>
<th>View Transformation</th>
<th>User Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Transformation</td>
<td>Visual Mapping</td>
<td>Visual Structure</td>
<td>View Transformation</td>
<td>User</td>
</tr>
</tbody>
</table>
| **Dimension Reduction**
Linear Projection [23], [25],
Nonlinear DR [26], [30],
Control Points Projection [34], [37],
Distance Metric [38, 39],
Precision Measures [42], [44] | **Subspace Clustering**
Dimension Space Exploration [47], [48], [49],
Subset of Dimension [51], [53],
Non-Axis-Parallel Subspace [56], [57], [58] | **Regression Analysis**
Optimization & Design Steering [61], [62], [63],
Structural Summaries [67], [68] | **Topological Data Analysis**
Morse-Smale Complex [166], [168], [169], [170],
Reeb Graph [174], [175], [181],
Contour Tree [179, 180],
Topological Features [191], [192] |
| **Axis-Based**
Scatterplot Matrix [70],
Parallel Coordinate [77],
Radial Layout [89], [90],
Hybrid Construction [93], [94], [95], [96] | **Glyphs**
Per-Element Glyphs [99], [100], [101], [102],
Multi-Object Glyphs [103], [104], [105] | **Pixel-Oriented**
Jigsaw Map [109],
Pixel Bar Charts [108],
Circle Segment [107] | **Hierarchy-Based**
Dimension [113],
Hierarchy [197], [198],
Others [115], [117] | **Animation**
GGobi [119],
TripAdvisor™ [52],
Rolling the Dice [120] |
| **Illustrative Rendering**
Illustrative PCP [128],
Illuminated 3D Scatterplot [129],
PCP Transfer Function [130],
Magic Lens [132], [133] | **Continuous Visual Representation**
Continuous Scatterplot [134], [135],
Continuous Parallel Coordinates [136],
Splatterplots [138],
Splatting in Parallel Coordinates [136] | **Accurate Color Blending**
Hue-Preserving Blending [140],
Weaving vs. Blending [141] | **Image Space Metrics**
Clutter Reduction [142], [143],
Pargnostics [144],
Pixnostic [145] |

Visualization pipeline for HD data

[LiuMaljovecWang2017]
ML in data transformation

<table>
<thead>
<tr>
<th>Dimension Reduction</th>
<th>Subspace Clustering</th>
<th>Regression Analysis</th>
<th>Topological Data Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Projection [23], [25], Nonlinear DR [26], [30], Control Points Projection [34], [37], Distance Metric [38, 39], Precision Measures [42], [44]</td>
<td>Dimension Space Exploration [47], [48], [49], Subset of Dimension [51], [53], Non-Axis-Parallel Subspace [56], [57], [58]</td>
<td>Optimization & Design Steering [61], [62], [63], Structural Summaries [67], [68]</td>
<td>Morse-Smale Complex [166], [168], [169], [170], Reeb Graph [174], [175], [181], Contour Tree [179, 180], Topological Features [191], [192]</td>
</tr>
</tbody>
</table>
Dimensionality Reduction (DR)

Vis+DR can be a semester worth of material...
Seek and explore the inherent structure in data
Unsupervised
Data compression, summarization
Pre-processing for vis and supervised learning
Can be adapted for classification and regression
Well-known DR algorithms:
- Principal Component Analysis (PCA)
- Principal Component Regression (PCR)
- Partial Least Squares Regression (PLSR)
- Multidimensional Scaling (MDS)
- Projection Pursuit
- Linear Discriminant Analysis (LDA)
- Mixture Discriminant Analysis (MDA)
- …
Linear vs nonlinear DR

- Linear: Principal Component Analysis (PCA)
- Nonlinear DR, Manifold learning:
 - Isomap
 - Locally Linear Embedding (LLE)
 - Hessian Eigenmapping
 - Spectral Embedding
 - Multi-dimensional Scaling (MDS)
 - t-distributed Stochastic Neighbor Embedding (t-SNE)
Manifold learning

Interpretability trade off

[LiuMaljovecWang2017]
DR and Vis Overview
How do we proceed from here

- Give two case studies involving DR + Vis
 - Case 1: PCA + Vis (simple)
 - Case 2: SNE and t-SNE + Vis (more involved)
- We do not go through all (but some of) the mathematical details of these algorithms, but instead give a high-level overview of what the algorithm is trying to do
- You are encouraged to follow references and recommended readings to obtain in-depth understanding of these algorithms
- You can use these case studies to think about what might be a good final project
Vis + DR: PCA

A case study with a linear DR method
Three interpretation of PCA

PCA can be interpreted in 2 different ways:

- Maximize the variance of projection along each component (dimension).
- Minimize the reconstruction error, that is, the squared distance between the original data and its projected coordinates.

http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/#some-things-you-maybe-didnt-know-about-pca
PCA at a glance

Data after normalization

A projection with small variance

PCA at a glance

- PCA automatically choose project direction that maximizes the variance
- The direction of maximum variance in the input space happens to be the same as the principal eigenvector of the covariance matrix of the data
- PCA algorithm: finding the eigenvalues and eigenvectors of the covariance matrix.
- The eigenvectors with the largest eigenvalues correspond to the dimensions that have the strongest correlation in the dataset; this is the principle component.
Eigenvalues and eigenvectors

For a given matrix A, what are the vectors x for which the product Ax is a scalar multiple of x? That is, what vectors x satisfy the equation

$$Ax = \lambda x$$

for some scalar λ?
Eigen decomposition theorem

Let P be a matrix of eigenvectors of a given square matrix A and D be a diagonal matrix with the corresponding eigenvalues on the diagonal. Then, as long as P is a square matrix, A can be written as an eigen decomposition

$$A = PDP^{-1},$$

where D is a diagonal matrix. Furthermore, if A is symmetric, then the columns of P are orthogonal vectors.

http://mathworld.wolfram.com/EigenDecompositionTheorem.html
Covariance matrix

\[Q = XX^T = \begin{bmatrix} x_1 - \bar{x} & x_2 - \bar{x} & \cdots & x_n - \bar{x} \end{bmatrix} \begin{bmatrix} (x_1 - \bar{x})^T \\ (x_2 - \bar{x})^T \\ \vdots \\ (x_n - \bar{x})^T \end{bmatrix} \]

X: data; each col is a data point; each row is a dim. Don’t want to explicitly compute Q: can be huge! Instead, using SVD, singular value decomposition.
Singular value decomposition (SVD)

Any $m \times n$ matrix X can be decomposed into three matrices:

$$X = U \Sigma V^T$$

- U is $m \times m$ and its columns are orthonormal vectors (i.e. perpendicular)
- Σ is $n \times n$ and its columns are orthonormal vectors
- D is $m \times n$ diagonal and its diagonal elements are called the singular values of X
Relation between PCA and SVD

Simply put, the PCA viewpoint requires that one compute the eigenvalues and eigenvectors of the covariance matrix, which is the product XX^T, where X is the data matrix. Since the covariance matrix is symmetric, the matrix is diagonalizable, and the eigenvectors can be normalized such that they are orthonormal:

$$XX^T = WW^T$$

On the other hand, applying SVD to the data matrix X as follows:

$$X = UV$$

and attempting to construct the covariance matrix from this decomposition gives

$$XX^T = (UV)(UV)^T$$
$$XX^T = (UV)(VV^T)$$

and since V is an orthogonal matrix ($V^TV = I$),

$$XX^T = U2V^T$$

and the correspondence is easily seen (the square roots of the eigenvalues of XX^T are the singular values of X, etc.)

Performing SVD on data matrix

X is the (normalized) data matrix, perform SVD on X:

\[X = U D V^T \]

- The columns of U are the eigenvectors of covariance matrix: \(XX^T \)
- The columns of V are the eigenvectors of \(X^T X \)
- The squares of the diagonal elements of D are the eigenvalues of \(XX^T \) and \(X^T X \)
PCA related readings

- Many PCA lectures are available on the web
- Reading materials
- Things you should pay attention when using PCA
 - Make sure the data is centered: normalize mean and variance
Using PCA with scikit-learn

```
import numpy as np
from sklearn.decomposition import PCA

X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
pca = PCA(n_components=2)
pca.fit(X)

print(pca.explained_variance_ratio_)
print(pca.singular_values_)
```
iPCA: An Interactive System for PCA-based Visual Analytics

UNC Charlotte
Dong Hyun Jeong Caroline Ziemkiewicz
William Ribarsky Remco Chang

Simon Fraser University
Brian Fisher

Video also available at: http://www.cs.tufts.edu/~remco/publication.html
iPCA extension: collaborative sys

<table>
<thead>
<tr>
<th>Button</th>
<th>Meaning</th>
<th>Button</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🏡</td>
<td>Go back to the initial state</td>
<td>🗑️</td>
<td>Delete the selected item(s)</td>
</tr>
<tr>
<td>👤</td>
<td>Individual item selection</td>
<td>👤</td>
<td>Partition the selected item(s) into a new workspace</td>
</tr>
<tr>
<td>🔎</td>
<td>Range item(s) selection</td>
<td>🔂️</td>
<td>Close the application</td>
</tr>
<tr>
<td>🍃</td>
<td>Manipulation</td>
<td>🔫</td>
<td>Create a new application</td>
</tr>
<tr>
<td>🦁</td>
<td>Trail enable – on/ off</td>
<td>🔪</td>
<td>Rotate the application</td>
</tr>
<tr>
<td>⏸️</td>
<td>Cancel the selected item(s)</td>
<td>⏸️</td>
<td>Make the sliderbar panel appear / disappear</td>
</tr>
</tbody>
</table>

[JeongRibarskyChang2009]: Designing a PCA-based Collaborative Visual Analytics System
Vis + DR: t-SNE

A case study with a nonlinear DR method

The material from this section is heavily drawn from Jaakko Peltonen
DR: preserving distances

\[C = \frac{1}{a} \sum_{i,j} w_{ij} (d_X(x_i, x_j) - d_Y(y_i, y_j))^2 \]

- Many DR methods focus on preserving distances, e.g. the above is the cost function for a particular DR method called metric MDS.

- An alternative idea is preserving neighborhoods.
Neighbors are an important notion in data analysis, e.g. social networks, friends, twitter followers…
Object nearby (in a metric space) are considered neighbors
Consider hard neighborhood and soft neighborhood
Hard: each point is a neighbor (green) or a non-neighbor (red)
Soft: each point is a neighbor (green) or a non-neighbor (red) with some weight
Probabilistic neighborhood

Derive a probability of point j to be picked as a neighbor of i in the input space

$$p_{ij} = \frac{\exp(-d_{ij}^2)}{\sum_{k \neq i} \exp(-d_{ik}^2)}$$
Preserving nbhds before & after DR

Before: space X

After, space Y

\[p_{ij} = \frac{\exp(-||x_i - x_j||^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2)} \]

Probabilistic input neighborhood:
Probability to be picked as a neighbor in space X (input coordinates)

\[q_{ij} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)} \]

Probabilistic output neighborhood:
Probability to be picked as a neighbor in space Y (display coordinates)
Stochastic neighbor embedding

- Compare neighborhoods between the input and output!
- Using Kullback-Leibler (KL) divergence
- KL divergence: relative entropy (amount of surprise when encounter items from 1st distribution when they are expected to come from the 2nd)
- KL divergence is nonnegative and 0 iff the distributions are equal
- SNE: minimizes the KL divergence using gradient descent

\[
C = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{q_{ij}}
\]
SNE: choose the size of a nbhd

- How to set the size of a neighborhood? Using a scale parameter: σ_i

\[d_{ij}^2 = \frac{||x_i - x_j||^2}{2\sigma_i^2} \]

- The scale parameter can be chosen without knowing much about the data, but...
- It is better to choose the parameter based on local neighborhood properties, and for each point
- E.g., in sparse region, distance drops more gradually
SNE: choose a scale parameter

Choose an **effective** number of neighbors:
- In a uniform distribution over k neighbors, the entropy is log(k)
- Find the scale parameter using binary search so that the entropy of p_{ij} becomes log(k) for a desired value of k.
SNE: gradient descent

- Adjusting the output coordinates using gradient descent
- Gradient descent: iterative process to find the minimal of a function

Start from a random initial output configuration, then iteratively take steps along the gradient
- Intuition: using forces to pull and push pairs of points to make input and output probabilities more similar

\[
\frac{\partial C}{\partial y_i} = 2 \sum_j (y_i - y_j) (p_{ij} - q_{ij} + p_{ji} - q_{ji})
\]
SNE: the crowding problem

- When embedding neighbors from a high-dim space into a low-dim space, there is too little space near a point for all of its close-by neighbors.
- Some points end up too far-away from each other.
- Some points that are neighbors of many far-away points end up crowded near the center of the display.
- In other words, these points end up crowded in the center to stay close to all of the far-away points.
- t-SNE: using heavy-tailed distributions (i.e., t-distributions) to define neighbors on the display, to resolve the crowding problem.
t-distributed SNE

- Avoids crowding problem by using a more heavy-tailed neighborhood distribution in the low-dim output space than in the input space.
- Neighborhood probability falls off less rapidly; less need to push some points far off and crowd remaining points close together in the center.
- Use student-t distribution with 1 degree of freedom in the output space
- t-SNE (joint prob.); SNE (conditional prob.)

Blue: normal dist.
Red: student-t dist. with 1 deg. of freedom
t-SNE: preserving nbhds

Before: space X

After, space Y

$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$

$P_{k|i} = \frac{\exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$

$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$

Probabilistic input neighborhood:
Probability to be picked as a neighbor in space X (input coordinates)

$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}}$

Probabilistic output neighborhood:
Probability to be picked as a neighbor in space Y (display coordinates)
Classic t-SNE result
t-SNE vs PCA
t-SNE

- t-SNE: minimize KL divergence.
- Nonlinear DR.
- Perform diff. transformation on diff. regions: main source of confusing.
- Parameter: perplexity, how to balance attention between local and global aspects of your data; guess the # of close neighbor each point has.
- “The performance of t-SNE is fairly robust under different settings of the perplexity. The most appropriate value depends on the density of your data. Loosely speaking, one could say that a larger / denser dataset requires a larger perplexity. Typical values for the perplexity range between 5 and 50.” (Laurens van der Maaten)

Source: https://distill.pub/2016/misread-tsne/
“Perplexity is a measure for information that is defined as 2 to the power of the Shannon entropy. The perplexity of a fair die with k sides is equal to k. In t-SNE, the perplexity may be viewed as a knob that sets the number of effective nearest neighbors. It is comparable with the number of nearest neighbors k that is employed in many manifold learners.”
How not to misread t-SNE

A square grid with equal spacing between points. Try convergence at different sizes.

Points Per Side 20

Perplexity 10

Epsilon 5

Source: https://distill.pub/2016/misread-tsne/
Playing with t-SNE

- https://lvdmaaten.github.io/tsne/
Weakness of t-SNE

- Not clear how it performs on general DR tasks
- Local nature of t-SNE makes it sensitive to intrinsic dim of the data
- Not guaranteed to converge to global minimum
Even a simple DR method like PCA can have interesting visualization aspects to it.

Using visualization to manipulate the input to the ML algorithm, and at the same time understanding the interworking of the algorithm.

Cooperative analysis, mobile devices, virtue reality?

t-SNE is useful, but only when you know how to interpret it.

Those hyper-parameters, such as perplexity, really matter.

Use visualization to interpret the ML algorithm.

Educational purposes to distill algorithms as glass boxes.
Getting ready for Project 1

- Scikit-learn tutorial:
- UMAP:
- Install and read the documentation of kepler-mapper:
 - https://github.com/MLWave/kepler-mapper
- Interactive Data Visualization for the Web, 2nd Ed.
Potential Final Projects

Inspired by:
- https://distill.pub/2016/misread-tsne/
- ExtendingEmbedding Projector: Interactive Visualization and Interpretation of Embeddings
 - http://projector.tensorflow.org/
 - https://www.tensorflow.org/versions/r1.2/get_started/embedding_viz

Can you create a web-based tools that give good visual interpretation of two linear DR and two nonlinear DR techniques?
Thanks!

Any questions?

You can find me at: beiwang@sci.utah.edu
CREDITS

Special thanks to all people who made and share these awesome resources for free:

➢ Presentation template designed by Slidesmash
➢ Photographs by unsplash.com and pexels.com
➢ Vector Icons by Matthew Skiles
Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:
https://www.fontsquirrel.com/fonts/open-sans

Colors used