Review Lecture

What have we learnt in Scientific Computing?
Let's recall the scientific computing pipeline
Scientific Computing

observed phenomenon

mathematical model

discretization

solution algorithm

efficiency

accuracy

robustness

implementation

programming environment
data structure
computing architecture
We have accomplished our goal and leant a great deal!
Our Supercomputing Miniseries

Mark Kim (SCI): Fixed-Rate Compressed Floating-Point Arrays
Sidharth Kumar (SoC): Parallel I/O Library
Arnab Das and Vinu Joseph (SoC): Why we are not ready for Exascale Computing?
Numerical Algorithms

Error

*different types of error (absolute, relative, discretization, convergence, roundoff)

Algorithm properties: accuracy, efficiency, robustness
Floating point system

Roundoff error accumulation

*FP system: can you tell me the range of numbers a FP system can provide?
Solving Nonlinear Equation in 1 variable: \(f(x) = 0 \)

- Bisection
- Fixed point iteration
- *Newton’s method
- *Secant
- *Convergence of various methods
- Function minimization
Linear algebra

Vector norm
Matrix norm
*Symmetric positive definite
Orthogonal matrices
*SVD
Linear Systems $Ax = b$: direct methods

- Backward and forward substitution
- *Gaussian elimination
- *LU decomposition
- Pivoting
- *Cholesky decomposition
- Error estimation
- Condition number
Linear least squares: \(\min \| b - Ax \| \)

Uniqueness and normal equation: \((A^TA)x = A^Tb \)

Orthogonal transformation

*QR

Householder transformation

Gram–Schmidt orthogonalization
Linear Systems $Ax = b$: Iterative methods

*Splitting (stationary methods): $A = M - N$
Jacobi method
Gauss-Seidel method
Convergence of stationary methods
Gradient descent
*Conjugate gradient: explain how this works?
Eigenvalues and singular values: $Ax = \lambda x$; SVD

- Power method for computing dominant eigenvalue and eigen vectors
- SVD
- Best lower rank approximation
- Geometric intuition behind SVD
- Least squares via SVD
- QR for eigenvalues
Nonlinear systems $f(x) = 0$ and optimization

- Newton’s method
- Unconstrained optimization
- Taylor’s series
- Gradient descent
- Linear search
- Quasi-Newton
Polynomial interpolation $f(x) = \sum c \phi(x)$

*Piecewise linear
Piecewise constant
Monomial interpolation
*Lagrange interpolation
Divided difference (coefficients) $f[x_{i\ldots j}]$
*Error
*Chebyshev interpolation
Interpolating derived values f', f''
Piecewise polynomial interpolation

Broken line
Piecewise Hermite interpolation
Cubic spline
Parametric curves
Best approximation

Continuous least squares approximation
Orthogonal basis function: Legendre polynomial
Weighted least squares
*Chebyshev polynomial: geometric intuition
Numerical differentiation

*Taylor series
2 point, 3 point, 5 point formula
Richardson extrapolation
Using Lagrange polynomial interpolation
Roundoff errors
Numerical integration

Quadrature rule: \(\sum a_j f(x_j) \)
*Basic rules (trapezoidal, Simpson, midpoint)

Error
*Composite rules (similar to piecewise polynomial interpolation)

Gaussian quadrature
You should be proud of what we’ve accomplished together!
More on the final
Notes on final exam

Open book, open notes, close internet

Please bring your calculator (recommended); TA will have a calculator that you can borrow, if needed.

20 T/F questions (2 points each)
5-10 questions that require derivation
10 T/F question for extra credits
1 extra derivation question for extra credits
Possible topics of interests (see * from topic review)

<table>
<thead>
<tr>
<th>Errors</th>
<th>Polynomial interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE standard</td>
<td>SVD</td>
</tr>
<tr>
<td>Fixed point methods</td>
<td>Linear systems of equations</td>
</tr>
<tr>
<td>GE</td>
<td>Taylor series</td>
</tr>
<tr>
<td>Least squares</td>
<td>Unconstrained optimization</td>
</tr>
<tr>
<td>SOR</td>
<td>LU</td>
</tr>
<tr>
<td>CG</td>
<td>Chelosky decomposition</td>
</tr>
<tr>
<td>SD</td>
<td>Normal equations</td>
</tr>
<tr>
<td>QR</td>
<td>...</td>
</tr>
<tr>
<td>Condition number</td>
<td></td>
</tr>
</tbody>
</table>
Example questions

1. In unconstrained optimization, a necessary condition for having a global min at point \(x \) is for \(x \) being a critical point (T/F)?

2. Give polynomial interpolation to some data using different interpolation schemes.
In unconstrained optimization, a necessary condition for having a global min at point x is for x being a critical point (T/F)?

False: Page 260. A necessary condition for having a local minimum at x is that x be a critical point and that the symmetric Hessian matrix being positive semidefinite.
Example questions

3. Consider the linear system given below with $a, b > 0$:

$$
\begin{bmatrix}
1 \\
0
\end{bmatrix} =
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
$$

a) If $a \approx b$, what is the numerical difficulty in solving the linear system?

b) Suggest a numerically stable formula for computing $z = x + y$, given a and b.
Example questions

5. Consider the following:

(a) (8 points) Suppose you are using the trapezoidal rule to approximate an integral over an interval \([a, b]\). If you wish to obtain a more accurate approximation of the integral, which will gain more accuracy: (1) dividing the interval in half and using the trapezoidal rule on each subinterval, or (2) using Simpson’s rule on the original interval? Note that either approach will use the same three function values, at the endpoints and the midpoint of the original interval. Support your answer with an error analysis. Test your conclusion experimentally with a simple integral example of your choice.
Revisit:
The Future of Scientific Computing
50 years from now

[Trefethen 2000]
We’ll talk to computers more than type to them, and they’ll respond with pictures more often than numbers.

Computer Graphics, Visualization, HCI, 3D images
Numerical computing will be adaptive, iterative, exploratory, intelligent – computational power will be beyond your wildest dreams.

Everything is embedded in an iterative loop, problems solved atop an encyclopedia of numerical methods.
Detereminism in numerical computing will be gone.

It is not reasonable to ask for exactness in numerical computation... we may not ask for repeatability either.
4 Floating point arithmetic: best general purpose approximation

The importance of floating point arithmetic will be undiminished.

128 bit plus word lengths, most numerical problems can not be solved symbolically still, still need approximations.
Linear systems of equations will be solved in time $O(N^{2+e})$.

Complexity of matrix multiplication = complexity of “almost all” matrix problems: inverse, determinants, solve linear systems...

How fast can we multiply two n by n matrices? Standard $O(N^3)$. Strassen’s algorithm $O(N^{2.81})$. Coppersmith and Winograd’s algorithm $O(N^{2.38})$. Is $O(N^2)$ achievable?
Multipole methods and their descendants will be ubiquitous.

Speed up the calculation of long-ranged forces in the n-body problem. Large-scale numerical computations rely more on approximate algorithms...more robust and faster than exact ones.
The dream of seamless interoperability will have been achieved.

No separation between numerical and symbolic calculations, work across different discretizations and grids, removing humans from the loop.
The problem of massively parallel computing will have been blown open by ideas related to human brain.

Understanding human brain and its implications for computing.
9 New programming methods

Our methods of programming will have been blown open by ideas related to genomes and natural selection.

Think digitally about the evolution of life in earth.
What’s your prediction of the future of scientific computing?
1. Supercomputing taking over!
2. Nano computing
3. Personal computing
4. Crowdsourcing
5. Human–computer interaction
6. Big data
7. Visualization needs
8. Web computing
9. Blurry boundary between SC and machine learning
10. Security
11. Your laptop and your other multimedia devices; internet of things
Take home message

1. **Think Big**: how SC could transform your research?
2. **Keep your eyes open**: identify the newest advancement in SC.
3. **Master the fundamentals**: practice makes perfect.
4. **Have some fun while learning!**

TA Friday (12/8) review hour: 1:30 p.m - 2:30 pm
THANKS!
Extra Notes

So it goes.
Credits

Special thanks to all the people who made and released these awesome resources for free:

✘ Presentation template by SlidesCarnival
✘ Photographs by Unsplash