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Preface

The Lecture Notes ' are primarily based on a sequence of lectures given by the author
while been a Fulbright scholar at “St. Kliment Ohridski” University of Sofia, Sofia,
Bulgaria during the winter semester of 2009-2010 academic year. The notes are somewhat
expanded version of the actual one semester class he taught there. The material covered is
slightly modified and adapted version of similar topics covered in the author’s monograph
“Multilevel Block—Factorization Preconditioners” published in 2008 by Springer.

The author tried to keep the notes as self-contained as possible. That is why the
lecture notes begin with some basic introductory matrix-vector linear algebra, numer-
ical PDEs (finite element) facts emphasizing the relations between functions in finite
dimensional spaces and their coefficient vectors and respective norms.

Then, some additional facts on the implementation of finite elements based on relation
tables using the popular compressed sparse row (CSR) format are given. Also, typical
condition number estimates of stiffness and mass matrices, the global matrix assembly
from local element matrices are given as well.

Finally, some basic introductory facts about stationary iterative methods, such as
Gauss—Seidel and its symmetrized version are presented.

The introductory material ends up with the smoothing property of the classical iter-
ative methods and the main definition of two—grid iterative methods.

From here on, the second part of the notes begins which deals with the various aspects
of the principal TG and the numerous versions of the MG cycles. At the end, in part III,
we briefly introduce algebraic versions of MG referred to as AMG, focusing on classes of
AMG specialized for finite element matrices.

Sofia, Bulgaria
January 30, 2010

!This work was in part performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-0TNA27344.
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Part 1

Motivation and Preliminaries






CHAPTER 1

Matrix-vector linear algebra and some basic finite elements
facts

This lecture contains a brief summary of results about matrix-vector notation, elliptic
boundary value problems, their weak formulation, Galerkin method and some preliminary
facts about finite element Galerkin discretization.

1. Notation

Vectors and matrices. Vector quantities are denoted in boldface, i.e., u, v, ....
We use vector-columns, i.e.,

U1
U2
vV = . c R"™.
Un,
The transpose of v denoted v is the vector-row (v, ..., v,). Given a m x n matrix
a1 Q12 ... Q1n
A=
Am1 Am2 ... Amn
. -
D (150
Jj=1

n
the product Av equals the vector Y a5, € R™. Sometimes we write for short
j=1

n
> UV
j=1

More generally, given two matrices, an m x n matrix A = (a;;) and an n X ¢ matrix
B = (by;) the product C' = AB is the m x £ matrix with entries c; given by the expressions
n
> aikbg- In short, matrices are multiplied “row-times-column”.
k=1

Symmetric and positive definite matrices. A n x n (square) matrix A = (a;;)
is called symmetric if v Aw = w’ Av for any two vectors v and w. It is clear that this
is equivalent to a;; = aj;.

A square matrix A is called positive definite if v Av > 0 for any non-zero vector v.

3



4 1. MATRIX-VECTOR LINEAR ALGEBRA AND SOME BASIC FINITE ELEMENTS FACTS

For symmetric matrices the following extreme values of the Rayleigh quotient

vl Av - vIiAv
max — and min =
v viv v V'V

characterize the minimal and maximal eigenvalues of A. Note that symmetric matrices
have real eigenvalues.
By definition, for an n x n matrix A, A is an eigenvalue of A if there is a non-zero
vector q such that
Aq = \q.

For symmetric matrices both A and q are real.
More over, for symmetric matrices the following spectral decomposition of A holds.

There is an orthogonal n x n matrix @, that is, Q7 = @Q~! and a diagonal matrix
A0 L 0 0
0O X O ... O
A= | - - . i | such that
0O ... 0 X1 O
o 0 ... 0 A\
A =QAQ".

Equivalently, AQ = QA, that is
A[Qla R Qn] = [QM R Cln]A = [Q1)\17 ) qn)\n]-
The latter written componentwise read:
Aqk:)\qu, k‘zl, ey, .

That is, q, and A\, are an eigenvector and a corresponding eigenvalue of A.

Based on the spectral decomposition for positive definite matrices (in that case all
Ar > 0), we can define functions of A, for example, we can define square root of A by
letting Az = QA%QT. The A2 is the diagonal matrix with entries on the main diagonal
equal to v/\. It is clear that A3 Az = A.

Scalar and vector—functions. We consider scalar functions v = u(x) where x €
Q) C R%. For the most part, we consider d = 2, however the results are general and hold
for d = 3 as well. Also, the domain 2 is a bounded planar polygon (d = 2).

Also, we consider vector functions, for example,

us (X)
u=nux)= ta(x)
Un(X)
Dot—product of vector-functions. Let u = (u;) and v = (v;) be two vector

functions. The following dot product is often used
UV =1uvy + -+ UpUy.

For any fixed x this is simply the inner (scalar) product of the vectors u(x), v(x) € R™.
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Gradient of scalar function. The gradient of a scalar function is a vector-function,
i.e., we have
Ou
ox1
Vu = :
Ou
6xd
Divergence of vector—function. For a vector-function u = (u;)%_; we can define
divergence
8U1 i i (9ud
0x; Oxg
Laplace operator. The Laplace operator is defined by
0%u 0%u
Au=divVu= — +--++ .
Oxy ox;
Normal vector to a domain boundary. For a given polygonal domain 2, we can
define unit outward normal vector n that is piecewise constant (and not defined at the
corners (vertices) of €2).

divu =

2. Boundary—value problems

Let Q C R? (d = 2) be a planar polygon. Also, let I' = 9 be the boundary of Q and
n its unit normal pointing outward ).

Integration by-parts formula. For any sufficiently smooth scalar function ¢ and
vector function v the following formula for integration by parts holds:

/gpdivvdx:—/V-Vgodx—l—/gpv-ndo:

Q Q o0
It is a simple consequence from the following formula of Gauss

0
a;i dx :/ w cos(n, e;) do.
Q 9
Simply, for a given v = (v;)%, and ¢, apply the above formula for w := v;p using
8%’;@ = a“’ + gpav’ We arrive at the desired result after summing up the formulas
ov; Op
/gpaxi x /Uaxi X+/gov cos(n, €;) do
Q Q o0
fore=1, 2, ..., d, using the decomposition

d
n= Zcos(n, e;)e;,
i=1

which implies

d d
:E gvcosn ).

i=1 i=1



6 1. MATRIX-VECTOR LINEAR ALGEBRA AND SOME BASIC FINITE ELEMENTS FACTS

Poincaré—Steklov operators and traces of functions. Let Ap be the d — 1-
dimensional Laplace operator and consider its Lo—orthogonal system of eigen-functions

—ApYr = Mg Y.
The functions v, vanish on F and satisfy [ dy = 0. For each ¢y, = 9y (y) solve
F
the following 1-d boundary value problem

Ak = o = 0,
subject to pr(—1) = 0 and ¢4 (0) = 1. The solution reads
VAR H) _ VA4 )
o) = —

It is clear then that uy, = @g(2)9(y) solves the homogeneous PDE —Auwu; = 0.
Given now a g = g(y) expanded in terms of the basis of the eigenfunctions {1y}

9=">_ i,
i

the following function
y) = ch%(ﬂ?)%(w
k

solves the Dirichlet boundary value problem
—Au=01in Q = (—-1,0) x F,

subject to u(0,y) = g(y), y € F and u =0 on 00\ {(0, F)}.
The latter boundary value problem defines the so-called Poincaré-Steklov operator

via the relation
ou

x|,

Sg—z\/_kckcoth \/_ ) Vg

The latter expression imposes some restrictions on the growth rate of the Fourier coeffi-
cients {c,} of g. Namely, we assume that g = g(y) is such that

HgHiI%( . (Sg, g Z VAR ¢ coth (VAR) 2> "/ 6 < oo,
’ k

REMARK 2.1. It can be shown that N\, ~ k? where the equivalence constants depend
on the diameter of F.
Hence above and in what follows, we can replace \/ A, with k.

g€ Ly(F)— Sg= —

We have

The integration by parts formula (valid for sufficiently smooth functions) can be
extended by continuity to give the following variational definition of .S

(Sg, gp)F:/Vu-Vgodx.

Q
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Therefore

9>, =(Sg, 9)r = |ul}.
02 (F)

More generally, we can define for any s € R the fractional order Sobolev spaces on domain
boundary F C 09,
HE(F) = Z Xich,
k

lglls. 7 = |97

as long as the above series is convergent.

PROPOSITION 2.1. Letu € H (), Q = (—1,0) x F and let u vanish on 002\ {0} x F.
Then g = u|,_, € H3 (F) and Sg € Hy ?(F) and the following trace inequalities hold:
1 Sl _1 <uls.
91,3, = 1501, 3,,, < lul

PROOF. For any given harmonic function ¢ (i.e., Ap = 0) vanishing on 99 \ ({x =
0} x F)we denote @ its trace on F. Next, we use the fact that S is symmetric, i.e.,
(Sg, vr)r = (9, Spr)r. Indeed, let for two functions g and ¢* defined on F with Fourier

expansions g = > cxthy and ¢’ = Y ¢, 40k, we have
% 3
(Sg, g)r = Z V Ak coth(v/ M) ere, = (g, Sg)r.

The rest follows from the formula (Sg,¢) = [ Vu -V dx (where now g = u|,) and

Q
the definition of fractional order Sobolev norms. More specifically, using the duality
definition, for any harmonic function ¢ vanishing on 92\ {0} x F', we obtain

JVu- -V

IS -~ (Sg, ¢r)r _ (9. Ser)r - Q < |V

lglls, p > 11Sgll_s ~ SUp S TSP o TS g S [Vulfo.
lerlli e e llerllir o Vel

O

As a corollary of the above proof, we obtain the following characterization result for

S.

COROLLARY 2.1. We have the following minimization property of S:

(Sg, g)r inf / Vul? dx.

{uEH (Q), u|p=g and u=0 on OQ\F}

REMARK 2.2. The results in this sub-section hold for general polyhedral domains )
not necessarily being of the tensor product form (—1,0) x F' assumed here using more
general definitions of Sobolev spaces on (parts of) the boundary OS).
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Boundary value problems. Let part of I' be I'p and the remainder be I'y =
'\ I'p. We consider I'p to be non—empty. For a given function f = f(x) € Lo(),
ie., [ f3(x) dx < oo, and a function gy € Lo(T'y), we are interested in the following

Q

boundary—value problem:
Find a sufficiently smooth function v = u(x) such that

(1.1) —Au = f(x) in €,
such that
(1.2) u=0onIpand Vu-n =gy on I'y.

If I'y is empty, i.e., 'p = ' = 01, the above problem is referred to as the Dirichlet
boundary value problem. Note that if ['p is empty set, then we have a Neumann boundary
value problem that may not have a solution for any f and gy. Also, for the Neumann
problem if u is a solution, then u + const is also a solution, that is, the solution is
determined up to a constant.

Weak formulation of boundary value problems. Introduce the Sobolev space

H'(Q) of functions u € Ly(€2) such that their first partial derivatives 2% also belong to

Ly(€2). If the functions vanish on 92 the corresponding subspace is denoted by Hg ().
Let u solve the Laplace equation —Au = f for a given f € Ly(f2). Introduce the

vector function v = —Vu. For any smooth function ¢ using the integration by part
formula, we have

[ fedx=—[pAudx= [pdivwdx =—[v-Vodx+ [ ¢v-ndo

Q Q Q

0 89
= [Vyp-Vudx— [ ¢Vu-ndo.
Q 80

Assume now that u = u(x) satisfies the boundary conditions (1.2). Choosing then ¢
vanishing on I'p (the same as u), the following identity is obtained

(1.3) /Vu~Vgo dX:/fgo dx + / wgn do.
Q Q 00N

The above identity is referred as the weak formulation of the boundary value problem
(1.1)-(1.2). In this form the minimal requirement on u is to have only first partial
derivatives in Ly—sense, that is, u € H'(2) and vanishing on I'p. Similarly, it is sufficient
to choose p € H'(Q2) also vanishing on I'p.

Bilinear form and solution of boundary value problem. Introduce the bilinear
form
a(u, v) = /Vu -V dx,
Q
defined for functions in H'() vanishing on I'p C 9f2.

The bilinear form is symmetric and positive definite for the above class of functions
further denoted as V. Namely, if a(u,u) = 0 it follows that Vu = 0, hence u = const.
However u vanishes on I'p hence u = 0. In short, a(. .) defines an inner product on V.
By definition, V' is a Hilbert space in that inner product.
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onsider gy € 1 2(1 n) an € Lo . e Iollowing expression
Consider gy € H2(I'y) and f € Ly(Q). The following i

() E/fso dX+/gzv p do,
Q Ty
defines a linear functional for ¢ € V. Based on the trace estimates in Proposition 2.1

and Friedrich’s inequality, we have that ¢(¢) is bounded, i.e.,

1) < I lollello + llgwlly, oy Il s vy <€ (Ifllo + llgnll_y.ry ) 1Vl

Using the Riesz representation theorem for bounded linear functionals in Hilbert spaces,
it follows that the above linear functional ¢(¢) defined for ¢ € V| can be represented
based on the inner product of the Hilbert space, in our case the one given by the bilinear
form a(.,.). That is, there is an unique element u = u, € V such that for all p € V

a(u, p) = L(p).

This shows that the weak formulation (1.3) of the boundary value problem (1.1)-(1.2)
has a (unique) solution.

3. The Galerkin method

Let {@;}, be a finite set of linearly independent functions in V. The Galerkin
method constructs the best approximation to a function u € V' from the finite dimensional
space spanned by the functions {p;}" ;. That is, we are looking for the coefficients {u; }_;
such that

n
llu — ZuchZH — min .
i=1

Here, ||v|]| = y/a(v, v) is the norm induced by the inner product in V, that is, by our
bilinear form a(.,.). If u = u(x) is the (unknown) solution for the weak form of the
boundary value problem (or b.v.p.) (1.3), it turns out that even though w is not actu-
ally known, the coefficients {u;} are computationally feasible and uniquely determined.
Indeed, we get the following quadratic functional to minimize

J(ur, ooy up) = alu— Zuigoi, U — Zulgol)
By looking at g—l‘jj = 0, we obtain
0=alu— Z’Uz’%’a ©;)-
Therefore,

> wialpi, ¢) = alu, ¢;).

=1
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FIGURE 1. Piecewise linear basis function on triangular elements.

Since a(u, ¢;) = [ f, ¢j dx+ [ ¢; gn do, we obtain at the end the linear system of n
Q Ty

equations for n unknowns
n

Za(%‘, %’)Uz’:/ fj dx+/gojgNd0', forall j=1,2, ..., n.
Q

i Ty

This system has a unique solution since the functions ¢; are linearly independent which

implies that the n x n “Gram “ matrix A with (¢, j)th entry a(y;, ¢;) is invertible. If

we form the right-hand side vector f = (f;)7_, with f; = [ f ¢; dx+ [ ¢; gy do, the
Q Ty

Galerkin system for the vector of unknown coefficients u = (u;)?_; can be written in the
matrix-vector form

Au =Tf.

Again, since A is a Gram matrix, it is symmetric and positive definite. In general, it
inherits in our case the properties of the bilinear form af(.,.) (such as symmetry and
positive definiteness).

The finite element method. The finite element method is a special case of the
Galerkin method corresponding to a specific choice of the linearly independent test func-
tions {p; H ;.

A typical local basis function in 2D is illustrated in Fig. 1.

A partition of the given polygonal domain € into simple elements 7 (typically trian-
gles, or quadrilaterals such as rectangles)such that any pair of elements share a common
edge or a common vertex or are non-intersecting is referred to as a triangulation 7. The
elements are assumed to have diameter of order h which is meant to tend to zero. We
sometimes write 7 = 7;,.
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Consider the case of triangular elements. The set of vertices, called nodes {x;}, is
denoted by N' = N,,. For each vertex x; we associate a basis function ¢; that is linear
function of two variables when restricted to an individual element 7. The function ¢; is
such that it is locally supported in the neighborhood of elements sharing the vertex x;.
1, 1=y,

0, i#j.°

Consider an element 7 with its vertices

This implies that ;(x;) = d;;, =

T = (Xiu Xigs Xi3)‘

One of the vertices x;, equals x;. Let x;, have coordinates (z;,, ¥;,). Then the following
equation can be used to define ¢;(x) for x = (z,y) € 7

r oy e 1

0=| % Ya Oiiy 1
Tiy  Yig 5z‘, in 1

Tiz  Yis 5i, is 1

The derivatives of ¢; are similarly computed. For example, %‘g is computed from the

equation

1 0 2 0
0=| T Yi 0i iy 1
Tiy  Yig 5z‘, in 1
Tis  Yis 5z‘, iz 1

Similarly, %ﬂ satisfies
Y
0o 1 2

0

0= Ty Yiy 52', 1 1
Tiy Yin Oiiy 1

Tis Yis Oiiz 1
The Galerkin Gram matrix A in the case of finite elements is referred to as the stiffness
matrix. Due to the choice of locally supported basis functions ;, the entries a(y;, ¢;) of
A are zero if the supports of ¢; and ¢; do not overlap. In the case of triangular elements
described above an entry a;; = a(yj, ;) is nonzero if the nodes x; and x; belong to
a same element 7. Thus, the number of nonzero entries in a row ¢ of the matrix A is
bounded by k; 4+ 1, where x; is the number of elements 7 that share the vertex x;. If the
angles of the triangles is kept bounded away from zero when h +— 0, then we have that

K = max K; < 00.
X;ENp

This shows that the total number of nonzero entries of A is O(n), where n is the
number of basis functions or equivalently the number of nodes Nj,.
Since the basis functions ¢; are Lagrangian (nodal), we have that the finite element

Galerkin approximation
n
Up = g Ui Pi,
i=1

satisfies
un(x;) = u;.
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That is, the coefficients u; are actually nodal values of the finite element approximation
function wuy,.

Finally, since ¢; restricted to any element is a polynomial function (linear in the
above setting), it follows that the finite element Galerkin approximation wu; has some
approximation properties. More specifically, let V) stand for the finite element space
spanned by the basis functions {¢;} ;, then the following error estimate holds (see next
Chapter)

Va(u —up, u—up) = vrhnei‘r/lh Va(u — vy, u—wvy) < Ch |uls.

Here, we assume that the solution of the b.v.p. w is sufficiently smooth, that is, v has
all partial derivatives up to order two in Ly(€2). The term |u|, stands for the semi-norm

defined by
5 2u\’ Pu \? 0%\’
|uls = 92 + 020y + 8_y2 dx.
Q




CHAPTER 2

Further results on finite elements and stationary iterative
methods

This lecture contains a brief summary of further results on the finite element method,
its computational aspects, element matrices, sparsity of assembled matrices, condition
number estimates and some preliminary results about preconditioned stationary iterative
methods.

1. The finite element method: further results

Computational aspects. The finite element method is a special case of the Galerkin
method with specific choice of the basis (test) functions {¢;}" ;. A finite element method
is characterized with a set of elements 7 € 7;, and the set of nodes x; € N,,. Typically,
for piecewise linear basis functions ¢; and triangular elements 7, N, is the set of vertices.
In general, the indices ¢ run over so called degrees of freedom (or dofs) that specify the
basis of the finite element space V},.

Relation tables. One way to specify the topology of a finite element mesh is via the
so—called relation tables implemented as Boolean sparse matrices. For example, the
incidence element 7 has a vertex j can be represented by the rectangular matrix where
in row ¢ we have nonzero entry at column j if the node x; is a vertex of element . It
is clear that for triangular elements such a relation table will have exactly three non—
zero entries per row. We denote this Boolean matrix as “element_vertex”. Similarly, we
can form the Boolean matrices “element_edge”, “edge_vertex” etc. Utilizing operation
between Boolean sparse matrices we can form transposed relation or transient relations.
For example, the transposed matrix

“vertex_element” =“(element_vertex)
has a non-zero entry at position (7, j) which represents the relation “node i is a vertex of
element ;7.

The product of the Boolean sparse matrices

“vertex_vertex” = “vertex_element” X ”element_vertex”
has non-zero entry at position (7, j) which represents the fact that node i and node j are
vertices of a same element. If the degrees of freedom are associated with the vertices of
the elements, the latter “vertex_vertex” relation shows exactly the sparsity (non-zero)
pattern of the finite element stiffness matrix A.

Sparse matrices. From a finite element prospective a matrix M = M, is called sparse
if it has bounded number of non—zero entries both per row and per column. “Bounded”
means with respect to h — 0.

A characteristic feature of the finite element method (as we demonstrated earlier in
Lecture # 1) is that the stiffness matrix A has at most x + 1 nonzero entries per row

T»

2

13



14 2. FURTHER RESULTS ON FINITE ELEMENTS AND STATIONARY ITERATIVE METHODS

(and due to symmetry, per column) where x stands for the maximum number of elements
that share a common vertex. This is the case of finite element space V}, with degrees of
freedom the vertices (nodes) N}, of elements 7 € 7j,.

The same sparsity property holds for the finite element mass (Gram) matrix G with
entries g;; = [ pipj dx, i, j=1,..., n.

Q

This fact shows that in order to store A (and G), we need O(n) memory.

Sparse matriz storage in CSR format. CSR stands for “compressed sparse row”. The
CSR format is a popular way to store finite element sparse matrices. For an n x m sparse
matrix A, the CSR format exploits two one-dimensional integer arrays I and J and if the
matrix is not Boolean (as the relation tables discussed previously) a real array “Data” is
needed in addition to store the actual entries of A. ‘ '

Let A have at row 7, m; > 1 non—zero entries at positions (i,jp), e (z,]r(,fb)l)

The one-dimensional array I has length n + 1. With 7[0] = 0, we set

I[i] = I[i — 1] +m; for i > 1.
The array J has length I[n]. Similarly the data array has the same length I[n].

For each row i =1, ..., nof A, we list consecutively in the one—-dimensional array
J the indices j\”, s =1, ..., my starting at position I[i — 1] till position I[i] — 1, that is
JI[i=1]+5—1 =49 fors=1, ..., m,.

The data array is filled-in similarly, i.e., we let
Data[l[i = 1]+ s —1] =a, ;o for s=1, ..., m;.

Having sparse matrices stored in CSR format in practice it is useful to have algorithms
that implement matrix operations such as A7, matrix-matrix multiply C' = AB. lLe., if A
is stored in CSR format we need to store AT in CSR format using only O(n) operations.
Similarly, if the sparse matrices A and B are represented in CSR format with O(n) non—
zero entries, we want to find an algorithm that computes and stores C' in CSR format
for O(n) storage and operations. All this is feasible for finite element sparse matrices.

FElement matrices and matriz assembly. Since the entries of A (and G) are evaluation
of certain integrals, these integrals can be split over the individual elements. In this way,
we define element matrices. For example, let 7 € 7j, then for basis functions ¢; and ¢;
such that their support and 7 have non—-empty intersection, we can compute the integrals

az(;—) = /VSOj - V; dx and gi(;) — /SOiSOj dx.

T

It is clear that for triangular elements 7 and linear basis functions the respective (i, 7)
entries form 3 x 3 symmetric element stiffness and element mass matrices A, and G,
respectively.

The fact that the entries a;; of A (the global stiffness matrix) can be computed from
the respective entries of the element stiffness matrices A, using the formula

_ } : (7)
A5 = aij s
T Xj, X;ET

is referred to as matriz assembly.
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A useful observation is that the diagonal entries of A, a;;, can be assembled from the
. . () i .
diagonal entries a;;’ of the respective element matrices A..
Local and global quadratic forms. Denote by v, the restriction of a given vector v to
7. More specifically, let x;,, x;,, X;, be the dofs (in our case vertices) associated with 7.
Then, v, = (v;,)5_1 if v = (v;){y.
By construction, the following identities hold

(1.4) wlAv = Z wlA v,
€T,

Similarly,

(1.5) w! Gv = Z wl G, v,.
TETh

Given a vector v = (v;)?_; we can identify it with the finite element function v =

vip; € V. It is clear then that
1

n

(2

wl Av = a(v, w) and W' Gv = (v, w) = /vw dx.
Q

Similarly, for every element 7, we have

WZATVT = /VU - Vw dx and waTVT = /vw dx.

The latter two representations and the fact that the integrals over €2 are sums of integrals
over all 7 € 7, show the relations (1.4)-(1.5).

2. Condition number estimates

The main result of this section is the estimates (spectral relations) between A = (a;;)
and the diagonal matrix D with non-zero entries a;;, i = 1, ..., n. Also, we show that
the mass matrix G is spectrally equivalent to the identity matrix scaled by the factor h¢.
More specifically, the following main result holds.

THEOREM 2.1. The following estimates hold for the stiffness matriz A and mass
matriz G computed by a finite element space Vi, on a polygonal domain Q C R (d = 2):
7o B2 vIDv < vI' Av < max &k, vI Dv.

T€T)
Here, k. stands for the number of dofs in an element 7. For triangular elements and
linear functions, we have k. = 3. The constant vy > 0 is independent of h +— 0.

For the mass matriz G, we have for two positive mesh—independent constants co and
c1, the equivalence relations

co h'VTv <vIGv < ¢ hivTlv.



16 2. FURTHER RESULTS ON FINITE ELEMENTS AND STATIONARY ITERATIVE METHODS

This theorem implies that the symmetrically scaled stiffness matrix D=2 AD~% based
on the Rayleigh quotient estimates

Tr—1 _1
viD 2AD 2v
<maxk, = O(1),
vTv — reT, (1)

Yoh? <

has minimal eigenvalue of order O(h?) and a maximal eigenvalue of order O(1). That
is, the condition number of D~2AD~2 is O(h~2). This shows that A becomes very
ill-conditioned when h +— 0.

The result in Theorem 2.1 is general. However, in what follows, we consider our
model case of triangular elements and linear basis functions.

For a triangle 7 with vertices x;,,x;,, X;, let the angles associated with vertices x;,
be ;. Then the following formulas hold for A, and G,:

cot O + cot O3 — cot b3 — cot 17| 2 11
A = 3 —cot 05 cot 05 + cot 64 — cot 0, and G, = D) 1 21
—cot 0y —cot 0, cot 0, + cot Oy 11 2

Here cot§ = <8 and |7| = O(h?) (d = 2) stands for the area of 7. If the angles of T
stay bounded away from zero when h +— 0, it is clear that the diagonal entries of A,
are uniformly bounded from above and below for h + 0. Thus, we have for two h— and

T-independent positive constants y; and s

(1.6) Y VIv, <VvIDv, <y viv,.
2 11

Next, we compute the eigenvalues A of the matrix | 1 2 1 | coming from the element
11 2

mass matrix G,. We have

2—A 1 1
0O=| 1 2-=-X 1 |=—-A\—=-13*X—4).
1 1 2—A

Therefore, Apin(G-) = % and Apax(Gr) = %, which implies based on the bounds for the
Rayleigh quotient for G-,

(1.7) %VZVT <vIG,v, < g viv,.
As a corollary, by comparing (1.6) and (1.7), we have
(1.8) Foh* viD.v, <vIG,v,,

for some h— and 7-independent positive constant 7,,.
The desired estimates for G follow from the local estimates (1.7) after summation
over 7 € Ty, the fact that vIGv = Y vZG,v, and the estimate

vy < g VZVT <K VTV,
T

where x stands for the maximal number of elements that share any given vertex x;.
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The uniform upper estimate for A is seen as follows. We have, using Cauchy—Schwarz
inequality

2
(1.9)  vIiA.v, :/ Z v;, Vi, | dx <k, Z vi/\v%s

Xig €T X €T

2 T
dx =Kk, v.D,v,.

T

By summation over 7 € 7, we obtain the desired upper bound

viAv = E VTTATVT < max kK, E VZDTVT = max Kk, v Dv.
TETh ’TETh
T€T), T€T,

Inverse inequality. The inequalities (1.9) and (1.8) imply the so-called local inverse
inequalities

K
T T -2 T
v, Av, < —7 h™=v.G,v,.
0

The latter, after summation over 7 € 7, lead to the global “inverse inequality”
viAv < max fiy ¥, RV Gy

The same result, rewritten in terms of functions and norms, reads

(1.10) a(v, v) < Cr 72 o],

where C; = max k., 761.
T

Friedrich’s inequality. For functions v € H'(2) vanishing on I'p a subset of 9Q with
positive measure, the following Friedrich’s inequality holds:

||v||35/02(x) dx < Cp [o[2, |v|§z/yvu|2 dx.
(9]

Q

For the proof of the desired lower bound for A formulated in Theorem 2.1, we first
use the Friedrich’s inequality for the finite element function v corresponding to the vector
v. We have,

CrviAv =Cr 02 > 0| = vIGv = Z vIG,v,.

TGTh
The remainder of the result follows from inequality (1.8) with vy = g—OF Le., we have

vl Av > h2gf—0 Z VZDTVT = h*v, vl Dv.

TETH

The Poincaré inequality. For any polygonal domain, the following Poincaré in-

equality holds for any v € H'(Q) and its average value v = ﬁ Jv(x) dx, where

Q
Q] = [1dx,
0

lv = 2llo < Ca [[Volfo.
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3. Stationary preconditioned iterative methods

Our ultimate goal is to solve the system of equations
Ax = b,

where A is the n x n ill-conditioned sparse finite element stiffness matrix obtained after
discretizing the b.v.p. of interest using finite element space V}, corresponding to a trian-
gulation 7, for O(n) operations where the constant in the O-symbol is h-independent.

We first remark that direct methods cannot achieve this goal asymptotically for i +— 0.
That is why we focus our attention on iterative methods.

We begin with some standard iterative methods (like Gauss—Seidel).

Let M be an n x n matrix such that systems with M, My = g, are easy to solve (i.e.,
in O(n) operations). Examples of such matrices are diagonal, lower (or upper) triangular
sparse matrices, banded matrices etc. An example that we will be frequently using is
M = D + L, where D is the diagonal of A = (a;;) and L is the strictly lower triangular
part of A. That is L = (¢;;) where

{ 0, ifi<j,
gij = er - .
a;j, iti>j.
We have the decomposition
A=D+L+L".

For a given M, let x¢ be a given initial approximation (guess), for example, xq = 0,

and consider the iteration process

(1.11) M (%41 — %) = b — Axy, for k=0,1,

The matrix M is called preconditioner and the above iteration process (or method)
preconditioned iteration process (or method). The term xj1 — X is called correction
whereas the right hand-side (or r.h.s.) ry = b — Ax, is called residual (or defect).
We are interested in the convergence of the error ey = x — X to zero in some norm
|.]|. We note that
r, = Aek.
We have the following relation between two consecutive errors:

M(—ek+1 +ek) = M(Xk+1 —X—f—X—Xk) =b —AXk; = Aek.

That is,
(1.12) e = ([ — M tAe,.
The matrix F = I — M~'A is called iteration matriz.
Thus the method is convergent if for some norm ||.||, || E|| < 1, that is

I —M1A| < 1.

We are interested in the convergence of the above stationary iterative method in
energy norm ||v|4 = VvTAv. Since A is symmetric positive definite (or s.p.d.) A
defines an inner—product, hence |[|.||4 is indeed a norm. Also, for s.p.d. A, we can define
Az which is also s.p.d.. Then,

V| = viAv = vT Az A2y = (A2v)T A2y = || Azv|>
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From (1.12), we have
Adegy = Ab (1 M7A) A7 (Abey) = (1 - ARM14%) (Aley).
Thus
11,1
lewrilla < I — A2 M~ A2 | [lex .
That is, we need to estimate the norm of the transformed iteration matrix
E=1—-A: M A
For this purpose, we consider £7&. We have,
ETE = (I —A:MTA3)(] — A2 M1 A2)
=1—AsMTAz — AsM~1As + AsM-TAM 1Az
= 1= (ASMT) (M4 MT - 4) (M1AY)
:I—YT(M+MT—A)Y
The matrix Y is invertible (it equals M_lA%). Hence, Y7 (M + MT — A) Y is s.p.d. if
[Ew ]l
lewl

l[wll

and only if M + MT — A is s.p.d. We need to investigate when ||| = max
that is, when for any non—zero w,
lEw|? = wieTew =wiw —w/ YT (M + MT — A)Yw < wlw.
Equivalently, we need to establish when for any non—zero vector z = Y'w,
z' (M + M" — A)z > 0.
Thus, we showed that to have ||£| < 1 it is equivalent to have Y7 (M 4+ MT — A) Y and

hence M + MT — A s.p.d. In conclusion, we proved the following main result.

THEOREM 3.1. A necessary and sufficient condition for the iteration process (1.11)
to be A—convergent, i.e. convergent in A-norm, is

M+M"—A
to be s.p.d.

Applying this result to the forward Gauss—Seidel iteration matrix M = D + L, we
find

M+M'"-A=D+L+D+L"—(D+L+ L") =D,
which is s.p.d. Thus, we have the following result.

COROLLARY 3.1. The (forward or backward) Gauss-Seidel iteration method is con-
vergent in energy norm.

In some cases it is useful to have iteration process with s.p.d. preconditioner. If M
is not symmetric, we can run the following composite iteration using both M and M.
Given xg, for £ > 0 compute
M(Xk+% —xi) =b— Axy,
M (41 — Xk+%) =b—Ax,, 1,
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To implement this composite method we need to solve systems with both M and M.
If M +MT — Aiss.p.d. it is easy to see that the composite iteration is also convergent.
We have o

M(Xk-Jrl - Xk) =b— AXk,
where

M=MM+M"— A M".
Indeed, Xppd = Xp + M~'r;, and
Xpp1 = Xy 1+ M’TrH% =X+ M v+ M1 (b — Axj, — AM " 'ry).
Hence,
Xpp1 =%+ (M7 + M7= M TAM ey =x+ M7 (M + M" — A) M~ 'ry.

Therefore, we showed that the composite iteration with M and M T reduces to a standard
iteration with the symmetric preconditioner M,

M(Xlﬁ-l — Xk) =TI = b — AXk.
We have,

—1

I-M A =I—-(M'+MT-MTAM ')A
= (I —MTA)(I—-MA).

Hence, A%(I - MAA)A_% = ETE. Thus, the composite iteration is A—convergent if and
only if the original iteration with M is A—convergent.

Convergence factor. The norm of the iteration matrix is called iteration (or conver-
gence) factor. We proved above that the convergence factor of the composite iteration
with M and M7 is the square of the convergence factor of the iteration method with M

(and MT).



CHAPTER 3

Stationary iterative methods as smoothers and the TG method

This lecture introduces some facts about matrix inequalities, convergence of station-
ary preconditioned methods and comparison between two preconditioners. It also gives
an illustration of the smoothing property of iteration methods such as Gauss—Seidel that
leads to the multigrid idea to continue the iteration on a coarser version of the problem.
The lecture ends up with a formal definition of a two—grid iteration method.

1. Matrix norms
Unless otherwise specified, we use the standard Euclidean vector-norm ||v|| = v'vTv.

DEFINITION 1.1 (Symmetric definition of matrix norm).
For any n x m (rectangular) matriz B, the symmetric expression

w' Bv
max = o,
verr, wek™ ||v||[|w]
defines a matriz norm || B||.
From the identities,
w! Bv 1 ( WTBV> B 1

= max —
veR”? HVH

max ——— =maxXx —— | max ——— [Bv] =Bl
vern, werm ||[V[[[[w]] ~ veRn [[v] \wekm [[w]]

we conclude that Definition 1.1 is equivalent to the more traditional one

B
1B = max 18VIL
verr - |[v]|

Since w! Bv = vI' BTw, from Definition 1.1 it immediately follows that

(1.13) 1B] = [1B"]-

2. Inequalities between s.p.d. matrices
We will very often use the following result.
PROPOSITION 2.1. Let A and B be two s.p.d. matrices. Then the inequality
vIiAv <vTBv for all v,

implies that
viB v <v'A vy for all v.

21
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PROOF. Since A and B are s.p.d. then the s.p.d. square root of A and B is well-
defined. The given inequality used for v := B “3v implies

vIB 3 AB iv < vlv for all v.

That is, for X = A2B~2 we have v XTXv < vTv, or equivalently || X|| < 1. Since
| X|| = || XT]], we also have

viv>viXXTv = vIiA2B 1Ay,
Using this inequality for v := A~2v the desired result follows. 0

Some conditions for spectral equivalence. In what follows we will need the
following result.

LEMMA 2.1. Let M and the s.p.d. matriz D satisfy the estimates

(1.14) vI(M + MT — A)v > 8 vI Dv for all v,
and
(1.15) wlMv < 6, VWIDwVVIDv for all v, w.
Then, for M = M (M + MT — A)_l MT, we have

do 62

m viDv <vIMv < 2 vTDv.
0

PRroOF. Consider X = D~2MD~2. Condition (1.14) implies the following coercivity

of X,
I Xv=vI( X+ XT)v>vI( X+ XT - D_%AD_%)V > doviv.

That is, viXv > 2vTv. Using this inequality for v := X~'v we obtain X 'v|]* <
% vIXTy = % viX-lv < % Iv|[|X~1v||. That is, we showed that || X 'v]| < % Iv||
or equivalently,

_ 2
(1.16) Xt < =
0

Estimate (1.15) on the other hand is equivalent to || X|| < §;. Thus, as an intermediate
result we showed that the symmetrically scaled matrix M (that is, X) is well-conditioned
(XX < 5.

To bound M form above in terms of D we proceed as follows. Estimate (1.14) implies

1
wl(M+ M" — A)'w < 5 w! D™ 'w for all w.
0

Hence
— 1 1 1
VvIMv < =vTMD 'M"™v = = (D2v)"XXT(Dzv) < — | XT|? v7 Dv.
9o do do
From (1.13) we have | XT|| = || X|| < 1, hence the upper bound

_ 52
viMv < L VTDV,
0
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follows. For the estimate from below, we obtain

vID:M 'Div =vIDsM~T(M + MT — A)M~'Div
=vI'D:(MT+ M-~ M TAM ') D2v
< VI XT4+ XNy
=2vIiXlv
< 2 [ X H[[lv]*.

Using estimate (1.16), we obtain vZ DM D3v < 5 IIvI[?, or equivalently vINT v <
% vI'D7lv. The latter estimate, based on Proposition 2.1, implies the desired lower

bound

) _
ZO viDv <vIMv.

3. Convergence of classical (relaxation) iterative methods

We showed that a necessary and sufficient condition for the A-convergence of the
stationary preconditioned iterative method

M(Xk—kal):b—Akal, k:1,2, cee

for solving Ax = b and any given initial iterate xq, is the positive definiteness of the
matrix M+ M7 — A. This result implies that the forward Gauss-Seidel matrix M = D+L
coming from A decomposed as D+ L+ LT provides an A-convergent iteration. A simpler
method is the scaled Jacobi iteration matrix M = w D. We also showed that

k viDv > vl Av,

where k = 3 for triangular elements (and linear basis functions). Hence, if we choose
w > %, then we ensure that M + M" — Ais s.p.d. (for M = wD).

It turns out that Gauss—Seidel method is not much faster than the weighted Jacobi
method asymptotically with respect to h — 0. In the case of D being the diagonal of A
and M = D + L the forward Gauss—Seidel, we can apply Lemma 2.1 with o = 1 and
01 < k (with k = 3 for linear triangular elements). This shows that the spectral relations
between A and M and between A and D are of the same quality with respect to (or
w.r.t.) h— 0. That is, we have

viAv  vITAv
~Y

vIMv ~— vIDv’

if
v Mv
Recall that we proved the estimates
vl Av

vIDv

’)/OhZS < K.
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FIGURE 1. Initial non—-smooth function

Smoothing property of classical iteration methods. It is clear then that the it-
eration matrix /— (wD)_l A will reduce different components of the error differently. More
precisely, error components spanned by eigenvector of D! A corresponding to eigenvalues
close to the upper part of the spectrum, i.e., eigenvectors corresponding to eigenvalues
that are O(1) will be reduced with factors uniformly less than one (for h +— 0), whereas
components of the error that are spanned by eigenvectors corresponding to the lower part
of the spectrum, i.e., eigenvalues that are of order O(h?), will hardly change. A distinct
feature of the finite element stiffness matrices A (scaled symmetrically with their diago-
nal D) coming from b.v.p. is that their eigenvectors corresponding to the lower part of
the spectrum are geometrically smooth and global. Thus the classical iterative methods
like weighted Jacobi or Gauss—Seidel damp the geometrically oscillatory components of
the error very efficiently. This phenomenon is referred to in the literature as smoothing.

To illustrate the smoothing process, we start with a ey chosen to be a linear combi-
nation of a smooth and a oscillatory component, and then run successively, one, two and
three symmetric Gauss—Seidel iterations applied to Ae = 0. That is, we compute the
iterates e, = (I — M_lA)ek,l for k = 1,2, 3. The resulting smoothing phenomenon is
illustrated in Figs. 1, 2, 3 and 4.
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FIGURE 2. Result after one step of symmetric Gauss—Seidel smoothing

4. Coarse—grid approximation

Thus a natural idea is after one or few smoothing iterations to approximate the
resulting problem on a coarse grid and continue the iteration with a coarse version of
the problem. This was the breakthrough observation in the original paper by Fedorenko
[Fe64], later extended and popularized by Achi Brandt [AB77], Hackbusch and others.

The fact that smooth functions can accurately be represented on coarse grids is in-
herent to any approximation method, in particular, it is inherent to the f.e. method.
The latter is illustrated in Figs. 5, 6, 7, and 8.

We summarize the following basic finite element error estimate result (cf., for example,
Ciarlet [Ci02], Brenner and Scott [BS02], Braess [Br01])

Since a(u — up, ) = 0 for all ¢ € V,, (a main property of the Galerkin method), we
also have the following estimate,

IV (u—up)[* = a(u—up, u—up) = alu—un, u—¢) <[V(w—u)|[V(u-9)

That is,
IV(u—up)| = 1nf |V (u— )]

3
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FIGURE 3. Result after two steps of symmetric Gauss—Seidel smoothing

Assuming now that u has two derivatives in Lo(£2), we immediately get the first order
error estimate

[V(u—un)| < Chljull,.

To be more precise, we first form a nodal interpolant I,u = > u(x;)¢; and then on every

triangle 7 the following estimate holds

V=t = 3 [ V(= ha)f de < 3 €

TET, T T€T,

3 < CRul,

Here, we use the Taylor expansion on every triangle 7 and the fact that the triangles are
geometrically similar to a fixed number of an initial set of triangles. Hence, C; will take be
a fixed number of mesh—independent values. The latter estimate shows that for smooth
functions u (for example having two derivatives) the finite element approximations on
grids 7y will give approximations ug such that the error u — ug in energy norm behaves
like H ||ul|2. There is one problem with the above argument if we start with a f.e. function
up and want to measure u, — uy in energy norm. This is not immediately possible since
the finite element function u;, does not have two derivatives. To overcome this difficulty,
we can measure the error in L.
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FIGURE 4. Result after three steps of symmetric Gauss—Seidel smoothing

Lo—error estimates; Aubin—Nitsche’s argument. Consider two finite element
spaces Vi and Vj, where V), corresponds to a triangulation 7; obtained by possibly several
steps of refinement from a coarser triangulation 7. This implies that

Vg C V.

Let up, € Vj, and uy € Vg be the Galerkin projection (approximation) of uy from V.
This means that
a(up, —ug, pg) =0 for all py € Vy.
Consider the error e = up, —ug € Vi, C Ly(Q2) and solve the b.v.p. for the Laplace
equation
—Aw = e(x) for x € Q,
with w = 0 on 99Q. For convex polygonal domains 2 C R%, d = 2, 3, the following
regularity result is known
[w]l2 < C le]o-
That is, w has derivatives up to second order all in Ls(£2) and the above a priori estimate
holds. By construction, for the bilinear form a(.,.) coming from the Laplace operator,
since 0 = a(e, wy) = a(wy, e) for any wy € Vi, we have

lells = a(w, €) = a(w —wy, €) < [w —wyls el < CH|wl}2les < CHllellofe]:-
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FIGURE 5. Solution to —Au =1

In conclusion,

lun —ugllo < CH v/ alup, — ug, up, —ug) < CH \/a(un, up).

Finite element refinement and the interpolation matrix. Consider now two
nested finite element spaces Vi C Vj,. Let Vi = Span (go(H))Zf:l and V}, = Span (gogh))”

ic =1
with their respective nodal (Lagrangian) bases. Since each gpgfl) € Vg C V), we have the
expansion

H H h
P =3 o () .
i=1
Consider the coefficient vector ¢; = ( Sfl) (z;))i,. The matrix P = (¢, )i, is referred
to as the interpolation matriz. It relates the coefficient vector v, € R™ of any function
v. € Vi expanded in terms of the coarse basis {gpl(f{)} to the coefficient vector Pv, of

v. € V), expanded in terms of the fine-grid basis {(pgh)}. Since the finite element bases

are local, we see that the n x n. rectangular matrix P is sparse. The number of non—zero
entries of P per column depends on the support of each gogl)
number of fine-grid basis functions gogh) that intersect that support. That is, the sparsity
pattern of P is controlled by the topology of the triangulations 7y and 7.

, namely, depends on the
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FIGURE 6. Finite element approximate solution to —Au =1 on a coarse mesh

Matrix—vector form of the L,-approximation of the Galerkin projection

For a given u;, € V} and a subspace Vi of V},, by definition the Galerkin projection
uyg € Vy of u,, satisfies

a(up, —ug, vy) =0 for all vy € V.
That is, uy € Vg solves
a(ug, vy) = a(up, vy) for all vy € Vy.
In terms of coefficient vectors u., u, v, and Pv, of uy, uy, vy and vy as an element of
Vi, we have
vIAa, = a(ug, vg) = a(up, vyg) = (Pv.)" Au = v PT Au.

That is, Acu, = PTAu, or u, = A;'PT Au. Hence the coefficient vector of ug as an
element of V}, equals

Pu, = PA7'PT Au.
Another important property is the variational (Galerkin) relation between the coarse
matrix A, and A

(1.17) A, = PTAP.
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FIGURE 7. Finite element approximate solution to —Au =1 on a refined mesh

This is seen by construction, since the (i., j.) entry of A. equals a(wgf), SDEf{)) =
¢iCTA¢jC = (PTAP)Za]c
In conclusion, we have the following result.

PROPOSITION 4.1. The Galerkin projection ug € Vg of up, € Vy,, i.e. the coarse finite
element function uy that solves

a(up, —ug, vyg) =0 for all vy € Vg,
has a fine—grid coefficient vector Tau = PAPT Au with A, = PTAP.
It is easily checked that 74 = m4. We have
(1.18) 74 = PACY(PTAP)A'PTA = PAT'ALA'PTA = PA'PTA =14,
5. The two—grid algorithm: definition
We conclude this lecture with the

ALGORITHM 5.1 (Two-grid (or TG) algorithm).
Consider the system of equations

Ax = b,
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FIGURE 8. Finite element approximate solution to —Au = 1 on a more
refined mesh

and let M be a given smoother, P an interpolation matriz, and A, = PT AP the respective
coarse matriz. The (symmetrized) two—grid iteration method computes for any given
wnitial iterate Xo a two—grid iterate Xpq in the following steps:

o “pre—smoothing step”:
Compute y from

M(y —x¢) = b — Axo.

e “coarse—grid correction:
Compute x. from

Ax, = PT(b — Ay).

The next intermediate iterate is z =y + Px,.
e “post-smoothing” step:
Compute xpq from

M"(xr¢ —2z) =b — Az
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In summary, the TG algorithm involves solutions with M, M7 and A., matrix-—vector
multiplications with sparse matrices A, PT and P: with A to compute residuals, with
PT to restrict the fine—grid residual and with P to interpolate the coarse—grid correction.



CHAPTER 4

Two-by-two block matrices

This lecture provides some basic facts for two—by-two block matrices, their Schur
complements. It also analyzes angles between spaces by introducing an abstract lemma
of Kato.

1. Two-by-two block matrices

Let A be a s.p.d. matrix partitioned into a two-by-two blocks (Aij)zz,jzl with square

blocks A, i = 1,2, which hence, as is easily seen, are s.p.d. as well. Then the following

factorization holds
Ao I 01[An 01 AjlAp,
T AnAG T 0 S|]0 I '

The block S = Ay — A21A1_11A12 is called Schur complement. From the representation
A = Ldiag(Ayy, S)LT with L being invertible (L is unit triangular), it is clear that S is
also s.p.d. The following identity is seen for any vector v = (v;)?_;,

VTAV = (A11V1 + A12V2)T Al_ll (A11V1 + A12V2) + VgSVQ,
which shows the following minimization property of §

v2Svy = min v! Av.
Vi

The above minimum is attained for v in the subspace
A11V1 + A12V2 =0.

Such vector v is called “minimal energy” extensions of vy and it also satisfies the equation

0
AV:[SVZ]

The latter formula offers a way to evaluate the actions of S. That is, given vy, we
compute vi from Aj;vy + Ajave = 0 and form the product Av. Its second component
gives Svy. Thus, without explicitly forming S its actions can be computed by solving
systems with A;;. Note that S is in general a dense matrix (even if A is sparse).

S is better conditioned than A. We have the following inequalities valid for the
extreme eigenvalues of A and S (which are real and positive):

(119) )\mm(A) S )\mln(s) S )\max<S) S )\maX(A)'
33
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From the minimization property of S, we have for any v = [ Xl } , (using also the trivial
2

inequality vivy < vivy + vivy =vTv)
T T T
vy SV 1 vt Av v Av
272 _ min vl Av > min > min = Amin(A).
T T T
V2 V2 V2 V2 Vi Vi V'V v A%\
Hence, Apin(S) > Amin(A).
We also have V%SVQ < VgAQQVQ, hence
T
T T T
v SV Vs Agov Vo Vo v Av
2T 2 <V T22 2 _ _ < max YV = A (A).
Vy Vo Vy Vo 0 0 v vlv
Vo Vo

This shows that Apax(S) < Amax(A).

2. Abstract angles between vector spaces

Let A be a n xn s.p.d. matrix Let J and P be two rectangular matrices with n rows
each, such that when put together they form a square invertible matrix [J, P]. Equiva-
lently, we may say that any vector v € R"™ allows for the unique (direct) decomposition

v =Jvs+ Pv,.
Then, the inner product v Av admits the form
vl Av = v Av,

vy

where v = [ } and

c

5 [An A _[ JTAT JTAP
~ | Ay Ay | T | PTAJ PTAP |-

A trivial example of J and P is

[ 1] [0
J—_O_andP—_I].
A more interesting example is the so-called “hierarchical” one:
[ 1] W
(1.20) J—_O_andP—_I]

for a non-zero W.

Since the vector spaces Range(J) and Range(P) have non-trivial angle (any two
vectors in this pair of spaces are linearly independent) there is a constant v € [0, 1)
(strictly less than one) such that the following strengthened Cauchy-Schwarz inequality
holds:

(1.21) VIJTAPy, <y (VIJTAJvV,)? (VI PTAPY,)

N
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Then, for the Schur complement S = Ay — 221Z;11212 of A the following inequality
holds
(1=~ vIAyv. < vISv, < vIAyv,.
We prove this inequality using the minimization property of the Schur complement S
and the strengthened Cauchy—Schwarz inequality for the blocks of A. We have

- T
vISv, = min Vi A Vi
¢ Vf | VC VC
= rr‘1,in {V?Anvf + 2 V,}I;Alzvc + VCTAZQVC]
f
S _ 1 _ 1 _
> H&in V?AHVf — 2y (V?AHVf) 2 (VCTAQQVC) 2 4+ VCTAQQVC]
f L
I _ 1 _ 1y 2 _
— n‘1,in ((V};AHVf) 2 (VCTAQQVC) 2) +(1- ’72)VZA22VC:|
oL

> (1 —?)vT Ayv,,

which is the desired result.
Another result for the special case of hierarchical decomposition (1.20) is that the
Schur complements S and S of A and A, respectively, are the same, i.e.,

_ — — 1 —
S = Agy — Ayt AT Arp = Agy — A A A1y = S,
We have, with vi = v + Wvy and vy = vo,

vy Svy =minviAv = min  (JV; + PVy)" A(JV, + P¥y) = min V' AV = vi Svs.
Vi vi=vi+Wva Vi

That is, S = S. This is seen from the identity for any v, and wo,
0 = (Vatwa)  (S—95) (vat+wy) = va (S—S)vot+wl (S—S)wy+2 vI (S—SF)wy = 2 v (S—S)wy.

That is, since v, and w, are arbitrary, we have S — S = 0.

3. Kato’s lemma

Let 7 be a projection, i.e., 7 = m and (..,.) be an inner product and ||.|| = 1/(.,.) the
associated norm. Kato’s lemma relates the cosine of the abstract angle, v, between the
complementary spaces Range(m) and Range(/ — 7) measured in the inner product (.,.).
We assume that these spaces are non—trivial, i.e., that m # I and © # 0. The following

result holds .

V1—72
The characterization is seen as follows. For any pair of vectors v, w and number ¢t € R
consider the vector v; = v + t(I — m)w. We have 7v = 7v;. Hence

Il = ==l =

1
lwvll = [lwvell < 7 llllvell =[xl (l7vI]* + 2t(zv, (I —m)w) +¢* [[(1 = m)w]*)>.
Therefore, the quadratic form Q(t) = <1 — W) |mv||?+2t(mv, (I—m)w)+t? ||(I—m)w]|?

is non-negative. Hence, its discriminant must be non-positive. That is,

(v, (I —m)w)? — (1 _ !

i

) 1 = m)w2llv]? < o.
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This shows that the best constant (v) satisfies the inequality v* < 1— W, or equivalently
1
The fact the we actually have equality is seen by proceeding in a reverse order. From
(mv, (I =mw)* = +* (I = m)w|*[zv[* <0,

it follows that the quadratic form Q(t) = v* ||7v||* + 2t(wv, (I —m)w) +t* ||(I — m)w||?
is non-negative. Hence,

Il >

lmv + (I —m)w|* > (1 —7) [|wv]]*.
Letting t = 1 and w = v, we get ||[v[[? > (1 —~+?) ||7xv]]? that is ||7v] <

— |
1—v2
which shows that —=— is an upper bound for ||«|. Thus, we showed ||« =
/1—~2
! 1

Using the same arguments (replacing = with I — ), we show that || — 7| = i
-y

vl
1

2
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CHAPTER 5

The TG (two-grid) method

This lecture studies the two-grid (or TG) iteration method. Its relation to a basic
two-by-two block factorization preconditioner is described and analyzed.

We also derive one more characteristic identity for the inexact TG operator. The
lecture ends up with a number of assumptions on the coarse-grid projection operator 74
combined with the smoother that are useful in the analysis of the method in a multilevel
setting.

1. The two—grid algorithm and two—grid operator Brg

The TG iteration matrix. Let x be the exact solution of Ax = b, x( the initial
approximation and x7¢ the approximation produced by applying one iteration of the TG
algorithm described in the previous lecture.

We want to find a representation of the error xp¢ — x in terms of the initial error
X — Xg, i.e., to find a formula for the iteration matrix E7g from the relation

X — X7 = Fra(x — xq).
The following result holds:

ProrosIiTION 1.1. The TG iteration matriz Erg admits the following product form:
Erg=I—MTAI —7m,)(I—-M"A).

PrROOF. In the TG algorithm, we compute consecutively y, x., z and Xp¢ in the
following steps:
M(y —xg) =b— Ax,
Ax. = PT(b - Ay),
z =y-+ PXm
MT(xrq —2z) =b— Az

Starting from the bottom, we have x — xp¢ = (I — M~TA)(x — z). Similarly, x —y =
(I—M~1A)(x—xg). On the other hand, x—z = x—y—Px. = x—y—PA !PT A(x—y) =
(I —ma)(I — M7tA)(x — xg). Therefore the desired result follows. O

Block—factorization definition of TG.

DEFINITION 1.1 (TG preconditioner). Let A be a given s.p.d. matriz, P a full-rank
rectangular matriz, A, = PTAP the s.p.d. coarse matriz, and M, MT the A-convergent
smoothers. The latter is equivalent to the fact that M + MT — A be s.p.d. Consider also

the symmetrized smoother M = M (M + MT — A)_l M7,
39
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Define first the block—factored s.p.d. matrix

B I 01 M o0 I M-TAP
TG = PTAM-Y T 0 A . |]0 I '

Then, the two—grid (TG) preconditioner, Brq is defined from the formula

_ =~ I
BTé‘:[I’ P]BT(1}|:PT}

Since
s _[1 —MT"AP M0 I 0
¢ 10 I 0 A7l||-PTAM™' T |
and
_as-T
o | DM AT g arayp,
I 0 Il I
—PTAM™' T || PT| — | PTI—AM™) |’

the following explicit formula is easily seen
Byl =M '+(I—MTAPA P (I-AM ) =M ' +(I-M TA)ms(I—MA)A".
This shows also the relation

I—BrlA=T1—0 "A—(I—M7TAr(I - M A).

Finally, recalling that I — M A= (I — M~TA)(I — M~tA), the following result can be
formulated.

PROPOSITION 1.2. The TG preconditioner has the explicit form
(2.1) Byl =3 '+ (- M TAPA'PT(I — AM™Y).

It is s.p.d. and provides a matrixz representation of the TG algorithm since it relates to
the TG iteration matrix Erg. More specifically, we have

[ —BroA=Erg=I—-MTAI —7a)(I - M1A).
Finally, the following spectral inequality holds
vIAv < vI'Brev for all v,
which implies that the TG method is A—convergent, i.e. we have
1
(2.2) 0<vIAErev < vliAv — VTAB;é,AV < (1 - K—) vl Av.
TG

Here, K is an upper bound of the largest eigenvalue of A~'Brq, or equivalently an
upper bound in the spectral equivalence estimate

(2.3) vIBrov < Kpavl Av for all v.



2. CHARACTERIZATION OF Kr¢ 41

PROOF. We need only show the left hand side of (2.2). For this, it is sufficient to
show that vIAr,v < vIAv. Equivalently, we need to show that 74 = Aim A~2 =

A%PAc_lpTA% has norm one. First, we notice that the symmetric matrix 74 is also a
projection (using the fact that A, = PTAP). We also have that vI74v > 0. The desired
norm estimate then follows from the identity

I=Fa+(I -7y =74+ —74)%
That is,
0<viFav= VTﬁiv <vly.
The latter shows that I — 7 4 is non-negative matrix, hence
(2.4) A2ErcA™s = XT(I —74)X, (with X = — Az M 'A?)
is also non—negative, which is equivalent to AE;rqg = A — AB;&,A being non—negative as

well, that is, we have the desired result. 0

2. Characterization of Krg
From formula (2.4) and the fact that (I —7,4) is a symmetric projection, we have
1 _1 _ _
|AZ Erg A7z || = |(I = 7) X|* = | XT(1 —7a)|*.

Since —
(I —T)XXT(I—74) = (I —7a)?2— (I —7a)A2M "A2(I —74),
where M = MT(M + MT — A)='M, we have the following formula

1
AZErgA3|| =1 - —
43 BrgAH = 1- 2,
with
T
(2.5) Kreg = max vy

v=(I—7a)w vT A3 M-1Asv

To simplify the above expression introduce a basis in the space Az (I —7m4)V. That is,
for some full-rank matrix S, we have that for any vector Az(I — m4)v there is a unique
vector v, such that Az(I —m4)v = Sv,. We can assume that §'S = I. Then for any
vector v we can form the orthogonal decomposition (noting that PTA(I — 74) = 0),

v=Sv,+Pv, P= A3 P.
Define 74 = AzmgA~2 = A2 PAZ PT A2, Note first that (I —74)A2P = A2 (I —74)P =
0. We then have
(I—7a)v =(I—7a) <Svs + A%PVC)

= (I —=7a)SV,
= (11_ Ta)AL (I — mp)w
= A2 (I —ma)’w
:éa([ A)
= Sv,
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That is,
(2.6) (I —74)v = Sv,.
Using the decomposition v = Sv, + Pv. and the identity (2.6), the formula (2.5) takes

the form (since §'5=1 )

T
V, Vg

(2.7) Krg = max —— 5 —.
Vs VSTSTA%M—lA%SVS

Consider now the matrix
W = r ] MA™: [S P]

Since [g, 15] is invertible, we get

A*M A2 =[S, PJW'[S, P]" .
Therefore, since 5P = 0, and 'S =1 ,

STASMYAZS = [I, )WL, 0].
That is, ST ASM-1A5S is the inverse of a Schur complement of W. We write

S ASM AT = (We) ™

The Schur complement Wgep,,, has the following characterization (since W is symmetric
positive definite),
Vs

T
VZWSChuer = inf |i Vs :| w |i v

Ve c

} —inf (Sv, + Pv.)" ASNIAE (Sv. + Pv.).

[

Finally, from (2.7) based on the above characterization of Wgepu:, we get

TG Vp VT(WSChur)ilvs
s

Vs (WSChur)vs

vIiv,

= sup

Vs
1
— sup 1nf Svs—&—Pvc)TA*?MA §QE’VS+PVC)
ve Ve (A™ ?SVS)TA( 25vs)
. 3 T 55
= sup Hlf (A™ SVS+PVC) M(A SV5+PVC).
ve Ve (A~ 2SVS)TA(A7§SVS)

Noting now that A"3Sv, = (I —ma)v, we end up with the desired formula
inf (I — wa)v+ Pvo)" M (I = m4)v + Pv,)
(2.8) Krg = sup —
v (I —ma)v)" A((I = ma)v)

Replacing mqav—Pv, = P(A;!PT Av—v,.) with another Pv,, we end up with the following
characterization formula

miny, (v — Pv.)'M(v — Pv,) (v—mgv)TM(v —m57v)

(2.9) Kpg = sup = sup

(v —mav)TA(v — mav) (v —mav)TA(v —mav)

Here, 7 PM LPT M where M, = PTMP.
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Now, since (I — ) (I — wa) = I — 7z, (I — wgp)"M(I — 757) = M(I — 757) and
(I —7a)v)TA(I —ma)v = vIA(I — m4)v < vI Av, the following identities are seen

VTM(IfTI'M)V

Krg = max Ty

v=(I—m4)v o
((I—m5p)v) M(I—mg)v
vl Av

= max
v=(I—ma)v

((I—mg)I—7 )W) M(I-mg)(I-ma)v
vIA(I—ma)v

(([—WM)V>TM(I—7FM)V

= max
v

= Hl‘E,iX vIA(I-ma)v
T~
((I—Wﬂ)v) M(I-rmgp)v
> Il’l\é]lX vl Av
> max ((I—WM)V)TM(I—WM)V
T v=(I-ma)v viAv
= Krq.

That is, the following main result holds.

THEOREM 2.1. We have that the TG operator Brg and A satisfy the spectral equiv-
alence relations

vIiAv < vIBrev < Kpe vE Av,
where the best constant Krq is characterized as follows:
vIM(I - )V

v Av

(2.10) Kre = max
The following corollary is easily seen.

COROLLARY 2.1. Let the A-convergent smoother M and the s.p.d. matriz D be related
so that

(2.11) ¢t viDv < v Mv < ¢y vIDv for all v.

Define the D based coarse—grid projection 1p = PD;'PTD, where D, = PTDP. Then
the following two-sided estimates for Krg hold:

vID(I —7p)v vID(I —7p)v
vl Av s Kra s ¢ o vl Av '

PRroOOF. The proof follows from the characterization

C1 max
v

TAr — mi 2
v M([ — W]’\;[’)V = Hvblcn HV - PWCHM?

and similarly

vID(I —7p)v = min ||v— Pw.|3,
We
based on the spectral equivalence relations between M and D. 0

As a an application of the last corollary, we get the following main result.
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THEOREM 2.2. Assume that the TG method based on a smoother M is convergent
with a bound Krg. Then the smoother M, or a s.p.d. D, that is spectrally equivalent to
the symmetrized smoother M, is efficient for A restricted to a subspace complementary
to the coarse space. Equivalently, a necessary condition for the TG convergence is the
following “weak approximation property” of the coarse space:

For any v there is a coarse—grid interpolant Pv. such that in the D-norm, where D

18 spectrally equivalent to the symmetrized smoother M, we have the estimate
v — Pv.||% < 1y v Av.

PROOF. The space complementary to the coarse space where the smoother M is

efficient, or its symmetrized version M is efficient, or for that matter, any spectrally
equivalent s.p.d. matrix D (as in (2.11)) is efficient, can be chosen as Range (I — mp).
In the latter case, from (2.11) we have the spectral equivalence relations

vIAv < ¢y vI'Dv for any v,
and from below
¢ (I —7p)W)' DI —7p)v < Kre (I —7p)v)TA(I — 7p)v.

This shows that D and A are spectrally equivalent on the subspace Range (I —7p) (which
is complementary to the coarse space). Also, we have the weak approximation property

with n,, = KchG, seen from the estimate

¢ min |v— Pv |3 = (I —np)v) DI —np)v < Krg v Av.

3. Necessary and sufficient conditions for TG convergence

Here, we summarize the role of the “weak approximation property” corresponding to
the smoother M, as a necessary and sufficient condition for TG convergence.

The weak approximation property as a necessary condition. It is immediate
to see that the main characterization estimate
min [|[v — Pv,

c

2
137
)

K7 = max 5
v IvI%
implies the following “weak approximation property’
v = Pvellz < VErg [V]|a-
In practice, we may replace M with any spectrally equivalent s.p.d. matrix D, such that
¢, viDv < v Mv < ¢y vI Dv.

Then from the inequalities

(2.12) e |[v—Pvel[p < |lv = Pvelli; < ez v = Pvellp,
it follows, that we equivalently have the following “weak approximation property”
Krg

v = Pvellp <y/— [[v]la
1
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In some applications, we may choose D = ||A|| I, then we end up with the more familiar
“weak approrimation property’

1
LAz v = Pvell < 1w [1v]la,

where 1, = \/ Krg/c1.

The weak approximation property as a sufficient condition. Finally, it is clear
that we can prove a two-grid convergence estimate if we have a “weak approrimation
property”

v = Pvellp < nw [[V]a,

for a s.p.d. D that is spectrally equivalent to M as in (2.12). More specifically, the
following estimate holds

min ||v — Pv, min ||v — Pv.||%

c

2
1% 2
< ¢z sup < cam;,,-

C
v Av v vT Av

At the end, we recall a result (proven in Lecture # 3), that provides conditions for a

Krg = sup

s.p.d. matrix D to be spectrally equivalent to the symmetrized smoother M.

LEMMA 3.1. Let M and the s.p.d. matriz D satisfy the estimates

(2.13) vIi(M + M* — A)yv > 6o v Dv for all v,
and
(2.14) wlMv < 6, VWIDwVVIDv for all v, w.

Then, for M = MT (M + M — A)_l M, we have
0 ~ 52
ZO viDv <vIMv < 2 v Dv.
0

4. A main identity for Brg

We showed that B;(l; admits an explicit representation by formula (2.1) in Proposition
1.2. In this section, we will derive an identity characterizing Brg. We consider here a
Brg where A, taking part in its definition is replaced by an inexact solver B.. We assume
that

(2.15) vIAv, < vI'Buv, for all v..
This inequality implies that the inexact Brg also satisfies the lower bound
vIBrav > vl Av.
Our goal is the following identity.
THEOREM 4.1. For any v = vy + Pv,, the following identity holds

vIBrov = minP (VCTBCVC + (vy+ M—TAPVC)TM(Vf + M_TAPVC)) .
VZVf+ Ve
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PrOOF. From the definition of Byg, we have
_ ~_ 1
BTé:[L P]BTC1¥|:PT }
1 ~_1
This shows that for X = B2, [I, P] B;Z, we have | X| = || XT|| = 1, which implies the
inequality
VIB 21, P]" Bra|I, P|B;2v <¥'w.
Equivalently,
v (I, P|" Br¢ I, P]¥ <¥' Brev,

for any v = [ :if 1 . This shows that for v = [I, P]V = vy + Pv,, we have

vl Brev < VTETGv =vIB.wv,. + (vi+ M’TAPVC)TW(Vf + M TAPv,).
That is, since the decomposition v = vy + Pv, is arbitrary, we have

v Bpgv < min, (vIBve+ (vi+ M TAPv)"M(vy + M~TAPV,)) .
v=v;+Pv,

The fact that we actually have equality is seen for the choice of v = [I, P]v where ¥V
solves the equation

Brev = [I, P)"Brav.
Indeed, we have then
~ ~ T o . ~
VTBTGv == (BTGv) BE&BTGv
—vTBrg[l, PIB7I, PITBrav
= v Brav.

5. The MG (multigrid) method: definition

The MG method is simply a recursive application of the inexact TG one. Assume,

that we have a number of levels £ = 0, ..., ¢ each coming with its n; X nj s.p.d. matrix
Ay, respective smoothers My and M} that are Ay—convergent. To be specific, for the
time being, assume that ng > ny > --- > ny, that is, level 0 is the finest and hence level

( is the coarsest. Then, letting PF,; be the nj X nj1 interpolation matrix from coarse
level k£ + 1 to the next finer level k, we assume that A, = (P,fH)T ApPE .

To define the MG preconditioner B = By, we use induction as follows:

At the coarsest level k = ¢, we set By = Aj. Assuming that at level k + 1, By, has
been defined, the kth level one, B = By, is simply the TG preconditioner with inexact
coarse-grid solver B, = By given by the expression

B =M "+ (I-MTAPBP(I - AM™),
where the tools involved in its definition are the respective interpolation matrix P = P "

and smoother M = M,.. We recall that M = M (M + M7 — A)_1 MT.
Then by definition B = By = By and it is commonly referred to as the V' (1, 1)—cycle
MG operator.
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It is clear that B can be implement as in Algorithm 5.1 where the “coarse—grid”
correction step uses inexact solve with A. replaced with B. involving recursive call to
the coarser levels. The MG method will be considered again in a somewhat more general
situation (involving more smoothing steps) in Algorithm 2.1.

REMARK 5.1. In some cases, it is more convenient to use index 0 for the coarsest
level and ¢ for the finest one. Then, the interpolation matriz is denoted by P,f“ and the
respective Galerkin relation between the coarse and fine-grid matrices Ay and Agyq Teads
Ak _ (P:-é—l)TAkJrlplf—i-l_

In either case, even when we have many levels, when we consider only two consecutive
levels, we omit the fine—grid index and use “c” for the coarse-level index. Also, then P
stands for the interpolation matriz from the coarse level to the given fine—grid level. In
particular, we have then the Galerkin relation A, = PTAP.

6. Some classical MG convergence results

We recall the symmetrized smoothers

M=M(M+M —A)" MTand M = M™ (M + MT — A)~" M.

They satisfy the relations

[-M "A=T-MTA)(I-M"'A and I — M A= (I - M A)(I - M TA).
Letting E = I — A2 M1 Az, we also have

As(I - 'A)A™: =E F and A2(I — M 'A)A™: = BE" .
By definition, we have
Br=M"+(I-MTAPB B - AM™).
Using the identity ASDT 'As =1 — ETE, we obtain
A*B'A* = - E' E+E A:PB;'PTAE.
Assume now that
0<vI(B.— A)v. <. vIAuv, for all v..

Recalling the projection 74 = A%PAglPTA%, we get the following upper bound

vIBv < vTAf%BAf%v
viAv — m‘z}x vy .
VI (1-E" Bt B'7AE) v
< max vT\i
(2.16) v v

vV° Vv
= max — ——
(1 1 -
v v (I BB+ F 7TAE>V
VTV

vT (nc(lfﬁTE)JrIfET (I—@QE) v

= (14 n.) max
We make now the following main assumption that relates the smoother M and the
coarse—grid projection 7 4:
(A) There is a constant n; > 0 such that for any vector v, it holds
VIAI =M TA) I —ma)(I - M Ay <ny (VIAV —vTA(I = M TA)(I - M "A)v).
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Assumption (A) can be rewritten as
(2.17) VTET([ —7TA)Ev < n,vT (I — ETE) \%
Using this estimate in (2.16), we obtain
1 vI'Bv vlv

—— ——— < max — .
L+n, vVIAv = v 1 (I+(nc—ns) (I—ETE)>V

Thus if . > ns, the coarse-level inequalities

(2.18) 0<vH(B.— A)ve <n. vEAuv,,
imply the same type inequalities on the next finer level
(2.19) 0<vi(B—-A)v<nviAv.

That is, an induction argument over the levels applies, since at the initial (coarsest) level
B. = A, hence (2.18) holds for any 7. > 0, in particular, it holds for 7. = n;. Thus, we

have the following main V-cycle MG convergence result.

THEOREM 6.1. The V(1,1)-cycle MG preconditioner B is spectrally equivalent to A
with a bound given in (2.19) where n. > ns if assumption (A) holds.

6.1. Assumptions that imply main assumption (A). First, we consider an
assumption that is equivalent to (A). More specifically, we assume:

(A*) There is a constant d5 € (0, 1) such that
(7 = MFAWIEL < 6I(1 = ma)vI[Z + [[maviy for all v

Assumption (A*) has the following interpretation. The smoother reduces the “oscilla-
tory” component of the error referring to the subspace Range (I — m,4), whereas it does
not amplify the “smooth” error component referring to the coarse space Range (74) =
Range (P). We show next the following result

PROPOSITION 6.1. Assumptions (A*) and (A) are equivalent. with 6, = -

PRrOOF. Consider Assumption (A) in the form (2.17). By rearranging terms we also

have .
VTET (I — %A) Ev < Ths viv.
1+ n, 1+ 7,

Since T4 and I — T4 are projections, and due to the same reason T4(I — T4) = 0, we
have

1 2
—1+nf,4:(557,4+([—714):(537124 —7TA (\/_WA—F —7TA> .

Thus, we have the norm estimate

= Ms T
— Ev|? < .
||<\/_7TA+ 7TA> V|| _1—|—77 A%

s

The same result holds for the transposed operator, i.e., we have

HET (\/_WA + (I —Ta )vH2 < Ty

1+,



6. SOME CLASSICAL MG CONVERGENCE RESULTS 49
Finally, noticing that

<\/_7r,4+ —T4) >_1 (= 7o)+ —— 7,
which combined with the preceding estimate gives

IE' V|2 <6, || (Voma+ (I —74)) " |2
=0, (1 =7a) + e 7a) VI
= S.JI(T = Fa)VI2 + [Favi?.

Letting v : = Azv in the last estimate, assumption (A*) is obtained. Tracing the above
steps backward, it is easily seen that (A*) implies (A). O

Relation between “strong approximation property” and assumption (A).

We formulate next two properties.
(B) “l5 boundedness of 7m4”:
[AINI = 7a) vl < m AV
(C) “Strong approximation property”: For every v there is a coarse interpolant Pv,

such that

v — Pve|[3 < [ Av]*.

Ne
1A]]
The following result holds.

PROPOSITION 6.2. Property (C) implies (B) with n, = 1,.

PRrROOF. The proof is based on the discrete version of Aubin—Nitsche’s argument.

Consider € = (I — m4)v and let Au = e. Letting 77, = and using that e is A-

IIAII
orthogonal to the coarse space, we have for Pu,. the accurate coarse interpolant of u from
(©),
le|]|> = el Au
e’ A(u — Pu,)
JlefLalju — Pus
7. |l al|Aul
. HeHAHeH
e’ Ae = I el Av < % ||e||[|Av]| which shows

property (B). O

I IAIA

That is, we have [le||* < 7% [le//%

=

We conclude with the following two results.

PROPOSITION 6.3. Property (B) implies assumption (A) with ns = n, %

ProoF. We have, with v =FEv, E =1 — M~'A,
VIA(I = ma)v < | AV][[I(1 = ma)¥ || < HnTbH AV

This estimate combined with the bound for ||AV||*> which we derive below imply the
desired result.
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Using the identity ASM~1A5 =] — ﬁT, we also have
|AV|2 < || M| vTETAM 'AEv
— | M| (A3v)TASETAS(I — EE" ) A3 EA 3 (Asv)
= ||M]|| (A3v)"E" (I - EE )E(A%v)
— |M|| (43v)T (B"E - (B"E)?) (4lv)
< ||| (A3v)" (1~ B"E) (4iv)
= |M|| vT (A= A(I = M~TA)(I — M~ A)) v.

\%
\%

Nl= N

We used the elementary inequality ¢t — ¢ < 1 — ¢ for the symmetric matrix E'E which
has eigenvalues between zero and one. 0

LEMMA 6.1. If the smoother M is efficient on the A—orthogonal complement of the
coarse space, i.e., on the subspace Range (I — m4) in the sense that
(2.20) vIiMv, < n, vEAv, for all v, = (I — 74)v.
Then, assumption (A) holds (with M replaced with MT).
If the smoother M 1is s.p.d. and properly scaled such that
vIiAv <vTMv for all v,

then assuming that (2.20) holds with M replaced with M, assumption (A) also holds.

PROOF. The result follows from the Cauchy—Schwarz inequality

WAL = )W < AW g1 [(1 = ma)wllaz < Vs (AWl (7 = ma)wlla
That is,
(2.21) wl AL — 74w < 1, wl AM ' Aw.
Using the latter inequality for w = (I — M~T A)v, noticing that AM 'A=A— Al —
M~TA)(I — M~tA), we see that the r.h.s. of the latter inequality takes the form (letting
E=1—AM~'A% and using the inequality ¢ — t? < 1 — ¢t for WT)

Pp— 1 \T— —T— —T, .1 17 —7 1
wlAM ' Aw = (sz) E(I - E E)E" (Atv) < (A)T(I — EE")(Adv),

which is the r.h.s. of (A) (with M is replaced with M7T). Also, the left-hand side of
(2.21) is the left-hand-side of (A) (with M replaced with MT).

The second statement of the Lemma is proven noticing that in the case of M being
s.p.d. and scaled so that v’ Av < v Mv, we have that

1 S
5 viMv <vI'Mv <v'Mv.
That is, efficiency of M in the subspace Range(I — m4) implies efficiency of M in the

same subspace with the same constant ;. 0



CHAPTER 6

The MG: a recursive application of inexact TG

This lecture studies the multigrid (or MG) iteration method as a recursive application
of inexact TG method. We also study the effect of more smoothing steps on the MG
convergence factor. The lecture ends with some stable multilevel decompositions of finite
element spaces obtained by successive steps of mesh refinement. The latter function de-
composition provides stable decomposition of the corresponding coefficient vector spaces
and hence offer tools to prove MG convergence without assuming “strong approximation
property”. The lecture ends with an example of stable decomposition for a non—convex
domain (hence no full regularity result is available).

1. Composite iterations and the respective iteration matrix

Given an s.p.d. matrix A, let M, provide an A-convergent iteration. The latter is
equivalent to the fact of M{ + My — A being s.p.d.

Given an integer m and let m = 2v 4+ 6 where § = 0 or 1. For a given initial
iterate xq for solving the s.p.d. problem Ax = b perform the following iteration steps
fork=1, ..., v

Mo(Xor—1 — Xap—2) = b — Axgy o,
M{ (X9 — X25-1) = b — Axop_1.
If 0 =0, let x,,, = Xg,; otherwise (if # = 1) perform one more step
M()(Xm — XQV) =b - AXQV.
The iteration matrix E of the above composite process takes the product form
E=(I—M; A (I — MyTAYI = My A))” = (I — My A (1 - M A,
Recall that M = M(M* + M — A)"*M7T.
Based on E, we can define implicitly the matrix M from the equation
I-M1'A=FE.
That is, M~ = (I — E)A~". Since ||[A2 EA2|| < 1 (M, is A-convergent), it is clear that
M is well-defined (i.e., I — E or equivalently I — Az EA™2 is invertible).

Introduce the scaled iteration matrices Eg = I — A%MO’IA%, E = A2EA~z. The
following relation holds

E =, (Eq Fo) "
Hence,
E'E= <EOTEO> .

51
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2. Multigrid V-cycle algorithm with more smoothing steps

We now define the MG algorithm as inexact TG algorithm recursively calling the
coarse-level MG operator B, defined by induction on the previous coarse levels. At the
initial (coarsest) level B. = A, i.e., we use exact solve there.

Assuming that at some coarse level B, has been defined at the next fine level, we
define B using the following inexact TG algorithm.

ALGORITHM 2.1 (Inexact TG algorithm with several smoothing steps). Let A be
s.p.d., P : R"™ +— R" be the interpolation matriz, and let My be an A-convergent
smoother. Finally let B. be an s.p.d. approrimation to the exact coarse-grid matrix
A, = PTAP.

For a given initial iterate xqo, to define the next TG iterate Xrqg, we perform the
following steps:

e Perform m = 2v+ 60 (0 =0 or 1) pre-smoothing iterations with the composite
smoother M defined implicitly from the relation I-M A = (I-My ' A)? (EL Ey)”,
1.e., compute 'y from

M(y — x¢) = b — Axy.
e Solve the inexact coarse problem
B.x, = PT(b — Ay).

e interpolate: z =y + Px..
e Perform m post-smoothing composite iterations in reverse order, i.e., compute
Xra from the equations

M (xp¢ —2z) = b — Az.

The above algorithm defines, at a given level of a hierarchy of grids, the actions of B~
assuming the actions of B;' are available. Applying recursion over the levels, a multigrid
method is defined by initially letting B. = A. and then B is defined on the basis of B.
and at the next level setting B. := B the next level B is defined as above.

Assuming now assumption (B) (which holds if the strong approximation property (C)

holds). Le., using the Cauchy—Schwarz inequality and assumption (B), we have
~ ~ ~ ~ b ~

(2.22) VIA(L = ma)¥ < [JAVI[[I(T — ma) V]| < AT |AV|%.
We will use this estimate for v.= Ev. Our goal is to prove estimate as in assumption (A),
which as we know, implies uniform MG convergence i.e., a uniformly bounded p away
from unity, or equivalently a uniformly bounded spectral equivalence constant K < 14-1;.
More specifically, the following result holds.

THEOREM 2.1 (Braess and Hackbusch). The following spectral equivalence relations
hold for the MG V-cycle with m-step composite smoother if the strong approrimation
property (C) holds if m = 2v + 1

1 ||M,
viAv<vIiBv< (|14 — i Mo vl Av.
m Al
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For even m, we have

M
viAv <vT'Bv < (1 + —m HHAT|H> v Av.

PROOF. Assume that m = 2v + 1. The case of even m is proved similarly. Using the
identity A%MO_IA% =1- EOEOT, we have
|AV]? < ||M0|| vIET AM; ' AEv
— ||M0|| (AQV)TA 2ET A2 (1 EoE,)A: EA™3(A3v)
= 30|l (ABv)TE" (1 ~ BoEy E(A}v)
= |[Mol| (A3)T (E"E — B"EyE, E) (43)
(A2v)
%

M\H l\.‘:\

(2.23) — ||A70|! A%VT(E E0> (I—E0E0> Azv)

(A
< LMol (A3v)" (1= (BoBo) ") (43v)

— LML) (AF)" (1~ E"E) (Abv)
= L[ M| v (A= AU = M7TAYI = M A)) v

m—1
We used the elementary inequality for ¢ € [0,1], t™ < t¥ for k < m, i.e., mt™ < S tF,

k=0
hence

1m
-t <(1-t) =Y th= 1—tm)

m
k=0
We applied this inequality to the symmetric matrix Eo E, which has eigenvalues between

zero and one. Combining the latter estimate (2.23) with (2.22) the desired property (A)

follows with n, = % i Hﬁ(ﬁu‘

U

3. MG analysis without the strong approximation property (C)

Here, we use indices k, 0 < k < /£ to denote the level index of the grids generated
by successive steps of refinement, 7; with respective meshsize h, = 27%hy, k > 0. The
corresponding finite element spaces are V.. For k = ¢, we use the notation V =V}, =V},
h = hy, which is the space of our main interest. We also have A, and G} the kth level
stiffness and mass matrices, respectively. They are ny x ng s.p.d. sparse matrices. We
recall the spectral relations between Ay, the diagonal D, of Ay, G; and the standard
vector—inner product in R™:

(2.24) Vi Apvi < K Vi Dpvy o~ h,;2 viGyvy ~ hZ’Q vive.

The constant x depends on the type of elements we use; for the case of piecewise linear
functions £ = 3. The number d = 2 or 3 stands for the dimension of the domain £ C R,
where the b.v.p. is posed.
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3.1. The “XZ”-identity. We now formulate a main identity that characterizes the
V—cycle MG operator B = By. This identity is referred to as the “XZ”-identity due to a
result of Xu and Zikatanov in [XZ02] (see also [Va08]).

THEOREM 3.1. Given a sequence of s.p.d. matrices Ay, and Let My, be the kth level
smoother convergent in Ap-norm, and let P,_1 : R™-1 +— R™ the corresponding interpo-
lation matriz form coarse level k—1 to the next finer level k. We assume the Galerkin re-
lation A1 = P}_| AgPy—1. Consider the respective V(1,1)-cycle MG operator B = By
defined based on the specified smoothers and interpolation matrices.

For any fine—grid vector v .= vy, the XZ-identity in a matriz-vector form reads:

vIBv = min [VOTAOVO

(Vk:V£+Pka—1)f;:1

(2.25) - T "7 (of T
-+ Z <Vk + Mk? AkPk,lvk,1> Mk (Vk + M]; AkPklvkl)l .
k=1

PRrOOF. The proof follows as a recursive application of the TG identity found in
Theorem 4.1. 0

Using the triangle inequality, it is clear that in order to bound v’ Bv in terms of
vl Av, it is sufficient to bound the following two sums (i)', (ii)’ for some particular

decomposition of v involving the components v, and V]]; =v, — P_1vi_1:

> (Vi) M,
k

VgAOV0 + Z(kal)TP]?flAk (Mg + Mk — Ak>_1 Akpkflkal.
k

We proved for M), being the forward Gauss—Seidel smoother that
Vgﬁkvk ~ V%Dkvk.

For the same smoother, we have M + M, — Ay = Dy. Finally, recalling (2.24), i.e., that
Dy =~ h;?Gy, it is clear that to estimate (i)’ and (ii)’ for smoothers M equivalent to the
Gauss—Seidel, it is equivalent to bound the sums

(i)
> hy? (VDTG
k

V,(Z;AOVO + Z hz (Vk_l)TPkT_lAkGlzlAkPk_le_l
k
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Rewriting sums (i)-(ii) using finite element functions. Let v € V, and v, v] €
Vi correspond to the coefficient vectors v and vy, V£ , respectively. Assume that v = > v,]:
k
where v,{ = v, — Up_1, k > 1 and vo = vg We recall that the finite element spaces are
nested, i.e., Vy_; C Vi. Define the vector 9, = G,;lAkPk_lvk_l and let ¥ € Vi be the
finite element function corresponding to the coefficient vector 1),. Then, by definition

¢;}FA1<PI<71V1<71 = G(kab T/Jk)-

B
We also have v, = Z v;. Hence,

N

-1

Yh AP Vi = a(viet, ¥) = Y a(v], ).

<.
Il
o

We make now the following assumptions:

(S) “stable decomposition”: The decomposition of v, based on the components V,J;
k
; _ f
is such that for v, = j;) v we have

Zh 2lloglIf < Cs alv, v).

(I) “strengthened inverse inequality:” for j < k and any ¢; € V; and ¢, € V, it
holds

1

a(r, ¥;) <Crh ® 1wllol sl

The following main result then holds:

THEOREM 3.2. Under the assumptions (S) and (1), the sums (i) and (ii) are bounded
in terms of v Av uniformly with respect to the number of levels ¢ and the fine—grid mesh
size h — 0. Equivalently, the V —cycle MG operator B is spectrally equivalent to the
fine—grid stiffness matriz A.

PROOF. The sum (i) is actually assumption (S). To bound sum (ii), we use the finite
element representation

Z h;, (szlAkPk—lvk—l)TAkPk—lvk—l = Z h;, Za(iﬁk’ U]f)
k

k <k

The sum (ii) also equals to

D 0 (G AP avie 1) G (G AP Vi) = ) () Gidpy = > B[S,
k k k
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Using assumption (I), we have

;hillwkllé = ;h% ;ka(%, U]f)

1 1
< Cr Y REY by 2k 2ol 1] wllo
ko i<k

=G ldo X\ 1]l
e Y

(;J;ghznmno( ) ) <§k(7§) ] %)

< L0 (z hznwkH%)Z (z o] ﬁ)

i
We used \/hy/h; = (\%) . Since ]Uf\l < Chj’le]fHo (based on (2.24)), we have using

assumption (S),

= <

DI <C ) hPll < Calv, v).
J J

That is, we showed

> Bl < © (Z%H%IIS) [0l;-
k

This shows the desired mesh-independent bound of sum (ii) in terms of |v|? = a(v, v) =
vl Av. 0J

4. Verification of assumption (I)

Consider two nested finite element spaces Vy C V), corresponding to respective coarse
triangulation 7y and a refined one 7j,. Let T be a coarse mesh element (triangle). For
functions ¥y € Vi and 1y, € V}, noticing that the gradient of ¢ is constant on 7' (since
Yy is linear on T') the integration by parts formula gives

/V@DH . V@Dh dx = — /le(v¢H)¢h dx + / (V¢H) -n @Dh do = / (VQﬂH) 1 @Dh do.

T T orT orT

Hence by Cauchy—Schwarz inequality we get

[ Vi - Vip, dx < (ﬁf (Vb - m)? da) ’ (f {UH da‘>
T T oT

Use now the following inverse inequality valid for any f.e. function 1,; namely, the equiv-
alence between discrete fo-—norm and the respective integral Lo-norm of f.e. functions,

/¢h do ~h"' > " 2 (x;) ST (ki) ~ b /whdx

x;€0T x; €T
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Also, since Vg is a constant vector on T', we have

T
/(leH.n)2 da:% /|V¢H]2 dx:H‘1/|V1/JH|2 dx.
or T T

Therefore,

/V?ﬂH -V, dx < Cf Hﬁé /’V'@DHP dx hié /Qﬂi dx .
T T T

Using summation over T' € Ty, a(¢y, ¥n) = Y. [ Vg - Vi, dx, based on the last
T T
inequality, we have then

a(y, Yn) < CrH™Zh™2 Y /|WJH|2 dx /;b,% dx | .
T \r T

The desired strengthened inverse inequality (I) follows then applying the Cauchy—Schwarz
inequality

5 (fvaHP dx>2 (fng dx>2 < (E\V¢H|2dx)2 (sz,g dx)2
T \T T T T T
= [[V¥ulloll¢nllo-

5. Verification of assumption (S)

Consider the Galerkin (also called elliptic) projections 7y, : H3 + V; defined as the
solution of the Galerkin finite element problem: For any u € H(} solve for m,u € V}, the
Galerkin f.e. problem

a(mpu, @) = a(u, ¢) for all p € V.
Since the spaces are nested, i.e., Vi C Vi1, it is easily seen that
TETk+1 — Tk

Assume now full regularity of the b.v.p.. Then as we know (by Aubin-Nitsche’s
argument) the following Lo—error estimate holds

(2.26) l|lu — mpullo < Chy |u — mrul;.
Using this estimate for u = m1u, based on the fact that mpm, 1 = 7, we obtain
(2.27) T — mrraullo < Chy |(Te — g1 uls.

The decomposition of our interest is based on the components U,f = (m — mp_1)v.

That is, we have
V= ZUI]: = Z(ﬂ'k — 7T]<;_1)U.
k k
To verify (S), we need to bound the sum

> h ol
k
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in terms of |v|? = a(v, v) = vl Av. For this, we use the a(.,.)-orthogonality of the
components v,}: and ’Ujf for 7 # k. Indeed, assuming j < k, we have that v,]: = (I -
mr—1)(mkv) is a(.,.)-orthogonal to Vj_; which contains V; (for j < k — 1). This shows

that v,’: is a(., .)-orthogonal to vf € V;. As a corollary, we obtain the identity
[off =D [(me =m0l
k

Then, using the Lo—error estimate (2.27), combined with the orthogonality for the com-
ponents, we obtain

Dl m = meollg < C Y l(me = mea)olt = Oloff = Ca(v, v).
k k

6. Lions’ example

We recall that to prove (2.26), we assumed full regularity of the b.v.p. To avoid this
assumption, other projections that are accurate in Ly and stable in H} are needed. Tt
appears that the Ly projections Qg : Lo +— V} satisfy that property (see later Section
1). Alternatively, we may want to partition the domain € into overlapping set of my > 1
convex polygons. Then if any Hj () function can be decomposed into H! components
supported into one of the convex polygonal subdomains, a stable decomposition of each
component would imply a stable decomposition of the original Hg () function.

Explicit construction of continuous H}-stable decomposition with components sup-
ported in convex polygons was shown in Lions [Li87] for a model L—shaped domain (2
with mg = 2. We present this example next.

EXAMPLE 6.1. Given the L-shaped domain €2 shown in Figure 1. Consider the fol-
lowing cut—off function

1, x<0,
x=41-2" (@yeT={b>y>Ltr 0<z<a},

0, yggx, x € [0,al.

Its gradient is non—zero only on T and it equals

_1
VXZQ 2 -
a y?
On T, we have ”y”—z < Z—; and Py > ‘;—iyiﬂﬂ' This shows that
b 1 x? o1 a? a?
ViP=—== 14+ < ———— |1+ —| [1+—].
IV a2y2[ +y2} _a2x2+y2[ +b?] { +52]

The decomposition of our main interest reads
v=xv+(1—x)v.

Note that vy = xv is supported in the convex domain (rectangle) )y = (—c,a) x (0,b)
and vy = (1 — x)v is supported in the conver domain (rectangle) Qo = (0,a) x (—a,b).
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:

By 0 S a

—d

FIGURE 1. L-shaped domain Q) partitioned into two overlapping rectangles
Q1 = (—¢,a) x (0, b) and Qy = (0, a) x (—a,b).

To show the desired H}-stability, we have to estimate |vi|y in terms of |v];. We have

f|V1)1]2 dx < 2va\Vx\2 dx+2fx |Vo|? dx

2X
<2fx !Vv\2dX+C fmd

The stability follows due to a classzca,l inequality

v*(x) 2
—————dx < C
/dz’stZ (x, 09) x < Ol
Q

valid for HY(Q)—functions.






CHAPTER 7

Additive MG and MG as block—Gauss-Seidel on an extended
system

This lecture studies the additive MG (or BPX) method and its relation to the more
traditional (multiplicative) MG by viewing both as block Gauss-Seidel and Jacobi meth-
ods on an extended semi-definite system.

1. The additive MG or BPX method

One way to define the MG preconditioner B is based on the following block—matrix
factorization:
We first introduce

o I 0] M o0 I M-TAP
| PTAM™Y T 0 B.||0 I ’

B '=1I, P|B! { P[T ] .

and then

In the “additive” MG we ignore the unit triangular factors in the matrix B , l.e., we

consider instead L
~ M 0
Baga = [ 0 B, ] ;

and then define as before
Ba_dld: [, P]éa_dld [ PIT 1 )
or more explicitly, we have
B, =M "'+ PB'PT.
It is also clear that we do not have to use a composite smoother M (coming from both
M and M7T), instead a single s.p.d. one, A, suffices. Le., we have then
B, =AN"'+PB'P".

The following algorithm can be used to evaluate B;dld = B, Uin the case of £ > 1
levels. For this purpose, introduce a hierarchy of n;, x n; s.p.d. matrices Ag, s.p.d.
smoothers Ay, and for £ =1, ..., ¢ the interpolation matrices P,_; : R™-1 +— R™ such
that A,y = PL Ay Py_1. Here, nj_1 < ny, and we also let Ag = Ay and P, = I.

ALGORITHM 1.1 (The multilevel additive MG (BPX) algorithm). To compute B,;,b =
Bapxb for a given b, we compute v), and xy,, for k =0, ..., { and let B;dldb = Xy, in
the following steps:

61
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(1) Let ro = b and for k = ¢ down to 1 compute
rp_1 = PkT_lrk.
(2) Compute xg = Ay'rg and for k=1, ..., £, compute
xp = Aty + ProiXp_ 1.
(3) The output is B, b = x,.

From step (2) above, it is clear that B, 'r, = x; satisfies the relation B~lr, =
A'ry + Py Byl v, Using now step (1), ie., 1,1 = PL 1), we get B lr, =
(A,;1 + Pk_lBk__llP,f_l) ry, that is, the following recurrence holds, starting with By = Ay,

Bt = A+ P B Py

which shows that Algorithm 1.1 does implement the multilevel additive preconditioner.
It also gives us the following more explicit definition of the method.

DEFINITION 1.1 (Additive MG (BPX) preconditioner). Introduce a hierarchy of ny x
ng S.p.d. matrices Ay, s.p.d. smoothers Ay, and for k = 1, ..., { and interpolation
matrices Py_y : R™-1 +— R™ such that Ay_1 = Pl | AyPyy and ny_y1 < ny,. Let also
AOZAO andPg:I.

The multilevel additive V-cycle preconditioner Bugq = By, also referred to as the BPX
preconditioner, admits the following explicit form

¢
(2.28) By =Y (P ... P)AY(P] ... P)).
5=0

1.1. Additive MG: convergence properties. Similarly to the traditional MG,
the following main result holds. sometimes referred to as “Lions’ Lemma” .

THEOREM 1.1. Consider for any v decompositions of the form:
(0) vi =,
. vl
(i) fork=4¢, ..., 1let vip = [I, Pyx_1] k.
V-1
Then for the kth level additive MG operator By, based on s.p.d. smoothers Ay for Ay (for
example, A, = M, (MkT + M, — Ak)fl MY or Ay, = Dy—the diagonal of Ay) the following
identity holds: for any k > 0 and k > s,

k
vIByv,+ (V{)TA]'V;C
Jj=s+1

VgBka = inf
(vi=vI+Pi1vi- )b

Note that at the coarsest level s = 0, we typically set By = Ay.

PROOF. We have to note that since the additive MG is also defined via a relation
B.' =[I, P._1] B, '[I, Pk,l]T the same proof as for the standard MG applies in this
case. That is, we use the fact that | X| = || X7| = 1, for X = B, ? [I, P,_1]" BZ. This

f
shows that for any decomposition v, = V]]: + P v = 1[I, Po1| Vi, Vi, = [ Vvk ] ,
k—1

V{Bkvk = GZ [I, Pkfl]T Bk [I, Pkfl] Gk S 9%@;57}
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That is,

v} Bpvy < (vk)TAkvk +vi_ | Br1vi1 < vIBwv, + Z TA V
j=s+1

The rest of the proof is identical to the one of the MG (cf., Theorem 3.1 which is based

on Theorem 4.1.)
O

Our main goal is to prove the spectral equivalence relations
viAv ~ v Bogav.

For the estimate from above, we need to show that for any decomposition v, = V,]: +
Py_1vi_1 the following inequalities hold

vIiAv < C <v0 Agvo + Z AV ) .

Then, the desired upper bound would follow by taklng minimum over all possible decom-
positions. To prove the above estimate, we will use the “strengthened inverse inequal-
ity” for any pair of functions vlf eV, and vf eV,

11 o
a(vlf, vf) < Crhy *h, 2Hv}cHo |vlf|1 if 7 <.

In terms of finite element functions, we have the decomposition v = Zvjf , U(J; = vy,

J

vl €V, and vy, = ZU € Vi.. We have (h; = h;297),

=0
vIAv = a(v, v) —a(Zv], Zvl)
Z (%7“;)“‘22 (UH ]f)
< C?;hz 2||sz||o+20Jj2<lhz 1% [of lolof s
= CF S h?of 3 + 20 Sy eflo (et o)

= CF S h ] I3 + 26 5 (&) 1l (" 1ef1o)

i<l .
2 —211..f112 V2 f12 : —211..f112 %
< CrS 2ol 3+ 209 (Sl (;hl i uo)
J
H5) Shlf 3

Finally, using the fact that A; ~ D; (the diagonal of A;) and that D; ~ h’sz (scaled
mass matrix), we see that Zh 2va||O o~ Zh *(v )TG V r~ Z( )TAJV , which im-

plies the desired upper bound viAv<Cv Baddv For the bound in the other direction,

§0%<1+
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we need to prove that for some particular decomposition v = ) vjf , the following bound

j
holds NTA v / / 23S /
vIByav < Z(Vj)TAjVj ~ Z(Vj)TDjvj ~ > h; (vi)'G;v]

j

j j
= th”v{“% < Ca(v, v).
j

The latter inequality, we have verified for the finite element projections v; = (mj—mj_1)v

and convex domain and we commented out how to handle the non-convex domain cases.

Change of notation

As already mentioned (cf. Remark 5.1) in some cases it is more convenient to label
the level indices so that k < [ refer to fine (k) and coarse ([), respectively. In particular,
level 0 stands for the finest level whereas level ¢ is the coarsest one. This convention
agrees better with commonly accepted linear algebra (matrix) notation that we often
use. With this convention, P, refers to the interpolation from coarse level k + 1 to fine
level k. The respective vector spaces are V.1 = R"+1-coarse and V; = R"-fine, i.e.,
we then have ny 1 < ng.

2. MG as product iteration method

Introduce next the composite interpolation matrices Py = P, ... P;_; from kth level
coarse vector space Vj all the way up to the finest level vector space V. = V. The
following result will allow us to view the symmetric V (1, 1)-cycle MG as a product iter-
ative method performed on the finest level. The iterations exploit corrections from the
subspaces PV}, of the original vector space V = V. Such methods are sometimes called
“subspace correction” methods.

We recall the recursive two-level definition of By,

— =51 _ _ _
(2.29) Bt =M, +(I—M;"A)PB. !\ PI(I — AM.

ProPOSITION 2.1. The following recursive relation between the subspace iteration
matrices I — FkB,C’lFZA and I — FkHB,;zI?ZHA holds,

[—PuB;'PLA= (I — PuM; TP, A)(I — Pry1 By Pry AT — PRM; Py A).
Proor. We have, from the definition 2.29
PyB;'Py, = PM,, Py, + Pl — My " Ay PuB L, PE(I — AyM Py
Now use the fact that A, = ]_DZAFk and Py, = PPy to arrive at the expression,
PyB;'P, = PyM, P, + (I — PuM;"P, APy, By Py, (I — AP M; ' Py).
Then forming I — P} B, I?ZA gives,
[-PB;'Py A= I—P,M, P, A—(I—P,M; Py APy 1By}, Pyy  A(I— P M P, A).

It remains to notice that 3, = M '+ M " =M TAM " = M + M " =M " P, AP, M,
implies

[— P, PLA=(I—PM;"P,A)(I — PyM_'P, A),
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which combined with the previous identity gives the desired result.
O

MG as block Gauss—Seidel. Based on the above product form of the MG V-cycle
iteration matrix, the following interpretation of the V-cycle MG is seen.
In the downward cycle, we compute corrections kaf: from the coarse subspaces

Range (Py), k =0, ..., ¢ by solving the following systems
. k—1
(2.30) Myx] = P, (b —~AY P! )
5=0
k. __
The current approximation is »_ ijf . At the coarsest level we solve for a correction
5=0

x{ = Xy the system

-1
thgZZTij<b-—x4§£:j%X§>.
j=0

We let yg = xy. On the way back, at level £ < ¢, we compute an update y£ to X],:, by
solving for the correction y,’; — x,’;, the equation

¢ k

—T — —

(2.31) MFE(yl —x[) =P, (b—A > Pyl —AZP]-X;")
j=k+1 3=0
That is, after step k& on the way back, the current approximation is
¢ k—1
> P+ Pix]
=k 7=0

Using the fact that X£ solves the equation (2.30) and Aj = F:Aﬁk, the system for y,J;
can be rewritten as

¢
_T J—
Myl = (M + M, — Ayx] — P, A Z Pyl

j=k+1
The final MG V-cycle approximation is
‘
>_Pivj.
=0
In conclusion, introducing the blocks Tj; = FZAF]-, and the block-lower triangular
matrix
My 0O e 0
Ty M, ... 0
L - . )

Teo .. Tyer M,

5
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the inverse of the V-cycle preconditioner B);s can be represented by the following block-
matrix formula

(232) By =[Po, ..., Po] Ly (diag (M + My — A)i_o) L [Po, ..., Pi]" .

This formula gives the following alternative representation of the XZ-identity (Theorem
3.1).

THEOREM 2.1. The following main identity holds for the V -cycle MG operator Byg:

T
v) . vi
vIByov = Itpin : Ly (diag (M,? + M, — Ak))f Lg
v:z ﬁjvf Vg Vg
J=0

We note that the block-factored matrix Lg (diag (MF + M; — Ak))_1 L% is the in-
exact symmetric block Gauss—Seidel preconditioner for the block—matrix 7. Indeed,
decompose T' = D + L + L% where L is the strictly block—lower triangular part of T’
and Dy = diag (Ay)%_, is the block-diagonal part of T. Finally, let M = diag (My)%_,.
It is clear then that Ly = M + L and hence

Lp (diag (M{ + My — Ay)) " Ly = L (LG + L = T) " L,

which shows the desired result.

To solve a given system Ax = b we can proceed by first transforming it (cf. [Gr94])
[
based on the fact that any x allows for a (non-unique) decomposition x = 3 PkX£ and
k=0

—_— E —_— —_— —_—
then after forming PzAx => PZAPlxlf = PZb to end up with the following consistent
1=0

extended system

x! FOTb
Ty = :
x] P, b

Note that the matrix of this system T' = (1};), Tk; = ﬁ:Aﬁj, is symmetric and only
positive semi-definite. The latter consistent semi-definite system is solved then by the
CG method using either the (inexact) symmetric Gauss—Seidel matrix

: -1
Lp (diag (M)} + My, — Ap)ieo) L,
or the (inexact) block—Jacobi one
: _ ¢ Y .
diag (M (M} + My, — Ay) 1Mg)k:o = diag <Mk)k::0 ~ diag (Ak’)i:O’

as preconditioner. The original solution is recovered then as

Xf
x =[Py, ..., P ;f => Pix].
k=0

Xy



CHAPTER 8

MG complexity and analysis of variable-step (nonlinear)
AMLI-cycle MG

This lecture studies the complexity of various multigrid (or MG) iteration methods
(V-cycle, W-cycle, or more general AMLI-cycle). Then, we analyze the AMLI-cycle MG
method - both the stationary and conjugate gradient (or CG) based one. For this, we
introduce a variable-step CG method and prove some convergence rate estimates.

1. Arithmetic complexity of MG cycles

Consider a hierarchy of meshes 7, obtained by successive steps of uniform refinement
of an initial coarse triangulation 7y; 7y = 7y and 7} is obtained by refining 7, ;. The
corresponding meshsizes are related hy = % hi—1 and the size n; of the nodesets N
(vertices of the triangles in 2D) are of order 2%ng, where d = 2 or 3 is the dimension
of the computational domain (polygon or polytope) Q2 C RY. The corresponding finite
element spaces Vj are nested, i.e., V1 C Vi and there is an interpolation mapping
P, 1 : R™-1— R™ that relates the corresponding coefficient vectors v;_; of a function
Ug—1 € Vi1 to Pvy_1 viewed as an element of V} (since Vi1 C V}). Also, the respective
stiffness matrices are variationally related, i.e., A, = Pg_lAkPk_l.

Assume that one smoothing iteration with My and M} costs O(ny,) operations. This
is the case if M} comes from the sparse stiffness matrix A (that has O(ny) non-zero
entries), for example if My is the forward Gauss—Seidel iteration matrix of the scaled
Jacobi (wDy, Dy being the diagonal of Ay and w suitable weight).

In a typical inexact TG algorithm, we perform

(1) three residual computations, b — Axy, b — Ay and b — Az which is an order
O(ny) operations;

(2) one solve with the coarse—grid operator B,, the cost denoted by wy_; operations;

(3) one restriction based on the action of PT and one interpolation of the form
z =y + Px., both requiring O(ny) operations.

Thus the following recursive relation is immediately seen:

wy = wi—1 + Cny,.

Thus

¢
WY —cyele = Wy = w0+C’an = w0+022dk = w0+0ng22d(k_£) < wy + C ny.
k k k=1

67
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2. W—cycle and more general AMLI, or polynomially-based, MG—cycles

Assume that we have defined at a given coarse “c”’-level an s.p.d. approximation B,
to A., such that

VCTACVC < VCTBCVC for all v,.

In general, we may not have the actions of B. on vectors available, what is important,
we assume that the actions B, ! on vectors are readily available. As we saw earlier these
actions for B, (and B) being the V-cycle MG operator are computable by the recursive
inexact TG algorithm.

Having actions of B. ! on vectors available, we may define a more accurate approxi-
mation BY" to A. by the following inner iterative method: For any given vector b, the
more accurate approximation to the solution of Ax. = b, than B 'b, equals the vth
iterate XSJ) of the inner iterative method:

Let x&o) =0. For s =1, ..., v, we compute

(2.33) Bo(x%) —xtD) = b, — AxEY,

C (&

This shows that with E. = I — B, 'A,,
BY b, =x") = B'b+ (I - B 'A)x" ) = (I+ B, 4+ E*+- -+ E" ") B b4 E/x.
That is, for x" = 0, we have

B b, = (I — E)(I = E)'B;'b. = (I — EX)A"b..

W-cycle and AMLI-cycle. Thus, introducing the polynomial p,(¢) = (1 — )", we
have the following equivalent definition

(2.34) BY = [I - p,(BI'A)] AT

C

The latter definition can be used for more general polynomials p, as long as p,(0) = 1
and |p,(t)] < 1 on an interval containing the spectrum of B_'A.. Typically, we choose
p.(t) to be non-negative on the spectrum of B, 'A,, or simply being nonnegative. For
example, if we choose v = 2 and

po(t) =(1—1)* 20,

the resulting MG—cycle is referred to as the so—called W-cycle. This means that we use
two recursive stationary inner iterations (as in (2.33)).

We estimate next the complexity of the following generalized cycle MG algorithm.
Given an approximation B, to A, for an integer v > 1, v = v, (i.e., it may depend on
the level index), we define the more accurate approximation B to A, and use it in the
inexact TG-algorithm.

More specifically we consider:

ALGORITHM 2.1 (MG algorithm with arbitrary number of inner iterations). Given
B. - an s.p.d. approximation to A., for an integer v = v, > 1 and a suitable polynomial
py of degree v such that p,(0) = 1, we define Béy)_l as in (2.34).

Then one iteration for solving Ax = b for a given xo computes Xy = Xo + B~(b —
Axg) in the following steps:
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(i) “pre-smoothing iteration:”
M(y — x¢) = b — Axy.
(ii) “inezxact coarse—grid correction” using polynomial-type inner iterations, i.e, com-
pute x. from
x. = B PT(b — Ay).
(iii) “nterpolate:”
z =y + Px..
(iv) “post—smoothing iteration:”

MT (xyc —2) =b — Az.

We have O(ny) operations in total for the smoothing steps (i) and (iv), for computing
the residuals in (i), (ii), and (iv), to implement the interpolation step (iii) as well as the
restriction of the residual in (ii). The cost of the inner iterations used to implement the

inverse action of B as implemented in (2.33) is readily estimated as
Ve(we + O(ne)),

where the cost O(n,.) stands for computing the coarse-level residuals in (2.33).
Thus the following recursion holds

(235) Wp = Vk_l(wk_1 + O(nk_l)) + O(nk)

Let us now assume the following behavior of v,. Given an integer parameter ky > 1
and another fixed integer v > 1, assume that v} takes one of the following two values

. v, if k= Sk’g,
(2.36) Uk = { 1, otherwise.

The above cycling strategy is sometimes referred to as the AMLI-cycle (“Algebraic Multi-
Level Iteration” cycle) originally used in combination with some optimal (Chebyshev)
polynomials to define p, in (2.34).

In the AMLI-cycle, the general work estimate recursion (2.35) simplifies to

w(s+1)k0 =V wsk‘o + Vo(nsko) + O<n5k0+l + Tt + nsk0+k‘0>'
Applying recursion, we have
w(s+1)k0 - O(n(s—‘rl ko) + Vo(nsko) +v Wk
= O(n (s+1)k ko) Vo(nsko)
—+v O(nskzo) + l/ w —1)ko
= O(n(ss1k,) + VO(nSko)

FrO0(ngr, ) + 120 (n(s- 1)ko)
+VO( 81k0)+yo( 0)

+5710(2ny,) + viwg,

s+1 )
= szk’o + O(Z Zan njk’o)'
Jj=2
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Since wg, = O(ny,), and n(ni—’z‘))ko = hodg=(sthod — ot we end up with the final
work estimate
s+1 s v j
W(s+1)ko = O(Z e Njky) = O(N(st1)k0) <2dko> :
j=1 =0

The latter sum of the geometric progression is O(1) if
(2.37) v < 2dko,

In that case we have that w, = O(ny), i.e., the resulting multilevel cycle leads to a MG
method of optimal cost.

The W-cycle corresponds to v = 2 and ky = 1. It is clear that it has always an
optimal complexity for d > 2 (since 2 < 24).

In some applications, we may have to choose large v (i.e., sufficiently many inner
iterations) to improve the quality of the cycle. To control the complexity of the resulting
MG method then, we have to skip kg levels (and use only simple V-cycle recursion there)
where kg satisfies the inequality (2.37).

3. Analysis of the AMLI-cycle

We consider the simple choice of polynomial p,(t) = (1 — ¢)”. Then if B, is s.p.d.

such that VCTACVC < VCTBCVc7 it follows that the modified one Béy) also satisfies the same
inequality

vIBW 'y, =T (I—(I—-B'A)) A ve <vIA v
For the upper bound, we have
1

viBWyv, < max ——— vIAuwv,,
te[—, 1 1 — py(t)
where 7). satisfies the inequality
vIBv, < (1+n.) viAve.

For the particular polynomial p, = (1 — t)¥, we have

1 1 1+ M
qc T+

max — = ,
tel2—, 1 1 —p,(t) 1—(1—ﬁ)v l4qg+@+ -+ ¢!

Let us now use the XZ-identity for the V-cycle between levels sky and m < (s+1)ko with

inexact solve at the coarse level sky using the modified Béy) = Bizg based on B, = By,
We have

T _ : T R
viBv = , min <VS,€OBS,€OVS;€0
V=V +Pr1Vi-1)7L k41
m

T__
+ Z (V;c + M]-_TAij_lvj_1> Mj (V; + Mj_TAij_lvj_1>>

Jj=sko+1
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Using the estimate between B and A, in the latter identity, we end up

T 147, : T
v+ Bv S W min (VskOASkOVSkO
cTqc c (Vk:V£+Pk71Vk71)Tkn:5kO+1

m T
! -T f -T
Jj=sko+1
— 1+770 VTB(S]CQ)&—»’ITLV
I+getq2+-+qf " '

In the last line above we used the V-cycle MG operator that uses exact solve at its

coarsest level sky. Thus, the inexact V—cycle one, B, is bounded by the exact V—cycle

operator multiplied by the factor TJFJ;T;T resulting from the error n. > 0 that we

commit at level skg.

Assume now that the V-cycle operators BUk0)—=(+Dko of level length ko, i.e., between
any pair of levels jko and (j + 1)k and exact solve at their respective coarse level jk
can be bounded in terms of AU+D* uniformly with respect to j by a constant xy,. That
is this constant may depend on kg but is independent of j. Hence

vl Av < vT BUk)=U+koy < Kk vidv, A= AlG+Dko),
In what follows, we want to choose v sufficiently large so that
147
I+ge+q+-+q!
It is clear that if v > kg, we can find a ¢. € (0,1) such that the above inequality holds.
In the case of W-cycle, we are in the situation of kg = 1 and ky, = Kr¢ = Torg

where pr¢ is the convergence factor of any exact TG method. Thus the condition for
uniform W-cycle convergence factor is

1

Ky < 141,

— =Krg < 2.
1 —orc
That is, if at all levels the exact TG method has a convergence factor
1
org < 5

then the W-cycle is also uniformly convergent with a factor

TNe

OW —cycle = 1-— — S 1-— = = Q..
vee KW—cycle 1+ Ne 1+ Te ‘
The constant g. € (0, 1) solves the equation ﬁ—qui =1l,orqg.=Kpg—1= 1f;m - 1=
%, i.e., we have

orG
OW —cycle < —< 1.
Y 1 —ora
4. Using nonlinear approximate coarse-grid operators

In this section, we assume that the operators B! are approximated by some non-
linear mappings B.[-| that satisfy the deviation estimate

||Bc_1vc — B[ve]lls. < dc ||v]

B;l'
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Using the nonlinear mapping B.[.] in a (conjugate-gradient like) iterative procedure,
we can define an approximation Bél’)[-] to A! that is again a nonlinear mapping. By
increasing v > 1, the number of these iterations, we get better approximation that
satisfies the estimate

(2.38) |A Ve = Bl lla, <6, Vel 41
where
- 1—462
(2.39) 0. =41 — <.
Ke

Here, k. is the condition number of B 1A,.
A non-linear TG operator with inexact coarse-grid solve is defined as follows

Bv]=M v+ (I - M TA)PBY [PT(I — AM~")W].

We can also define the companion linear TG operator using B, ! as inexact coarse-grid
solver,

Bv=M v+ (I - M TAPB PT(I— AM)v.
We have certain monotonicity property. More specifically, consider for any v the coarse
vector v, = PT(I — AM~')v. Then

IBlv] = B'v||z < || Bc[¥] — B: Vel s,
From the definitions of V. and B~!, we have
Il = B2 2.2
—vI(I — M~TA)PB-'PT([ — AM~)v
<vT (M” +(I— M-TA)PB'PT(I - AM—l)) v
= [[vl5-1-

_1
This inequality also shows that || B 2 PT(I — AM~')Bz| < 1. The desired result is seen
from the inequalities

AP (BY W] - BV |
“TA)PB.* || B[] - B Vel
= ||B. 2 PT(I — AM~)Bz|||| B [¥.] — B, '¥.|
< |IB %) - B, '%.||..

Now, let us consider the following nonlinear AMLI-type MG cycle. For a given integer
parameter ky > 1 and a fixed number if inner iterations » > 1 at every level k£ of
multiplicity ko, i.e., k = sky for some s > 1, we run v inner iterations that from a
nonlinear mapping By[.] that approximates the linear V-cycle mapping (its inverse) B, !

|B=v =Bz =B M
B M

(with exact solve at level k — ky = (s — 1)ko, we define an iterated one B,(:)[.] that

approximates A, with certain accuracy. Our goal is to estimate the quality of the

(nu)

(s +1)koH as an approximation to

nonlinear mapping B(si1)k,[.] and its iterated version B

AT 1

(s+1)ko
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Using the monotonicity result, we get the inequalities

1B 1V = Blssvro 5y < 1Boe¥e — B [Wellls,,

for a vector v, such that
Vel g2 < IVl

skq (s+1)k0.
Since at level sk, B(_S il)ko uses exact solve, i.e., we have By, = Ay, hence
1 = (v)
1Bk Y = Bt nmo [Vl B < 145 Ve — Boro Vel 4,

Assume now by induction, that

1A v, — BY ]

sko

e g <0 Vel

Due to the monotonicity, we have then for k < (s + 1)k,
1Bt = Bulvlln, < 145, = B[Vl

sko

Ay SO Vellagy <0 (vlpo

Assume also that the koth length V—cycle MG operator By has a relative condition
number with respect to Ax bounded by ry,. Then applying the estimate for the iterated
nonlinear mapping, we obtain the estimate

14 = B [lay < 87(Iv]4.

where
1—46

Kkg

6< ([1—

To complete the induction argument, we have to show that we can choose v sufficiently
large for a fixed kg such that the inequality

_ 52\
( 1 6) <i
Rkg

has a solution § € (0,1). Equivalently, letting ¢t = 5v € (0,1), we need to solve the
inequality

1 -t

Rkg

1-1<

That is,
g < 14+t+--- "L
This is solvable, if v > kg, (noting that s, > 1) since then the function f(t) = kg, —
(1+t+---+t!) changes sign in the interval [0, 1].
The following result similar to the (linear) W-cycle holds.

COROLLARY 4.1. If the two—grid method at all levels (with exact solve at its coarse
level) is uniformly convergent so that org < = 5, b€, Kpg = 171 - < 2, then the nonlinear

W —cycle (or nonlinear AMLI-cycle with v = 2 preconditioned CG-based recursive calls
at all levels) is uniformly convergent with a factor
orG

0<kprg—1=—""
1 —ora

< 1.
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5. Steepest descent algorithm with nonlinear preconditioner

A nonlinear coercive mapping. Let B be a s.p.d. mapping with relative condition
number x with respect to a given s.p.d. matrix A, i.e., if we have

(2.40) nvIAv < vIBv < v, vT Av for all v,

then we can choose kK = 1—? as an estimate of the condition number of B~ A.

We assume now, that by some algorithm we can approximate B~! with a computable
nonlinear mapping BJ.] such that the following estimate holds:

1B~v = B[v]llz < 6 |vlls-.
Here ¢ is a tolerance between zero and one. The above estimate is equivalent to
IVl5- = 2v"Blv] + | B[V]|[5 < 6% [[v][ 5.
This inequality implies the coercivity estimate

1

VIBIV] = o (1 =6 [Vl + 1BIVIIG) = VI =6 |[vls- [ BV]]s.

Using then the relations (2.40) we arrive at the modified coercivity estimate

(2.41)

M 1B

A nonlinearly preconditioned steepest descent algorithm. Now consider the
following iteration method that minimizes the A~!'-norm of the residual ry.; = r; —
aAB|ry] along the search direction dy = Biry|. That is, starting with some iteration x
for solving Ax = b, for k¥ > 0 we compute r, = b — Ax;, and form x;1 = x; + aB[ry]
where « is chosen so that

||rk+1HA—1 = ||I‘k — OéAB[I‘k]HA—l — min.

This minimization problem gives the following formula

o LBl
I Blrx] %
With this choice of a the following relation is seen
(rj, Blrg])?
rellf = el = i
A . 1Brx]lI%

Using the coercivity estimate (2.41) the following convergence rate estimate is immedi-

ately seen
162
el < (1255 Il

This leads to the kind of estimates (2.38)—(2.39) that we used previously in Section 4.
Indeed, letting b = v and xo = 0 defining B")[v] = x,,, we arrive at the estimate

_ y 1—6%\?
a7y = B0l < (1- 255 vl
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A nonlinearly preconditioned CG algorithm. At the end we remark that in
practice we use the potentially more accurate than the above steepest descent algorithm,
namely, the conjugate gradient method with possibly nonlinear preconditioner B[.]. Tt
can be summarized as follows:

ALGORITHM 5.1 (Variable-step (Flexible) Preconditioned CG Algorithm). Given the
system Ax = b with a s.p.d. matriz A and let B[.] be a nonlinear mapping that approxi-
mates the inverse of a linear preconditioner B, also a s.p.d. matriz.

The algorithm below uses a sequence of integers {my x>0, 0 < myp < my_1+1 < k—1
fork>1 (mg=my=0). A typical choice is my = 0.

For a given initial iterate xo, for k > 0 the method computes v, = b— Axy, Tp, = B|ry]
and respective search vectors {d;};>o.

More specifically, the algorithm consists of the following steps:

(1) Letting xg = 0, hence ro = b, and g = Blrg]. We let dg =1o. The first iterate
then equals

. dlr,
1= 57 0-
T Ad,
. . . dr'T
The corresponding residual is T1 = Ty — dTO—Arc(;O Ad,.
0

(2) For k > 1, compute T, = Blry| and based on the most recent my + 1 search
vectors {d,; kol the next search vector is computed as follows:

j=k—1—my~’
k=1 ~p
dk—I‘k—' Z dTAdjdj7
j=k—1-my J
(3) The new iterate is
L Ide g
Xpi1l = Xgp +
k+1 k dZAdk k>
and
(4) the corresponding residual is
Thdy
Tk+1 Xi+1 = Tk a7 Ad,, k

We remark that it can be shown that d’T; = r!T) and that the above algorithm
computes at every step k + 1 an iterate so that its residual is minimized in A~'-norm
along the most recent my + 2 search directions {Adj}fzk_l_mk. Since they span the
preconditioned residual Arj, the method is at least as accurate as the preconditioned
steepest descent method that we described earlier.






CHAPTER 9

Smoothing rates of iterative methods and the cascadic MG

This lecture introduces and studies an optimal Chebyshev-like polynomial. Then, the
so-called “cascadic” MG is introduced and analyzed based on properties of this polyno-
mial.

1. An optimal Chebyshev—like polynomial

Consider the Chebyshev polynomials Ty (t) defined by recursion as follows, Ty = 1,
Ti(t) =t and for k > 1, Tpy1(t) = 2tTy(t) — T_1(t). Letting t = cosav € [—1, 1], we have
the explicit representation T (t) = cos ka, which is seen from the trigonometric identity
cos(k + 1) + cos(k — 1)a = 2 cos a cos ka.

We now prove some properties of T that will be needed in the analysis of two MG
methods later on.

PROPOSITION 1.1. We have the expansion Topy1(t) = coppit + tQr(t?), cops1 =
(=1)*(2k +1), for k > 0, where Qi is a polynomial of degree k such that Q(0) = 0. Sim-
ilarly, Tor(t) = (=1)F + P.(t?), where Py, is a polynomial of degree k such that P(0) = 0.

Proor. We have T} = t, Ty =211 Ty = 2% — 1, and T3 =2tT, -1 = 2t(2t2 — 1) —
t = 4¢3 — 3t. That is, assume by induction that for k > 1, To,_1(t) = cop_1t + tQr_1(t?)
and Toi(t) = (—=1)*+ P, (t?) for some polynomials Q_; and P, of respective degrees k — 1
and k, and such that Q;_1(0) = 0 and P;(0) = 0. Then, from Toy 1 = 2tTo — To_1, we
get

Topr = 2t((=1)* + Pi(t?)) — (=1)"1(2k — 1)t — tQp—1 (t?)
— (—1F@E+ 1)1+ £ 2PLE2) — Qe ().
That is, the induction assumption for 7oy, is confirmed with Qg (t) = 2P, — Qk_1, and
hence, Q(0) = 0. Similarly, for To o, we have
Topra = —Top + 2tTop 4
= —(=1)% = Pu(t?) + 2t ((—=1)*(2k + 1)t + tQx(t?))
= (=1)" 4 (2(=1)%(2k + 1)2 + 22Qk(t?) — Pu(t?)) .
The latter confirms the induction assumption for Th, o with Ppyq(t?) = 2(—1)F(2k +
1)t? + 2t2Qy(t?) — Py(t?) and hence Py 11(0) = 0. O
PROPOSITION 1.2. The following estimate holds for any t € [0, 1],
|Tory1(2)] < (2k + 1)t.

PRrOOF. Note that for ¢t = cosa € [—1,1], |Tx(t)| = |coska| < 1. Therefore, assum-
ing by induction that |Th,_1(t)| < (2k — 1)t for ¢ € [0, 1], we have

Toar ()] = |26Ton(t) — Topr ()] < 2t + (2k — 1)t = (2K + 1),
s
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which confirms the induction assumption.

[
PROPOSITION 1.3. For a given b > 0, consider fort € [0, b] the function
1 Vb vt
2.42 () = (—1)'—— — 15, — .
(242) o) = (1)t Y T ()

We have that ¢, (t) is a polynomial of degree v such that ¢,(0) = 1, that is, @,(t) =
1 —tq,_1(t) for some polynomial q,_1(t) of degree v — 1.

Proor. For v = 0, ¢, = 1. Consider the case v > 1. Due to Proposition 1.1, we
have with \ = \/% € [0,1], that ¢, (t) = =213 A (caps1 + QL () = 1—N2q,_;(\?), since

Covt1 A
Qu(0) = 0 hence =—Q,(\?) = —\?q,-1(\?) for some polynomial ¢, () of degree v — 1.
That is, we showed that ¢, () as defined in (2.42) is a polynomial of degree v such that
0, (0) = 1.

O

PROPOSITION 1.4. The polynomial ¢, defined in (2.42) has the following optimality
property:

Vb
2.43 i tp, () = t o, (t) = .
(2.43) ,min_ - max [V pu (1) max V@, (t)] i1
We have ¢,(0) =1 and also
2.44 ()] =1.
(2.44) e o (2)]

PRroOOF. The first fact follows from the optimality property of the Chebyshev poly-
nomials, since letting A = \/% € [0,1] Vte,(t) equals Ty, 1(A) times a constant.
The fact that |p,(t)] < 1 follows from Proposition 1.2.
U

Here are some particular cases of the polynomials ¢,.
Using the definition of the Chebyshev polynomials, Ty = 1, 71 = t, Ty = 2tTy — T4,
for k> 1, we get T, = 2t> — 1 and hence

Ts(t) = 4t° — 3t.
Thus,
1 t 4
t)=—Vi4d—5——F5)=1—=
This in particular shows that

11— t 4 1
p Lm0 _

t€(0, b] \ﬁ B § %

The next polynomial is based on Ty = 2tTy — T3 = 2t(2tT3 — Tp) — T3 = (4t? — 1)(4¢3 —
3t) — 4t3 + 2t = 16t° — 20t* + 5t. Therefore,

1 /b 1 1 1
1) = =1/~ | 16Vt — — 20Vtt— + 5vVi— | .
o) 5\[(“1); virk esvi k)
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This shows,
16 ¢2
t:———4— 1.
pat) = g — 4+
We also have,
1—po(t) 4 4 40 4 [51
sup ————— = — sup (v —=2°)==/=-—.
et Vit Vb xE(O,l]( i) ) 3V 3vb

In general, it is clear that the following result holds.

ProOPOSITION 1.5. There is a constant C,, independent of b such that the following
estimate holds,

1— o, (t 1
(2.45) sup 1= ()] <C,—.
te(0, b] Vi b2
PRrROOF. We have, 1 — ¢, (t) = tq,—1(t), that is, % =/t q,_1(t) and therefore the

quotient in question is bounded for ¢ € (0,b]. More specifically, the following dependence
on b is seen: s
_ D Do (VA)
I1—¢,(t) 1 ‘1 W+l /A
sup ————— = — sup

t€(0, b] Vi s AE(0, 1] VA

1_EnY Toy41(VN)
2v+1 VAN

Clearly, the constant C,, = sup 7 is independent of b.
A€(0, 1]

U

1.1. Application to smoothing rate estimates of the preconditioned CG
method. Consider Ax = b where A is a s.p.d. matrix. Let also A be a s.p.d. precon-
ditioner to A. The kth iterate xj, k > 1, of the preconditioned conjugate gradient (or
PCG) method is characterized as certain best polynomial approximation to x = A~'b.
Introducing A = A2AA"2 and X = A2x and b = A_%b, the standard convergence
estimate of the CG method reads,

_ _ ) — 1
% — xkl|a = [[X — Xi[|z = mm ||pk( )X =Xi)lz= min [Ipr(A)A2(x —x0)| 7
P i (0) pi: pr(0)=1
In other words, we have
1 —
Ix = xifla = min [[AZpu(A)A (x — xo)].
pr: pre(0)=1

Since the eigenvalues of the s,p.d. matrix A vary in the interval (0, ||A]|), we can use the
polynomial in (2.42) with b = ||A||. This will give us the following estimate for the PCG
method

1 R
x—xilla= min [Ap @AM x—x0)l < max Vi)l Ix—xol.
Pr: pr(0)=1 te(0, |IA]]]

That is, we have the following, sometimes referred to as “smoothing rate” estimate of
the PCG method:

(2.46) [x — xxl[a <
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1.2. Smoothing rate estimates for stationary iterative methods. Estimates
similar to the PCG smoothing rate estimate (2.46) can be derived for stationary iterative
methods. Let M be a matrix that provides A-convergent iterations for Ax = b. Equiva-

lently, let M + M7 — A be s.p.d. Define L = M (M + MT — A)fé andlet A=T 'AL "

and b =L 'b. Consider the iteration process
—T —T I
(L xi) = (L x—1) + (b — A(L xx_1).
Its computationally feasible equivalent version reads
Xp = Xp_1 + E_Tf_l (b — Akal) =Xi_1+ M_l (b — AX]C,1> .
Another, more familiar form of the above iteration reads
Xp 1 =Xp-1t M~1(b — Axy)
Xp =X, 1+ M~T(b— Axkf%).
Introducing E = I — A, since its eigenvalues are between zero and one, we have the
following convergence estimate,
—T
=il = I G- xlla
= IB"Z" x — x0) |2
—1 — . =T
=[|[A*(I - AP L (x ~ %o
< max V(1 —t)* | (x — xo)|

telo, 1]

k
- \/21{;+1 (1 - 2k1+1) [x — xo|l57-

2. Cascadic Multigrid
We first describe the following two-grid algorithm.

ALGORITHM 2.1 (Two-grid cascadic algorithm). Consider Ax =b. Let P: R" —
R™ be the interpolation matriz, A, = PT AP the coarse matriz and A an s.p.d. precon-
ditioner to A (such as symmetric Gauss-Seidel, M or the Jacobi one F). The two-grid
cascadic algorithm computes an approzimation Xcrg to the exact solution x = A~'b in
the following steps:

(i) Solve the coarse-grid problem A.x.= P'b.

(ii) Interpolate and compute the residual v = b — APx. = (I — 7m4)'b, where 74 =
PAZPT A is the coarse-grid projection.

(i) Apply m > 1 iterations by the preconditioned using conjugate gradient method
(PCG) based on A to Av = r with initial iterate vo = 0. Let v,, be the resulting
mth iterate.

(iv) Compute the cascadic TG approximation Xcrg = Vi + PXe.

Using the smoothing property (2.46) of the PCG method, we have the following
estimate

v = valla < J2E

VovmlA= o

[vila
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wherev: Av=r= (I—74)"b, thatisv= A" I—-7mx)Tb=(I—7m4)A'b = (I —74)x.
Therefore, the following estimate holds

1
[A[]2 [[(T = a)x]].
Assume now property (B), i.e., the f5-boundedness of the projection 74
IANNT = 7a)v[® <y [V

The latter holds if the “strong approximation property” ||[v — Pv.||% < "aH | Av||? holds

which is the case for finite element matrices coming from boundary Value problems for
Laplace operator posed on convex polygonal domain.
Under the assumption of fs—boundedness of the projection 74, we arrive at the esti-

mate .
IIZII (IIMI%)Q
V—vnla < I —m4)x||a.
The final estimate reads,
[x —xcralla = [[(x = Px:) — Vinlla
= HV — Vinlla
< (I = ma)x] 4
where ||A||
My =M HAfﬁAAﬁH
’ [IA]

The multilevel version of the method takes the following form.

ALGORITHM 2.2 (Multilevel Cascadic MG). Let Py : R™ s R™ be the composite
interpolants, i.e., Py = Py ... P,. The coarse matrices are A, = ?:A?k = PkTAkHPk
and A = Ay s the fine-grid matriz, whereas Ag is the coarse matriz at the initial level
k=0. Let Ay be s.p.d. preconditioner for Ay such as symmetric Gauss—Seidel, or Jacobi
matriz coming from Ay. The multilevel cascadic MG algorithm computes Xcya as an
approximation to the exact solution of Ax = b for a given r.h.s. b in the following steps:

(i) Let vy =b and for k=1(, ... 1 compute by_; = P |by.
(11) Solve A()X(] = bo,
(i) For k =1, ..., ¢ with initial iterate X}(€0) = Py_1xx_1 perform m = m;, PCG
iterations for computing an approximate solution to the kth level coarse system
ApX, = by. Then let x;, = x,(gm).
(iv) The cascadic multigrid (CMG) approximation is Xcag = Xe-

In what follows we need to estimate the difference P._1Xp_1 — Xg. Since Ap_1Xj_1 =
b1 = Pl by = P | AxXy, we obtain

Pkflgkfl — ik = (PkflA];_llkaflAk — [)Qk = —([ — Wllzfl)ﬁk-

Above, 7f_| is the two-level Ay—based projection. We assume the uniform in k, (o
boundedness of 7f_, (cf. Assumption (B))

FARIIIT = - )v I < s (VI -
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Using the above estimate for v = (I — 7}_,)X},, we obtain the desired auxiliary estimate

A~ AN ,’7
(2.47) | Pr1Xp—1 — Xi]| < T | Pr1Xk-1 — Xil| a,-
k

Using the best polynomial approximation property of the PCG method and the special
polynomial p,,(t) = ¢, (t) for the interval (0, ||Ag||], assuming the uniform in k& > 0
bound

AN k”

the following estimate for the CMG approximation is obtained (based also on (2.47)),

1 =N
(™~ Rplla, = min[|pa(A)AZ (P — %),
Pm: pm(0)=1
L . ~
< g 1 PeaXie1 — Xella, + A2 (PeoaXi1 — Pooixe1) |13,

(2.48)

= VT BBt — %)+ | Pos R — x51) L,

- \[ 1Pe(Pecr Rt — R)la + %6t — Rl ags

= 2m+1 | Pr-1Xp—1 — PrXglla + [|Xp—1 — Xp—1]| A,y
Introduce the projections 7 = FkAgl_P;‘:A. Then
TEX = 7T]€A_1b = ?kAI;IFZb = ?kAlzlbk = ﬁkﬁk

Therefore the preceding estimate (2.48) reads

NG

“2m+1

I3k — Rella, =[x — Rilla, < (e — Tr—1)X[ 4 + [ Xp—1 — Xn—1l] 4,y -

Now, using recursion with m = m;, and the fact that xg = Xg, we end up with the
estimate

l
[x —xcmclla <V Z syt 17 = Te-1)x ]| a

< ()

As a corollary, if we use my, smoothing PCG iterations at level k that satisfy the geometric
rule

1
2

(= meoaixiz)

omy +1 = % (2m + 1),

for a given m > 1 and a p > 2, we end up with the following final estimate

2
[ VTl
Ix — xcmella < \/727”“ (Z” — Mhe 1x\|A> = i mnt 1x/| 4.
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If we run stationary iterations to define x; = x,im) the starting estimate reads

1 R
™ = Rella, = B AL (Pecaxior = %)L,
< |EyA £ (Peo1Xi-1 = X[l
+HE A f(PeaXp1 — Peoaxea)|l7,
< |EQA (Pk 1Xp-1 — Xi) |17,
+||A (Pk 1Xk1 — Peaxp1) ||z,
< \/W HA (Pr1Xp—1 — Xp) ||
+“Xk 1= Xp—1la,_,
< g 1k = )|+ 11 = Rt llay -

The final estimate translates to

I~ xeucil < YA (Zu . lan) = VI x

Here we have assumed that the smoothing iterations my vary according to the rule

2my + 1= " (2m + 1).

Complexity of CMG. Assuming that nj, ~ 29n;_, (d =2 or 3) and my, ~ pu*~* m,

the complexity of the CMG is readily estimated to be of order
—k
anmk ~ nym Z <%> ~ O(ny)
k k

if 2 < pu < 2¢, which we can always satisfy if d > 2.






Part 3

Algebraic MG: main principles and
algorithms for finite element problems






CHAPTER 10

Algebraic MG: coarse degrees of freedom and interpolation
matrices

This lecture introduces the main principles of algebraic multigrid method (or AMG).
In particular, we provide arguments for construction of interpolation matrices, both the
selection of their domain of definition (or the selection of coarse-grid dofs) and the com-
putation of the actual interpolation weights (or entries of P). We describe a classical
choice of the coarse-dofs as subset of fine-grid dofs, the notion of compatible relaxation
and the energy boundedness of the of a hierarchical coarse-grid projection and their role
of proving weak approximation property and hence TG convergence. We also describe
a spectral way of selecting coarse dofs and present two important examples, one coming
from finite element discretization and another one handling fairly general matrices uti-
lizing a least—squares approach and leading to a “strong approximation property” hence
providing TG convergence that improves with increasing the number of smoothing steps.

1. Algebraic MG (or AMG) as an “inverse problem”

Consider a linear system of equations Ax = b with a sparse s.p.d. matrix which, we
may not have knowledge about its origin. Since the MG methods have proven optimal
convergence properties, we may want to utilize the MG principle to design preconditioners
for A. For example, to design a two—grid preconditioner (and then continue by recursion),
we need to construct an interpolation matrix P. This involves, in particular, the selection
of the domain of definition of P, which is referred to as “coarse degrees of freedom” (or
coarse dofs). Then, we need to build the actual mapping P. In matrix notation, this
means that we need to select the number of columns of P, the sparsity pattern of P,
i.e., the number of nonzero entries of for each row of P, their positions and finally the
actual entries of P. Using geometric MG language, we need to choose for each fine-grid
dof (row of P) a coarse-grid neighborhood (i.e., the column indices of P corresponding
to the non-zero entries in that fine-grid row) and the actual interpolation weights (the
non-zero entries of P at the corresponding positions).

Once, a P has been constructed, the coarse—grid matrix A. is typically defined vari-
ationally, i.e., A, = PTAP. Since, we want to apply the same construction recursively,
we want A, to have similar properties as A (however being with smaller size). At the
minimum, we want that A. be sparse. This imposes the requirement on P to be sparse
as well. That is, each fine—grid dof should interpolate from a bounded number of coarse
dofs.

We know, that a two-grid (and MG for that matter) to be successful, a balance
between the smoother M and the coarse-space Range (P) must be established, in the
sense, that the coarse space should ensure a “weak approrimation property”:

87



88 10. ALGEBRAIC MG: COARSE DEGREES OF FREEDOM AND INTERPOLATION MATRICES

For each fine-grid vector v there is a coarse—grid interpolant Pv, such that

(3.1) v = Pvellzz < nw [VIa,

for a constant 7,, independent of v. Here, M = MT(M+M* —A)~1 M is the symmetrized
smoother corresponding to an A-convergent iteration matrix M7T.

Traditionally, to define a TG method, i.e., to construct a P, the smoother M is
pre—selected to provide a convergent iterative method (in A-norm), in the simplest cases
like weighted Jacobi, Gauss—Seidel, incomplete factorization matrices (in the M-matrix
case), overlapping Schwarz methods (block Gauss—Seidel with small overlapping blocks),
ete.

Then, given M (and A), P is constructed so that the target is to ensure the weak
approximation estimate (3.1). It is clear that this procedure is an “inverse problem” and
as any inverse problem it is “ill-posed’. The latter means that there is not a unique
solution to this task. Part of the problem is that many coarse spaces (or equivalently,
many interpolation matrices) can lead to equally good (or bad) TG methods. The least
rigorous part in the construction of P is the choice of the coarse degrees of freedom. At
any rate, all resulting procedures that lead to a P to be used in a two-grid iteration process
are commonly refereed to as “algebraic” two—grid or algebraic MG, and abbreviated as
AMG. Originally, the AMG concept was proposed by Achi Brandt, Steve McCormick
and John Ruge in 1982.

Choosing coarse dofs to be subset of fine-grid dofs. A typical case (as originally
proposed) is to have a mapping represented by a rectangular n. x n matrix R which
represents the embedding N, = RN C N. Under proper ordering (the coarse dofs
ordered last) the matrix R admits the following block form

R=10, I].

Then a natural assumption is to have the interpolation matrix P being identity at the
coarse dofs, i.e.,
p— {W‘| }NfEN\-/\/;
T PN
It is clear then that RP = I and hence the mapping () = PR being a projection. Indeed
Q? = P(RP)R = PR = Q.

Weak approximation property and compatible relaxation. We recall that if

D is an s.p.d. matrix, spectrally equivalent to the symmetrized smoother M , then a
necessary condition for the TG convergence is the weak approrimation property

I = 7p)vllp < [[V]la:

Note that the projection () = PR can be seen as an analog of the “best” one, m1p = PR,,
where R, = (PTDP)~'PTD. We note, that R, is not sparse in general. A “good” choice
of the coarse dofs would correspond to a fast decay of the inverse of PTDP, so that
it can be approximated by a sparse matrix, hence the choice PR for proving a weak
approximation property of the form

(3.2) I = PR)VI[p < 1w [[V]|4,
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would be justified (in the simplest cased when D is diagonal). We note that this is only
a sufficient condition for TG convergence, since it implies ||(/ — 7p)v||p = min||v —

Pwe|p < |lv—=PRv|p < nu [[v]a. N
Assume (3.2) for a s.p.d. D that is spectrally equivalent to M, i.e.,

(3.3) v Dv < vIMv < ¢; v Dv.
First, we show that D and A are spectrally equivalent, when restricted to the set Ny =
N\ N,, the hierarchical complement of the set of coarse dofs N.. This is trivially seen

by choosing v = [ ‘gf ] . We have then PRv = 0, and hence (3.2) takes the form

(3.4) ViDyvy S v Aspvy.

where Dy; comes from the block partitioning of D = { Dy Dye } b Ny

Do Do | YN, the same
as for A. Using finally the fact that M comes from an A-convergent smoother M T for
A, we have v Av < vI'Mv, which together with (3.3) implies

(3.5) vIAv < covI Dv.

A2

Using (3.5) for v = [ 0

} gives the desired upper bound

(36) V;":Affo S CgV?foVf.

That is, both (3.4) and (3.6) represent the fact that DJTfIAff is well-conditioned, and is
sometimes referred to as “compatible relaxation” (or CR), a concept introduced by Achi
Brandt in 2000.

Energy boundedness of the projection PR. The weak approximation property

(3.2) and the fact that D is spectrally equivalent to M imply that I — PR is bounded in
energy.

To show this result we note first, that since M comes from an A-convergent smoother

MT which together with the spectral equivalence of D and M show estimate (3.5). Using
the latter estimate combined with the weak approximation property (3.2) gives

I = PR)vI[a < [[(I = PR)V5 < Voo (I = PR)V[p < v/ea [ V][ a-
That is, the desired result follows (using also Kato’s lemma)

(3.7) IPRl[a =[] = PRl[a < /¢ 1.

Energy boundedness of PR and CR imply TG convergence. We show next
that the energy boundedness of PR and good CR bound r¢f defined below (see also

(3.6))
(3'8) C 2 )‘max(D;flAff) 2 Amin (D;flAff) 2 Kff

imply weak approximation property of the form (3.2) with

1
e < —— |[PR|[,
VEi
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and hence a TG convergence holds with or¢ =1 — # where

(3.9) Kra < 2 m, < 2Xin(D5 fUﬂHPRN4< !UUWA

min (

smmU—PMVZ{?

then the norm bound of I — PR (which is the same as for PR), we have

} first using the spectral equivalence between Dy and Ay, and

I(T = PRIVIb < Nax(Dys A7) (T = PRIVILA < Ao (D7 Agy) | PRI V]

mm(

That is letting 1, = A2 (D5 Ass) [|[PR|[a < ”\I;ﬂ’* the desired estimate (3.2) holds.

mll’l(

2. Heuristic algorithms for coarse-grid selection

Assume that an initial set of coarse dofs NV, has been selected. To test if the respective
lower CR bound k¢ is acceptable, we run the “source” iteration: For any iy € N; =
N\ N, perform PCG iteration to solve the problem

A f fX f = €; Iz
where the vector e;, has a single non-zero entry at position iy € N;. For a preconditioner
we use Dy coming from a matrix D that has sparse inverse. Since the iterates have the
form p(DJ?flAf r)ei, for a polynomial p, it is clear that they will have non-zero entries
only in a neighborhood around the fine-dof i;. It is clear also that if D;;Af 7 is well-
conditioned then these iterates will have fast decay away from position i;. If this is not
the case, the dof is is a candidate to be added to the set of coarse dofs N.. Among all

such candidates we select a subset (according to some criterion) and augment N, with
it, and then repeat the process until we are satisfied with the resulting decay.

Research tasks. Design a criterion for measuring decay rates and a criterion for
selecting coarse dofs from a candidate set. Use so—called maximal independent set algo-
rithms.

3. Algorithms for computing P

We proved that a sufficient condition for TG convergence is to have PR bounded in
energy. Assuming that we have selected the coarse dofs set N, and the sparsity pattern
of the columns of P, i.e., the fine-dof neighbors that a given coarse dof interpolates to,
we need to compute the actual entries corresponding to the selected sparsity pattern.

In other words if P = [z,bl, Yoy, ..., 1,0,%}, and the columns ), of P have prescribed
0

support sets €; of fine—grid dofs. Let I;, = | I | } £, be extension of vectors v;,
0

defined on €2;, by zero outside €;_ to vectors v;_ defined on N.
From the weak approximation property (with D = || A|| I)

1
[A[IZ |(1 = PR)V]| < 1 [[V]a,

it is clear that if v is a near-null vector of A, i.e., ||v|[a = 0, then PRv ~ v. Thus, a
heuristic approach to construct P is to have PR1 = 1 for any near—null vector 1 of A.
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Such vectors are sometimes referred to as “algebraically smooth vectors”. Since we also
want PR be bounded in energy, a sufficient condition for this is to minimize the following
quadratic functional

Z 'I,bg;A’t/)ic — min,
ic

subject to S p; = 1. Note that the above quadratic expression is the trace of the matrix
ic
PT AP, and its square root defines a matrix norm that we use as a more computationally
feasible approximation to the desired A-norm of PR.
Since 9, = Iq, v, , the above constrained minimization problem can be rewritten as

follows. Introduce the local matrices Aq, = I} Alg, . Then
Z 1/’3;’477/’1‘6 = ZEZAQCEZ > min .

Forming the Lagrangian
1 —T — T — .
L((,). A =3 Z'zpicAQic'zpic Y (1 - ZJQ¢> — min,

and minimizing it leads to the following saddle—point system

Ao, ;. + X =0, foric=1, ..., n,
To solve the above saddle-point problem we introduce the local matrices T;, = I, QiCAéil 15
and let "= > T; . We have then

2

tc

P, =—Ag 15 A,
which used in the second equation above gives

1= Io, Ag 15 A= -TX.

Hence A = —T7'1 and therefore
Y, = Iﬂicaic =T, T '1.
It is clear that ) b, = 1.

We note that to compute the vector T'1 in practice, we can use the PCG method

with preconditioner the diagonal matrix A = Y~ I, A; I} coming from the diagonals A;,
ic ¢

of T;,. The local matrices A;Z} are explicitly computed, hence T;_ are explicitly available.

Finally, we comment on the choice of the vector 1. As mentioned above, it corresponds

to an approximation to the minimal eigenvector of D~ A, or more generally to a vector

1 corresponding to Apin(M~1A). For matrices coming from finite element discretization
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1
of elliptic PDEs (like Laplacian), a common choice is the constant vector 1 = | : |, or
1
a vector obtained by applying m > 1 times the iteration matrix (I — M ~LA) to it, i.e.,
(I — M ~1A)™1. Since A1 is zero except near the boundary of the domain, the smoothed
version of 1 differs from it, only within a strip near the domain boundary (assuming
diagonal or sparse M -h.
For more general applications, the vector 1 is more difficult to compute and in general
we may need more than one vector to design a successful AMG method.

4. Spectral choice of coarse dofs

In some applications, the s.p.d. matrix A defines a quadratic form v Av which can
be assembled from local quadratic forms vZ A v,. More specifically, let {7},c7 be an
overlapping partition of relatively small sets 7 that cover the set N of fine-grid dofs. The
matrices A, act on vectors v, defined on the local sets 7. Introduce the extension matrices
I,. Then any fine-grid vector v restricted to 7 can be represented as v, = v|_ = ITv.
We assume

viAv = Z([TTV)TAT]TTV = ZVZATVT.

T

We also assume that the local matrices A, are symmetric positive semi—definite.
Solve now the local eigenvalue problems

Aqu:)\kq/m /{Z:]_, ceey Mg

Note that the eigenvalues \; are non-negative.

For a given tolerance 6 € (0,1), we choose n¢ < n, such that for k > n¢, we have
M > 0 Apax = M. We define then the local interpolation matrices P, = [ql, <oty Qne ]
To define a global interpolation matrix, we need some diagonal matrices W, to be used

as weights in what follows. The diagonal matrices W, have non-negative entries and are
such that
S LWl =1
~

The latter property is called “partition of unity” property.

To define the global interpolation matrix, we first introduce the sets 7. consisting of
the indices 1, ..., n,,, corresponding to the eigenvalues Ay, for k < n<. The set N, is the
union of all 7, with their entries renumbered with global indices from one to n. = > n¢.

Let I, be the mapping that implements the local-to-global numbering of the coarse dofs
in each 7.
The global interpolation matrix P takes then the form:

P=>" LW,PI..
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Since each coarse vector v, has block components v¢ , where v = [fc v., the actions of
P are computed as follows

Pve=Y LW.Pve.
If the tolerance 6 is properly chosen, we can ensure the following local estimates: for

any given v and its restriction to 7, v, there is a coarse vector v¢ such that

(3.10) |AAlvr = Prve P <dvE A v,

We assume that ||A,|| are uniformly bounded from below by n||A|| for a constant 7, i.e.,
(3.11) [A- = n [|A]l.

We remark that ||A,|| < ||A]|. The latter is seen from the inequality v A, v, < vIAv <
|A||][v]|?>. Choosing v = 0 outside the set 7 which gives vZ A, v, < ||A]/||v,||?, that is
[A-]| < [IAl

We have the following main result.

THEOREM 4.1. The local estimates (3.10)—~(3.11) imply the following global weak ap-
proximation property

5
IMWV—PWWSEHNQ

PROOF. Given v and its restrictions v, to the sets 7. Let v, = (v% ) be the local
coarse components for which the estimates (3.10) hold.
We have the identity v = > I,W,v, and Pv., = Y I, W,vS. Hence v — Pv, =

> LW (v, — Pvi ). Therefore

=y (WT%]Z(V — PVC)>T WT% (

T

|v—Pv]? =(v—Pv.)T" <E LW (v, — PTvﬁc))
v, — Pve

))

N 3

g(ng—PwyiJmEHv—PwJ)

2
T

o S A )

= [lv = Pv

3
> (vr — PTV%)TWT(VT - PTV%))

D=

= [lv = Pv|

(
< ”v-—zle|<§;(vf——f1v%)T(VT—-f%V%))
(Sive - Pvoole)

Therefore

(3.12) Iv =Pl <3 llv, — Pve) 1%
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This shows that ) )
[v—Pv|* <> |lve = Prvs )l

[ T
<> Ta Vs Arvy
T

which is the desired result. O

5. Examples

Finite element matrices. A natural example of matrices A assembled from local
positive semi-definite matrices A, comes from finite element discretization of elliptic
PDEs (such as Laplace equation). The sets 7, when we apply the method recursively, can
be agglomerates T of fine—grid (one level finer) elements 7 (connected unions of fine-grid
elements). The agglomerates T" are viewed as sets in terms of one level higher fine-grid
dofs. The sets, where the local eigenproblems are defined are unions of agglomerates,
denoted by Q. We remark that each agglomerate 7" in general belongs to a number of
such local subdomains €2. The local matrices Aq are assembled from the fine—grid element
matrices A, for 7 C Q. Typically, such subdomain €2 is the union of all agglomerates
T that share a common fine—grid dof (here the agglomerates are viewed as sets on the
initial fine—grid). The coarse level element matrices are then defined as the symmetric
positive semi—definite matrices PIr A7 I% P, where I stands for extension by zero outside
the agglomerate T' (viewed as a set of one-level higher fine-grid dofs). The local matrix
Ar is assembled from the fine-grid element matrices A, 7 C T. Once having coarse-
level element matrices the method can be recursively applied. It requires agglomeration
procedure that generates the next level agglomerates and respective local subdomains
where the associated eigenproblems are posed.

5.1. The window-based spectral AMG method. A purely algebraic way of
constructing local quadratic forms is based on the following least—squares approach.

Let {w} provide an overlapping partition of the set A/ of fine-degrees of freedom.
From our given n x n sparse matrix A, extract its rows that correspond to the index set
w and form a rectangular matrix A, of size |w| X n (Jw| stands for the number of entries
in w). Let {Q,} provide a partition of unity, i.e., . [,Q,IL = I, where as before I,

w

0
stands for extension of vectors v,, defined on w to vector I,v,, = | v, | where the zero

0
entries corresponds to indices in A\ w. Since A, = IZ A, the following identity is easily

seen Z(AwV)TQwAwV = Z(IZ;AV)TQIU[Z;(AV)
= > (AV) L, QuIL (Av)
(a7 (z szwI&?) (4v)

= VTATAVTU
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Hence, the local matrices ALQ,,A,,, or in fact some semi-definite Schur complements S,
of them, can be used to solve local eigenproblems associated with the sets w, and thus
ensure local approximation properties.

The observation that ALQ,, A, are local, is seen from the assumption on sparsity of A,
i.e., that each row of A has bounded number of nonzero entries. The actual local matrices
that will be used to compute the eigenvectors are defined as the Schur complements

T
v1'S, v, = min [ Ve } ATQ, Ay [ Y } .
Vy Vy Vy
We recall again that the block v, = v| =M\ €nters the above quadratic minimization
problem with a small (bounded) number of its entries, corresponding to the non-zero
entries a; j of A, (i € wand jin x =N \ w).
To analyze the method we first notice that based on the definition of S,,, we have
vIS,ve < VIATQ,ALv < SVvIATQ,Ayv = vIATAv < ||AJ]? ||v]|?>. Hence for v
w
vanishing outside the set w, we have vI S, v,, < ||A|]? [[vy|/?. That is,

I1Sull < IIA]*.

Based on S,,, we can construct the local P, that ensures the local weak approximation
properties

[Swlll[Ve = P chuCHQ <9 Vgswvw
In the same way (as in the case of local matrices A, before) we define a global P (using
another partition of unity matrix set {W,}),

P=> I,W,P,I},

for which we can prove the estimate (see (3.12))

IV = Pve? <> llve = Puve, |I*
w

Assuming again the quasiuniformity of the windows, i.e., the estimate
1Swll = nll Al
for a constant n € (0, 1] independent of w, we end up with the final estimates
v = Pve|* <3 |[ve — Puvi, |I?
< i ||56_,w|| VISV
< e SV A QALY
= i llAv]2

That is, we proved the following “strong approximation property’:

o
(3.13) IAI I = Pve||* < —— [[AV]]*.
n [ Al

We remark at the end, that we did not use symmetry, nor positive definiteness of A.






CHAPTER 11

Adaptive AMG and Smoothed Aggregation (SA) AMG

This lecture introduces the concept of adaptive AMG methods and motivates the
need for constructing of interpolation mappings that fit (approximately or exactly) a set
of “algebraically smooth” vectors. We study several approaches of such interpolation
rules. The lecture ends up with a formulation and multilevel analysis of the smoothed
aggregation (or SA) algebraic multigrid method.

1. The concept of adaptive AMG

The standard smoothing (or relaxation) iterations, possibly combined with a coarse-

grid correction based on a projection m = w4 := P(PTAP)"'PT A, can be formulated
as
(3.14) xi=(I—-M7TAUI —-m)(I-M"*A)x.

If P = 0 (or not defined) we set 7 = 0. By monitoring the norm of two consecutive iterates
(viewed as errors for solving the trivial equation Ax = 0),we can get an indication about
the quality of the respective (TG) iteration method. Since inverting the coarse—grid
matrix A, = PTAP can be expensive, we approximate the projection 7 by either using
;= P (PTMP)_l PTM (when M is sparse), or we can construct an initial (tentative
and possibly not very efficient) V—cycle operator B, and replace [ —m with [ — PB;*PT A.
To begin with, when we have not constructed even a single interpolation matrix P (hence
m = 0), we simply run the relaxation process (letting = = 0 above).

At any rate, at some point after m > 1 iterations, we may encounter very slow
convergence, which means that

(3.15) x? Ax ~ x| AX 1.

In other words, we have that x,,, := x is a good approximation to the minimal eigenvector
q of the generalized eigenproblem

Aq = )\miana

g\assumiélg 7w =0). Indeed, (3.15) implies that ||(/ —MﬁlA)XHA ~ ||x|| 4, that is ;‘TT%’;

Our goal would therefore be to incorporate this “algebraically smooth” vector 1 :=
q ~ X,, into the “to be constructed” coarse space. Equivalently, we want to construct a
P such that

Q

1 € Range (P).

Assume that, we have constructed a P, and by recursion we have constructed an initial
coarse V-cycle operator B.. Then, we repeat the above procedure, where now we run the

97
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modified (inexact) two—grid iteration starting with a random initial iterate x = xg:
x:=I—-MTAI - PB'PTA(I - M 'A)x.

In general, by testing the current method available we eventually end up with a
component x that the current level V—cycle cannot handle; that is, the A—norms of two
successive iterates x and X,e are not too different, i.e.,

XL AXpew ™~ X! AX.

new

The reasons for this to happen are, either,

e the current coarse space cannot well approximate e = x — Px,. = [ %f } , and /or

e B, cannot successfully damp the coarse interpolant x. of x.

A possible remedy to the above is to improve the coarse space and/or coarse solvers B!

1

by augmenting the current interpolation matrix P = [ ] by adding few more columns

(or one block—column) Py, i.e., to construct

D _ Wﬁnew
PV o],

The new columns of P are based on additional coarse dofs N new C N\ M. The latter
can be chosen in the same way as for P noting that the interpolation error e = x — Px,
vanishes at the current coarse dofs set N, i.e., € A, =0

In conclusion, we see that we need to be able to construct interpolation matrices P
that fit (interpolate exactly or approximately) several “algebraically smooth” vectors
14, ..., 1,,, for any given (small) number m > 1.

2. Algorithms to fit several vectors

If the set of vectors 1y restricted to small neighborhood sets of indices {.A} provide
some reasonable approximation properties, i.e.,

IVa =Y an Ll I < navhiAava.
k

then, we may construct a tentative P by simply putting together the pieces of the vectors
1;, 1;| 4, using nonnegative diagonal PU (partition of unity) matrices, similarly to the
spectral AMG methods. Here, we assume that there is a set of local matrices {A 4} that
provide a sense of “local” energy. In other words, we assume that the global quadratic
form associated with the original n x n s.p.d. matrix A can be split into a sum of
local quadratic forms associated with the local symmetric positive semi—definite matrices
Ay where {A} provides a (overlapping or non-overlapping) partition of the index set
1,2, ..., n.
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2.1. Interpolation by constrained energy minimization. To fix the ideas, we
assume here a finite element setting. In particular, we assume that the sets A are covered
exactly by fine-grid elements 7 € 7, and use the notation T instead of A. In addition to
the given s.p.d. matrix A, we assume access to the local mass matrices G (assembled,
for every T, from the fine—grid element mass matrices G, for 7 C T).

Given the set of vectors 1, k=1, ..., m, to each T, we associate m basis functions

go(Tk ) supported in a neighborhood Q7 of T that is contained in the union UT of all

neighbors 7" to T'. The function gpgf; ), for a fixed k, solves the following local constrained
minimization problem

k k 0T k .
a(, o) = o Al s min,

subject to the prescribed integral moments
G IL@Y =6, 0 1TGrly, forall T’ NQr #Qand =1, ..., m.

Here, 5T7 o =0for T # T and Or,7 = 1. We also use the notation Ix for zero extension

of vectors defined on X to vectors of full size. Since cp§f€ ) is supported in Q7, we have

gogf” ) = Ig, fgf), where now the vector fgf“) is defined only on Q.

The coefficient vectors <p¥“ ) for k = 1, ..., m running over all T' € 7y provide the
columns of the desired interpolation matrix P. It is clear that by construction

T
is G'v—orthogonal to all 1; when restricted to any fixed 7' ". Hence, in a weak sense

T

That is, the resulting P approximately fits all given vectors 1.
The accuracy can be improved, by performing some iterations used to minimize the

difference
k
1> e — 13
T

subject to the above integral moments constraints. One possible algorithm is as follows.
Given current approximations c,ogfC ), T € Ty for a fixed k that satisfy the respective
integral constraints.

Then a new set is obtained by updating each cpg,fc ) running over all T" and solving the
local constrained minimization problem for gr supported in 2r. More specifically, we

solve

lgr + > @' — 1|4 +— min
T/

subject to the constraints

(3.16) 1/ G 1l gr =0 for all T :TNQr#@andl=1, ..., m.
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Equivalently, introducing the error e = 1, — > gogc,)

T/

, we solve

1 .
J(gr) = 5 grAgr — e’ Agr — min

subject to (3.16). This leads to a small (local) saddle-point system for the non-zero
entries of gr (which is supported in 7) and the respective Lagrange multiplier. More
specifically, we have for gr = I, g, and a Lagrange multiplier A of size the number of

neighbors of T' (including 7") times m, that both solve the saddle—point system (letting
Aq, =15 Alg,)

Ag, ooy IE 10 Gly, ]
: g | _ E LAe
1/ G Il Iy 0 A 0 '

After gr is being computed, we update the current cpgff ) = IQTﬁgf“)

fgﬁ) = SO’EF) + 85

and move onto the next set 7.

FIGURE 1. Typical coarse basis functions based on fitting one (constant) function.

Examples of fitting one (constant) function and matrix A coming from Laplace op-
erator are seen on Fig. 1. Fitting several (m = 4) functions v, = sin(Ilk,x) sin(Ilk,y),
k = (kg ky), ks, ky = 1, ..., v/m, and matrix A coming from Laplace operator, is
illustrated on Fig. 2.

2.2. Smoothed Aggregation (SA) AMG. If the partitioning {.A} is non-overlapping,
the respective sets A are referred to as aggregates. The simple block-diagonal P then
may not as good as an interpolation matrix for use in a multilevel cycle. The respective
coarse vector spaces can be viewed as “piecewise” constant, which in terms of functions,
are discontinuous. Thus, we may need to “smooth” out the block-diagonal (tentative) P.
This leads to a method proposed by P. Vanék (1992), [VanSA], known as the “smoothed
aggregation” AMG or SA AMG.
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FIGURE 2. )] q)grk ) based on fitting four sin functions v on a 3 x 3 coarse

T
mesh (H =1/3); h =1/36.

Construction of locally supported basis by SA. To illustrate the method we assume
in the present section that A is a given symmetric positive semi—definite matrix and let
1 be a given null-vector of A, i.e., A1 = 0. The method will be applied to a matrix Ag
that coincides with A (after certain boundary conditions are imposed).

For a given integer v > 1 partition the set of degrees of freedom of A, i.e., the fine
grid into nonoverlapping sets A; such that A; contains an index ¢ with the following
property. Namely, for any integer s < v, the entries of (A%);; away from i are zero. More
specifically, we assume,

(3.17) (A%);; = 0, for all indices j outside A,.
Let 1; = 1], and be zero outside A;. It is clear that

(3.18) Y o1,=1.
For a given diagonal matrix D (to be specified later on), let A = D 2AD"z.

Let ¢, be a given polynomial (to be specified later on) of degree v > 1 such that
©,(0) = 1. Hence ¢, (t) =1 —tq,_1(t) for another polynomial g,_;.

In what follows we use the notation v(z;) to denote the ith entry of a vector v. This
is motivated by the fact that very often in practice v are coefficient vectors of functions
v when expanded in terms of a given Lagrangian finite element basis.

Define now,

(3.19) ¥, = (I — D 'Aq,_1(D1A))1,.

We have,

(3.20) Y ¢, =(I—-D'Aq DAY 1, = (- D "Ag (DAL =1,

since A1 = 0. Also (A%1;); = 0 implies that ((D~*A)*1;); = 0 since D is diagonal and

hence A* and (D~'A)* have the same sparsity pattern. Thus, 1(z;) = Y (v;)(z;) =
J
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F1GURE 3. Formation of aggregates to guarantee sparsity of all coarse-level operators.

(1;)(z;) — (D7YAq, (D71 A)1,)(x;), for all s < v, and j # i. The latter implies
(D ' Aq_1 (D1 A)1,) () = 0.
Therefore
Y;(xi) = 1(z;).
The vectors 1, will form our coarse basis. Note that they have local support and form

a partition of unity (in the sense of identity (3.20)) and they also provide a Lagrangian
basis.
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FIGURE 4. The overlap of the extended aggregates obtained by applying
two actions of A illustrating the sparsity of the resulting SA coarse-level op-
erator. Darker color corresponds to elements that belong to fewer extended
aggregates.

We comment next on one way of constructing aggregates that leads to coarse matrices
with controlled sparsity pattern. Namely, assume we are given a quasi-uniform mesh 7j,
that triangulates our polygonal (or polyhedral) domain €2. Choose a parameter H and
generate a uniform mesh 75 with boxes of size H x H (xH in 3D). Consider only those
boxes that provide covering of 2. Each box €;;(or €;;; in 3D) intersects part of the mesh
7}, In this way we construct aggregates A;; (or A;ji) each containing all fine-grid vertices
that are within a particular box (with some arbitration of nodes on box boundaries if
any). The only requirement is that the resulting aggregates have large enough interior
which can be ensured if H is large enough and 7}, is fine enough. Fig. 3 illustrates this
geometric way to generate aggregates with guaranteed diameter bound, whereas Fig.
4 illustrates the overlap of the support of the polynomially smoothed basis functions
defined as in (3.20) for v = 2. It is clear that after one level of smoothed aggregation,
the resulting coarse matrix will have sparsity pattern corresponding to a finite difference
matrix on uniform grid (9-point stencil in 2D and 27-point stencil in 3D).

Finally, we note that the above properties hold for any null-vector 1 of A. We note
that A may have several null-vectors such as in the case of matrices coming from linear
elasticity (the respective null-vectors or functions are called “rigid body modes”).
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To continue the process by recursion define 1, = [1, ..., 1]T € R™. We have, A1, =
PTAY ap; = PTA1 = 0. Here P = [¢y,..., 9, ] is the interpolation matrix. Due to

the Lagrangian property of the basis {%;}, i.e., 1,(z;) = d;; it follows that P has a full
column rank.

We then generate coarse aggregates with corresponding polynomial property (3.17).
Note that we have the flexibility to change v, i.e., to have v = v, depending on the level
number.

Assume that we have generated ¢ > 1 levels and at every level £ we have constructed
the respective interpolation matrices Py. Then after a proper choice of smoothers M, we
end up with a symmetric V' (1, 1)—cycle smoothed aggregation AMG. Our goal is to ana-
lyze the method, by only assuming that the vector 1 ensures a multilevel approximation
property formulated later on (see (3.23)).

The fact that 1 is a (near)—null-vector of A is not needed. That is why in practice
the resulting coarse bases are not necessarily Lagrangian. Nevertheless convergence is
guaranteed as we can see next.

3. A general setting for the SA method

In this section we select the parameters of the smoothed aggregation method.

To simplify the analysis we assume that v > 1 is independent of k. We assume that
we are given a set of block-diagonal matrices I;_; : R™ +— R™-1. We assume that Ij,_;
has the following block—diagonal form,

1, 0 O e 0 A
0 1, O e 0 A,
Loa=| & o 0 o

O ... 0 1,4 O AL 1
0o 0 ... 0 1,, } A,

1

where, for k > 1,1, = | : |. Note that the vector 1; € Rl has as many entries of ones,
1

as the size of the fine—grid set (called aggregate) A; they interpolate to. We stress upon
the fact that, the SA method will be well-defined as soon as the first “piecewise—constant”
interpolant I, is specified. We outlined earlier a choice of I based on a nullvector of A.
We can of course select other initial coarse level interpolants, that for example fit several
a priori given vectors.

Let I;_; be the piecewise constant interpolant from level k to level k — 1 and let
Ioow = Io... Iy be the composite one. We define D, = Ik 1Ik—1. Denote then

Apg = =D, ’ lAk 1Dk ,- Then, the interpolation matrix Pj_; is constructed as before, on
the basis of Aj_1, Dy_1 and the norm of A,_; for our fixed v. More specifically, we have

Pkfl = Skflfkfla

where

Sk—1 =y (D1 A1)
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and ¢, (t) = (—1)”21]1“% Toyi1 <%> for b = by_y > ||Ax_1]|. We will show later on (in

Lemma 3.1) that b = b1 < @/JFHU%'

The smoother M, is chosen such that

More specifically, we assume that, Mj, is s.p.d. and spectrally equivalent to the diagonal
matrix ||Ag|| D, and scaled so that,

(3.21) v Ay < || A VI Dpv < v Myv.
Based on the above choice of P, A, and My, for 0 < k < /, starting with B, = Ay,
fork=0¢—1, ..., 1, 0, we recursively define a V—cycle preconditioner By to Ay in the

following standard way,
I—B'Ay =1 —M;"Ay) (I — PB;} \ P Ag) (I — M Ay).

Letting B = By, we are concerned in what follows with the (upper) bound K, in the
estimate

(3.22) viAv <vI'Bv < K, vI Av.

3.1. The result of Vanék, Mandel and Brezina. We present here perhaps the
only known multilevel convergence result for algebraic multigrid; namely, the suboptimal
convergence of the smoothed aggregation (or SA) AMG. The original proof is found
in [SA] and targeted matrices A coming from second order elliptic PDEs (scalar, like
Laplace equation, or systems, such as elasticity).

One of the main assumption in the analysis is a “weak approximation property” of
certain coarse spaces of piecewise constant vectors. Namely, that a f.e. function v can be
approximated by a piecewise constant interpolant Iy in Ls. The latter is defined based
on sets A; (the union of fine—grid elements that cover our aggregates, which we later do
not distinguish, i.e., treat as the same sets of degrees of freedom) with diameter O(H).
On each set A;, Iyv is constant, for example equal to an average value of v over A;, i.e.,
Iyv = ﬁ J v dz. Then, if A comes from a Laplace-like discrete problem, the following

is a standard estimate in Ly in terms of the energy norm ||.|| 4,
[v = Irvllo < caH [[v]|a-
Rewriting this in terms of vectors leads to the following one
d
h2 |lv = Igv|| < caH [|v]|a,

where d = 2 or d = 3 is the dimension of the domain where the corresponding PDE
(Laplacian-like) is posed. Since then ||A|| ~ h%~2 we arrive at
H 1

v —Igv|| <c,— —— ||vla.

IV = Il < carp e [vi|a
In the application of the SA we will have % ~ (2v+ 1)k, where v > 1 will be the poly-
nomial degree of a polynomial used to smooth out the piecewise constant interpolants,
that we start with. Also, k = 0,1,..., ¢ stands for the coarsening level. We summarize

this estimate as our main assumption. Given the nonoverlapping sets Agk) (aggregates)
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at coarsening level k > 0 viewed as sets of fine-grid dofs. Let @, be the block-diagonal

lo—projections that for every vector v restricted to an aggregate AE’“) assigns a scalar
value v;, the average of v| 4, over A;. Finally, let [j; interpolate them back all-the way

up to the finest level as constants over AE’“) (equal to the average value v;). Finally,

assume that the diameter of AE’“) is of order (2v + 1)*"'h where h is the finest mesh size.
Then, the following approximation property is our main assumption:

(2v + 1)k+1
——— [IVlla.
1A=
The latter assumption is certainly true if the matrix A comes from elliptic PDEs dis-
cretized on a uniformly refined mesh, and the corresponding aggregates at every level k
are constructed based on the uniform hierarchy of the geometric meshes. In the appli-
cations when we have access to the fine—grid matrix only (and possibly to the fine—grid

mesh) when constructing the hierarchy of aggregates we have to follow the rule that their
graph diameter grows like (2v + 1)**1. A typical choice in practice is v = 1.

(3.23) v — Qv < ca

An optimal Chebyshev like polynomial. We first revisit a Chebyshev-like poly-
nomial introduced earlier (in a previous lecture).

Consider the Chebyshev polynomials Ty (t) defined by recursion as follows, Ty = 1,
Ti(t) =t and for k > 1, Tyy1(t) = 2tTy(t) — Tr—1(t). Letting t = cosa € [—1, 1], we have
the explicit representation T (t) = cos ka, which is seen from the trigonometric identity
cos(k + 1) + cos(k — 1)a = 2 cos a cos ka.

PROPOSITION 3.1. For a given b > 0, the function defined for t € [0, b
()
21/—{—1 \/Z 2v+1 \/5 )

is a polynomial of degree v such that ¢,(0) = 1, that is, ¢, (t) = 1 — tq,_1(t) for some
polynomial q,—1(t) of degree v — 1.

(3.24) wu(t) = (=1)"

PROPOSITION 3.2. The polynomial p, defined in (3.24) has the following optimality
property:

Vb

Tl

(42 min e V(0] = max [VEau(t)

Also, ¢,(0) =1 and

3.26 ()] = 1.
(3.26) nax lw (1))

Here are some particular cases of the polynomials ¢,,.

Using the definition of the Chebyshev polynomials, Ty = 1, T1 = t, Tjy1 = 2tTp — T4,
for k > 1, we get T = 2t> — 1 and hence

Ts(t) = 4t> — 3t.
Thus,
(1) = ~5 Vbl -
P = TRV s

Sl
S
~—
I
—
|
Wl =~
S+
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This in particular shows that

1-— t 1
wp Lm0 _

4
te(0, b] Vit 3 Vb
2

The next polynomial is based on Ts = 2tTy — Tz = 2t(2tTs — Ty) — Ty = (4¢* — 1)(4¢t> —
3t) — 43 + 2t = 16> — 20t> + 5t. Therefore,

1 /b 1 1 1
2

5 b3 Vb
This shows,
16¢*  t
t)= ——=—4-+1.
palt) = T — A+
We also have,
1 — ot 4 4 . 4 51
sup i():— sup (z— —2°) = =4/ =—=

te(0, b] Vit Vb ze(01] ) 3 §\/5

In general, it is clear that the following result holds.

PROPOSITION 3.3. There is a constant C,, independent of b such that the following
estimate holds,

|~

11—, (t)]
3.27 sup —— < C,—.
( ) te(0, b] Vit b

PROOF. We have, 1 — ¢, (t) = tq,_1(t), that is, 17;” =/t q,_1(t) and therefore the

quotient in question is bounded for ¢ € (0,b]. More specifically, the following dependence
on b is seen:

[SIE

1 o) . ‘_(4rnwm&>
— 2v+1
sup Lt 227} = — sup i VA .

te(0, b] Vi bz A€(0, 1] VA

‘ (=Y Toyp1(VX)

Clearly, the constant C, = sup S 7 A is independent of b.

AE(0, 1]

O

Preliminary estimates. Our second main assumption is that we can construct at
every level £ > 1 aggregates with the polynomial property (3.17). The latter is needed to
keep the sparsity pattern of the resulting coarse matrices under control. We also assume
that the the size of the composite aggregates coming from level k£ onto the finest level
satisfy the estimate

max |diam(A;)| < (2v + 1)"h.
zGNk

As already mentioned above the above assumption is easily met in practice for meshes
that are obtained by uniform refinement. For more general unstructured finite element
meshes the above assumption is only a practical rule to construct the coarse level aggre-
gates.

The analysis in what follows closely follows [SA].
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LEMMA 3.1. The following main estimate holds true:

T HAH
Al € ————.
” k” - (2y + 1)2k

PROOF. Recall that Dy, y = IFI. Then, with S, = I — D; ' Aq, (D, ' Ag), using the
fact that P, = SiI; and Dy = Tszjk, we have
VTAk+1V
VTDk+1V
vIT, ST Ay SiTjv
(Ixv)T Dy (Iv)

VTSEAkSkV
vIDyv

_1 1
HDkflAkHDkfﬂ‘ = sup
v
= sup
v

< sup
v

Therefore, based on property (3.25) of ¢,, we get,

1 1
vI'D, 2STALS.D, *v < sup tH1 —tq,_1(1))? ||v|?
te [o \\D’%AkD’%H}
HD AkD 2| H ”
— 21/+1

That is, by recursion (with Dy = I, Ay = A), we end up with the estimate

1A
20+ 1)
Thus the proof is complete. [l

_1 _1
|’Dkf1Ak+1Dkf1H <

We will be using the main result regarding the relative spectral condition number of
the ¢th level V—cycle preconditioner B with respect to A, which we restate here.

Given smoothers M; and interpolation matrices P; and respective coarse matrices
relates as Aj;; = PjTAij. Each smoother M; is such that MJT + M; — Aj is s.p.d..
Then, the following main identity holds:

vIiAv < vI'Bv = inf

T
vIApv, + f
(3.28) i AV (Mijj +Ajpjvj+1)

j<t

(M +M;— 4;)" (MJ'T"f + AjJDijl)] '

The inf here is taken over the components (vy) of all possible decompositions of v:
(i) starting with vo = v, and
(ii) for k >0, vy = V]J: + PV

Introduce now the following averaging operators,
(3.29) Qp 1= L)' 0 R™ s R™,

Note that I;_1Q, _, are {,-orthogonal projections.

We will be interested in a particular recursive decomposition for any given fine—
grid vector v. Based on the characterization identity (3.28) utilizing an energy stable
particular decomposition of the fine—gird vectors, we can get an upper bound of K,



3. A GENERAL SETTING FOR THE SA METHOD 109

which is our goal. Introduce @ , = I, and let for k > 0, v; = Q,_,v € R™. We have
the two—level decomposition
Vi = (@k_lv — Pk@kv) + P.Q,v = V,J; + Piviy.

In order to bound the relative condition number of the V—-cycle preconditioner B with
respect to A, (due to estimate (3.28)), based on our choice of the smoother as in (3.21),
it is sufficient to bound the expressions (i) and (ii) below:

(i) > (v Myv] = 3 @y - PQw)" My (@ v — PiQyv)
and
(ii) Z Vi TApvy = Z v Qk 1Aka 1V,
k<t k<t

both in terms of v Av.

Estimating the first sum (i). Recall that P, = SiI, Sy, = I D, Akq,, (D), TAL),

I, =Iol; ... Iyand Dy = (I,_1)TI,_1. Note that (see (3.26)) HD SpD H = sup |e.(t)] =

t€l0, [[Axll]
1. We start with the inequality,

|| (@k—l - Pk@k) V||Dk = || (@k 1= Skjk@k) V”Dk
= ||D Sk (Qk 1—Ika)V+(I Sk)Qk V|
< ”D Sk (Qk 1 Ik@k) v+ HD (I = Sk)Qi1v]
< | D¢ ScD; * |1 D; (@ = 1kQ) vl
- DiSD DY
< [I1Dg (@ 1_[ka)VH+||([ DQSk: 1) F Qi
= it @iy — T@) Il + (I = DESLD, *)DEQ, vl

— _1 1
Let (0, b] be the interval that contains the eigenvalues of Ay = D, 2 A D, * which is used
to construct the optimal polynomial ¢, (t) =1 — tq,_(t), i.e., b > ||Ax||. Notice that

1 1 — —1 |
I — D]?Ska 2 = I — QOV(A]C) = Ak 2 (I — (,DV(Ak)) A]i
Based on estimate (3.27) we then get,

|7~ D{SiD, D@y vl < max = ol [A:D; Qv

te(0, b]
<Gy |42 DF 0, vl
<C,—/—
< =Ly @1Vl
Thus, we arrived at the estimate
(3.30) 1(@r—1 — PQu)VIpy < I (1i-1Qpy — LQy) v + r | @Qk—1vlla,-

||Ak||2

The final bound on sum (i) will be derived after an estimate of the terms in sum (ii) is
obtained.
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Estimating the second sum (ii). We bound next [|Q,v||,,,-
1 1 — 1 1 1
Since ||A2 D 'AZ|| = ||Ax|l, we have ||A2SrA, %] = ||p, (A2 D, A2)|| < 1 and sim-
1 1 1 1

ilarly [|DZSkD, 2|l = |l (D, 2AxD, %) = |len(Ax)|| < 1. The first estimate shows
that
WTSEAkSkW < wlA.w.

Then, based on Lemma 3.1, we obtain

1@Vl = I1PQxvlla,
= Sk 1@V la,, -
< [|Sk ({ka Qk D) Viae + [196Qp-1 |l 4,
< [|Sk (llek Qk 1) V||Ak + ”Qk N

(3.31) <11 (4:0: ) (DisiDi? ) D (1@ = Quca) VI + 1@crvla
< |42 1D (Tx@y — Qk_l) VIl + Q- 1vlla,

2”;4+ka 1Ti-1 (TeQp — Q1) VI + Qv 4,

< (2“:‘+”fk||1k 1 (TkQk = Qpa) VI + 1Qp 1 vy

| A

We have,
IV = LQuvl* = [| (T Qpy — Q) V[P + IV = Lia Qv %,
since Il | I 1Q,_, = I | and I}, = I;_1}, which imply

(v— I;H@,HV)T (Ih-1Qp1 — 1Qy) v = (v — kalaqu)T I (%) =0,
Therefore,
(21 @y = 1eQy) VI < v = LiQyv -
That is, if we bound ||v — Q. V|| the result will follow.
Use now the main estimate (3.23) which was our main assumption. It reads,
(2V T 1)2(k+1)

vl Av.
Al

Iv = LQuv|* < o

Then,
(21/ + 1)k+1
— IVl
1A
Substituting the latter estimate in (3.31), leads to the following main recursive estimate,

(2v+ DAY

(3.32) I (Ik—lak—l - Ik@k) v[<o

_ <0
||ka||Ak+1 = ||Qk,1V||Ak +0q HAH% (21/—|— 1)k ||V||A

That is, we proved the following main estimate,

(3.33) 1Qivllary, < Q- 1vlla, + A Ivlla < (14 0ak) [[v] 4

Thus the second sum is bounded as follows

(3.34) > vidwe =Y Q@ 1vIi, < CE VT Av.

1<¢ k<t
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Completing the bound of the first sum (i). We showed, see estimate (3.30)

C, —
W Q1.
k

1 (@1 = PiQi) Vlip, < | (Ii-1Qpey — LiQ) v +
This estimate, together with (3.32) and (3.33), imply

(2v + 1)*
1Al12

Cy
[Vlla+ == (1 +0ak) [[v].a.

| (@kfl - Pk@k) v|lp, <04 — 1
[ Ar||2

We need to bound ||A|z]| (Qr_r — P:Qy) vlip,. (Recall that M =~ ||Ag|| Dy.) This

implies

(2v + 1)k
e
SER +aak>) Ivila

(3.35) A2
Az (v +1)*

O, -

~ (24 1)k | Al
+C,(1 4+ a.k) ||v]|a

= [Ua +C, (1+ Uak)] ”V“A

Az Qs = PrQ) Vlp, < [[Ax]12 (%

vl

Final estimates. In conclusion, we are ready to complete the proof of the following
main result (given for v =1 in [SA]).

THEOREM 3.1. Under the following assumptions:

e the approzimation property (3.23) of the piecewise constant interpolants Iy, (from
coarse level k+1 all the way up to finest level 0) holds. This is the case if the kth
level composite aggregates have diameter that grows not faster than (2v + 1)*h
(where h is the finest meshsize).

e the choice of smoother is My, ~ ||Ag| Dy, where Dy = IF I, and A, =

D A.D; %
e the choice (3.24) of the polynomials @, with b > ||A|| at every level k used in the
construction of the smoothed interpolation matrices P, = gol,(DkflAk)Tk, where
1 is the piecewise constant interpolant from coarse level k + 1 to the next fine

level k;

N

the resulting V (1,1)—cycle MG preconditioner B is nearly spectrally equivalent to A with
K, < C63, where K, is the constant in (3.22).
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PROOF. It remains to use the estimates (3.35) and (3.34), for the particular decom-
position vy = (Qy_; — PQ))Vv + PrQ,v and vi1 = Q,v. We have, see identity (3.28),

VTBy < [HP@KVH%E L2 A @ — R VI, + 25 ||Pk@kv||zk}
< (2 S BVl 2 5 (004 Co(1 + ko)) ||v||?4)
k<t k<t

<C |#+ Ze 2 IvI%

k<
< CE v



CHAPTER 12

Appendix: H}-norm characterization

Here we provide some auxiliary results on boundedness and approximation properties
of finite element quasi-interpolants and respective Ly projections.

1. A H'-bounded approximation operator

Let Vj, be a given finite element space spanned by the Lagrangian basis {gogh)}xie Ny
Define the linear operator
h
@U_ Z (v, %( )) (h)
= L oMy 7
x; ENp, ( ) QOZ )

For any element 7 from the triangulation 7j consider its neighborhood €2, of immediate
element neighbors. It is clear then that the diameter of €2, is of order O(h). Since the sets

Q2 have bounded overlap the sum of integrals >~ [ 1?(x) dx is bounded by a constant
TeTh QT

times the integral [ 1?(x) dx for any function ¢ € Ly(€2).
!
(h)

Due to the local support of the basis functions ¢, ', the following local estimate is

immediate (using Cauchy—Schwarz inequality and [ gpgh) ~pl, (gpgh))Q ~ h?)

A 2
[@rix =[S o d") ax

()
e 7 \ser (Lwi )

(r(#) ax)

<O [?dxi LT

X,ETQ), (f @Eh) dx>
Qr
<C [ v*(x)dx.
Q7'

Therefore, we also have

/(v—@hv)Q dx < 2/2;2 dx—|—2/ (éhv)2 dx < C /UQ(X) dx.

T T T Qr

= 0 for any

Applying the same inequality for v := v — ¢ on €, since then ((I — @h)c>

constant function ¢ on €2, we also get

/(v — Q) dx < C /(v —¢)? dx.
T Q-
113
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Using this inequality for ¢ being the average value of v over (), and applying the Poincaré
inequality, we arrive at the following local approximation estimate

/(U — Quv)? dx < C diam*(2,) /|Vv|2 dx < C h? /|Vv|2 dx.
Q. O,

T

The desired global Lo—approximation property follows after summation over 7 € 7, and
using the bounded overlap of the neighborhood sets {(2.}, i.e., we have

(3.36) v — Qnol2 < Ch? |v]? = Ch? a(v, v)
The next property is to show that @hv is bounded in | - |;. Introducing the weighted
(h)
average values v; = %, we have
) SD—L

2

dx.

X, ET

|@hvﬁ - ZT:/

Now use the fact that on 7, sogh) = 1, hence ) V@Eh) = 0. That is, V‘Pz(:) -

X, ET X;ET

— Y V™ which implies

x; €7\ {Xio }
2
|th|§:2/ > (W — 03, ) V™| dx.
T T X, ET
Applying Cauchy-Schwarz inequality, we then obtain
~ 2
Qul <C XY @) [|Vel| dx
(337) T X,ET T
<C Y ¥ @—7,)h
T XGET

In what follows, we need the following estimate bounding the deviation of the weighted
averages U; from the simple averages v, = ﬁ [ v dx. We have, for any x; € 7, based
Q,

on the Cauchy-Schwarz and Poincaré inequalities, and the fact that % ~ h’%,

N

|
(17 sz')

5, = W @) o /|W|2 dx

’QIOZHO S Chl_% /|VU|2 dx

This shows then for any x; € 7, that the difference of the weighted average values
U; — U4y, Xiy Xi, € T, can be bounded by the seminorm |.|; o, of v over the element
neighborhood €2,. That is, we have the local estimates

(T —T43y)? <2 (U; — T,)2 + 2 (U, — T,)? < C h*™4 /yw? dx.

Q,
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The later estimates, after summation over 7 € 7j, used in (3.37) based on the bounded
overlap of the local subdomains €2, gives the desired energy bound

(3.38) Q> < C Z/ Vol dx < C Jv]? = C a(v, v).

COROLLARY 1.1. The Ly—projection operator Qp, : Lo(2) — Vi, is bounded in H'!
and has 1st order approzimation in Ly for functions in H(Q).

ProOF. The Ly-approximation is seen from the minimization property of the Lo—
projection, i.e.,

lv = Quvllo = inf [lo—gllo < v = Quvllo,
PEVL
and estimate (3.36). The H'-boundedness follows from the triangle inequality

1Qnv]s < |Qrv — Quoly + |Quv,

the inverse inequality || < Crh™! ||¢n]lo used for oy, = Qpv — @hv € V4, the proven
Lo—approximation properties of )5, and @), all used after using the triangle inequality

Qv = Quollo < [lv = Quollo + o = Qnvllo < 2 [lv = Qrollo < C R fols,
and the H'-boundedness (3.38) of Q». In conclusion, we have the estimate
|Qnvly < C vl
O

REMARK 1.1. In the analysis of MG we can use multilevel decomposztzons based on
the operators Qy = Qhk by letting v (Qk — Qi v for k > 1, and vo = vy = Qov.
Alternatively, we may use decamposztwns based on the Lo—projections Q. Then, we need
to verify assumption (S) for the decomposition v =" v,]; based either on @k or Q. It is

i

true (see Section 2) that

> hElollls = [off = C alv, v).
k

An application of CNQh to Schwarz methods. Assume that a given computational
domain (polygon or polytope) Q C R? is covered by a set of overlapping subdomains €,

1=1, 2, ..., m with bounded diameter of order (’)_(H). Also, let {60;} be a partition of
unity of smooth functions 6; that are supported in €2; such that
Vo, <CH™ .

Let 75, be a given triangulation of € such that each €); is completely covered by elements
from 7;,. We assume that h < H but no restriction on the size of H/h is assumed.
In practice, the domains €2; can be constructed as unions of elements 7' from a coarse
triangulation 7y and then 7, is obtained by several steps of refinement of 7. For a
partition of unity functions 6;, we can simply use the basis of a H!'-conforming finite
element space Vy associated with 7.
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Given a H'-conforming finite element space Vj, associated with 7;, and let {®; }x,en;,
be its nodal basis. We are interested, for a given v € V},, in the following local components

%’ = @h(Xiv) = Z M ©j € Vh.

1. o
x;ENLNQ; (L, )

It is clear that 1; are supported in ﬁ, which is the union of 2; and the neighboring
elements 7 € 7;,. The components v; also satisfy

Z%‘ = @h (Z Xﬂ)) = @hv-

The difference v — @hv can be decomposed as > ¢;, where each
i

o= 2 (-1 3)

X eNLNQ;

is supported in €;. The weights w;,; are between zero and one and reflect the fact that
each node x; can belong to several subdomains 2; (due to their overlap).
Our goal is to bound the local components €; + 1; in L, and H'. For any i, each

individual term in ¢;,
— U, ij)
5-:(7}()(')—( ) ©;
! YoM
is bounded in Ly by Ch||[Vv||oa,), where (x;) is the union of all elements 7 that share
node x;. To prove this, we first notice that

[o(x;)5l15 = v*(x;) lslls < ChTv*(x;) < Cllollf o,

and

v, ©; 14
(22 il < 101 ey 2% < C ol e
That is, [|0;]o0 < C [[v]lo, ;). Using this result for v := v — const, noticing that
d; does not change then, letting const = 7;, the average of v over Q(x;), we obtain
165ll0 < C' [[v=1jl0, a(x;)- The estimate [|0;][o < Ch [[Vv]|o, o(x,) follows then by Poincaré
inequality.

To bound the local terms ¢;, we use Cauchy—Schwarz inequality and the last estimate.
We have

lale<C > MollE<or® Y IVl an,) < OB [IVl} 4 -

X eNNQ; Xj eNNQ;

The bound in H' follows by an inverse inequality used for ¢; € V), and the last Lo
estimate, i.e., we have

IVeilld < € b2 Jleilld < C [|V0]12 4.
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In conclusion, by summing up the last two estimates, using the bounded overlap of the
subdomains ; (and hence of 2;), we have

(3.39) W2y llalls + ) IVells < C [IVolls.

We bound now the local functions ¥; = Q, (x;v) € V}. Since @), is bounded in both
Ly and H!, it is sufficient to bound the functions y;v instead. The Ly—bound is trivial
since ; is between zero and one. For H!, using the product rule for derivatives and the
assumed bound |Vy;| < CH™!, we have

CTHIVElls < IVOa)lis < 200Vxallg + 216 Volls < CH2oll5, o, + 21IVoll5, g

The final estimate follows by summation over i, using again the bounded overlap of the
Schwarz subdomains €;, i.e., we have

(3.40) DIVl < CH® Jloll§ + C ||Vl

The following result is the essence of the analysis of the so-called overlapping Schwarz
methods that exploit subdomain solvers (locally in each subdomain €2;). Also, to achieve
optimal condition number, the Schwarz methods utilize in addition a coarse—grid solver
based on a coarse subspace Vy associated with a coarse mesh 7y of size H that is
comparable to the characteristic diameter of the subdomains €2;. We recall, that the
subdomains €2; are assumed to have overlap of size comparable to their diameter. The
latter property is needed to show that a partition of unity functions y;, with controlled
bound O(H ') on their gradient, is possible to construct.

THEOREM 1.1. Assume that for any v € V), there is a coarse-grid function vy € Vi
such that

[0 —vullo < C H |[Vollg and [Vorlo < C [[Vollo.

For example, we can choose vy = @Hv. Consider the local components v; = €; +
supported in €); constructed for the function v — vy € Vj,. Then, for the decomposition

v =vg + Z Vg,
the following stability estimate holds
IVulls + D IVuills < C Vol

2. H}-norm characterization

In this section we present in a constructive way a Hj(€)-norm characterization. First
the result is proven for a convex polygonal domain €). Consider

—Au = f(x), z € Q,
subject to u = 0 on ). Since € is convex the following full regularity estimate holds

lull2 < C [ £llo-
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We assume now that (2 is triangulated on a sequence of uniformly refined triangulations
with characteristic mesh size hy, = ho27%, k > 0, and it is well known that the respective
finite element spaces of piecewise linear functions V;, = V},, satisfy UV}, = HZ(Q). Define
the Lo—projections @ : L2(2) — V. Then, we can prove the following main result

(3.41) Zh 2@k — Qr-1)vll§ = [|v]lF.

More generally, we have the following main characterization of Hj (), a result originally
proven by Oswald [Os94],

(3.42) lollf =~ mfv ZhQHUkHO

To this end let us define the elliptic-projections 1 : H3(€) : — V; in the standard way
(Vmv, @) = (Vu, V), for all ¢ € V.

Based on the optimal Ly—error estimate ||[v — mp_qv|jo < Chyl|v||1, for v = (mp — m_1)v,
and using the H}-orthogonality of the projections, we have

Dol = me)olly < C Y e = mea)olli = C Y (Imeoll = [lmesollf) = Jlolli.
k k k

Finally, from the following chain of inequalities, using the fact that )y are Lo—symmetric
and that (Qr, — Qr_1)*> = Qi — Qk_1, and the optimal Ly—error estimate, we have

zk:hEQH(Qk — Qr-1)v[3 Zh (Qr — Qr—1)v, V)
= Zh_Q (Qr — Qr—1)v, Z(Wj — Tj_1)V)

>k
<Zh 1(Qr — Qr—-1) ”OZH 7 — mj-1)v]lo
>k
< 0222] _1H (Qr — Qr—1)v HO) [(mj — mj—1)vllx
k j>k
(ZZ he 2 1(Qr — Qr—1)v ||(2))
k 7>k L
| 3
X (ZZ o I(ms = Wi—l)UH%)
J k<g

2

<C (Z hi?1(Qk — Qk_l)v|\3> [o]]1-
k

The latter shows the first desired result (3.41). Applying exactly the same argument as
above to any decomposition v = Y v;, v; € V; (formally replacing (7; — mj_1)v with
J
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v; € V;) we show the inequality

Zh 1(Qk = Qu-)vllg < ZZQJ (7 1@k = Qe—1)vllo) (75 lvsllo) -

k j>k

The latter implies,

> Qe — Qr-a)vlls <€ _inf > RS,
k Ufg’l)j,ﬂje‘/j ;

That is, the decomposition v = ) (Q; — Q;—1)v is quasi-optimal. This (together with

j
(3.43) below) shows the well-known norm characterization (3.42) of H} ().

For a more general domain 2 we assume that it can be split into overlapping convex
subdomains €2,,, m = 1, ..., mg for a fixed number my. We also assume that there is
a partition of unity of smooth functions 6,, such that 0 < 6,, <1, 29 =1 and 0,, is

supported in Q,,. Then, since v = Z@mv and |[v0,,||? < CllvV,, ||0 Q, + C’||v||1 . if

we can choose 0, such that vV, € H&(Qm) with H'-norm bounded in terms of ||v||;,
then the decomposition v = 3 6,,v will be stable in H}(Q2) and the functions 6,,v have

the proven H}(€,,) norm characterization (since 2, are convex). Such a result has been
shown in Lions [Li87] for a L-shaped domain © with mq = 2. Thus we can find a stable
decomposition for each v,, (supported in €,,) and thus a stable decomposition of the

finite sum v = > v, is constructed which proves (3.42) in one of the directions.

m
1

For any decomposition v = > v;, v; € V}, and for a fixed a € (0, 3), using the

j
inequality (p,q) < ||plla|l¢||-o and appropriate inverse inequalities, we have

Iy ZZ(V(M—M Do, > V)

7>k
<ZZH T — Te—1)0| 140 [[V5][1-a
k j>k
<Y (e — mmn)ollih vl
k j>k
1\’ "% .
—CX S () Mmool (557 sl
(3.43) kogzk )
1\’ ?
<o(SX(3) e mit)
E 5>k

(ZZ (2) )

J

<C/1=27 vl (Z h;QIIUjII?))

This shows the remaining fact that ||v||? is bounded in terms of the r.h.s. of (3.42).

2
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