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Cohomology



Homology: elementary chain

Simplicial complex K, e.g. a triangulation of an annulus.

Vertices, edges and triangles: K0 = {vi}, K1 = {ei} and K2 = {∆i}.
By abuse of notation, each 0-, 1- and 2-simplex in K corresponds to an
elementary chain of the same dimension, denoted as vi, ei and ∆i.

0-, 1- and 2-chains: formal sums of 0-, 1- and 2-simplexes (elementary
chains) with integer coefficients Z2 = {0, 1}:

C0 = C0(K;Z2) = {b =
∑

givi | gi ∈ Z2},

C1 = C1(K;Z2) = {a =
∑

giei | gi ∈ Z2},

C2 = C2(K;Z2) = {c =
∑

gi∆i | gi ∈ Z2}.

Two elements a, a′ ∈ C1 are homologous iff a− a′ = ∂(c), for some
2-chain c, denoted as a ∼ a′. In this case [a] = [a′].
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0-chain: b1 = v1 + v2 + v3 (solid green),

1-chain: a1 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 (bold red),

2-chain: c1 = ∆1 + ∆2 (bold pink).

Here a1 (bold red) ∼ a3 (bold orange): they bound the “same” tunnel.
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Boundary maps: ∂2 : C2 → C1 and ∂1 : C1 → C0

1-dimensional homology groups: H1 = Z1/B1 = ker∂1/im∂2
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a1 (bold red) is a 1-cycle since ∂(a1) = 0.

a2 = e9 + e10 + e11 + e12 (bold cyan) is a 1-boundary since it is the
boundary of the 2-chain c1.

a1 is a 1-cycle, but not a 1-boundary, which makes [a1] a non-trivial
element of H1.



Cohomology: elementary cochain

Simplicial complex K, e.g. a triangulation of an annulus.

Homology groups are “dual” to homology groups

Vertices, edges and triangles: K0 = {vi}, K1 = {ei} and K2 = {∆i}.
By abuse of notation, each 0-, 1- and 2-simplex in K corresponds to an
elementary cochain of the same dimension, denoted as v∗i , e∗i and ∆∗i .

1-simplex e has a corresponding elementary 1-cochain e∗, which is a
function on 1-chain whose value is 1 on e and 0 on all other edges.

e∗ : C1 → Z2, where e∗(e) = 1 and e∗(e′) = 0 for all e′ ∈ K1, e′ 6= e.

Similarly, we have elementary 0-cochains, v∗ associated with the
0-simplices v; and elementary 2-cochains ∆∗ associated with the
2-simplices ∆.

0-, 1- and 2-cochains can be considered as sums of elementary cochains.



Cohomology: elementary cochain

0-, 1- and 2-cochains: functions on 0−, 1− and 2-chain groups.

C0 = C0(K;Z2) = {β : C0 → Z2, β =
∑

giv
∗
i | gi ∈ Z2},

C1 = C1(K;Z2) = {α : C1 → Z2, α =
∑

gie
∗
i | gi ∈ Z2},

C2 = C2(K;Z2) = {γ : C2 → Z2, γ =
∑

gi∆
∗
i | gi ∈ Z2}.



Cohomology: coboundary map

Coboundary maps are dual to the boundary maps, δ0 : C0 → C1,
δ1 : C1 → C2

Let β ∈ C0, α ∈ C1, we have:

(δ0β)([v0, v1]) = β(∂1([v0, v1]) = β(v1) + β(v0),

(δ1α)([v0, v1, v2]) = α(∂2([v0, v1, v2]))

= α([v1, v2]) + α([v0, v2]) + α([v0, v1]).

If α =
∑
gie
∗
i , then δ(α) =

∑
gi(δe

∗
i ).

To compute δe∗ for each oriented simplex e, we have δe∗ =
∑

∆∗j ,
where the summation extends over all ∆j having e as a face.



Cohomology: cocycle, cobounday

For a cochain α ∈ C1, we call α a 1-cocycle if δ1(α) = 0.

We call α a 1-coboundary if there exists a cochain β ∈ C0 such that
δ0(β) = 0.

It is easy to verify that δ ◦ δ = 0.

1-coboundaries are always 1-cocycles, we have im(δ0) ⊆ ker(δ1).

We define the 1-cohomology of K to be the quotient group,
H1 = Z1/B1 = ker(δ1)/im(δ0).

Two 1-cocycles α and α′ are cohomologous if α+ α′ is a coboundary.



Cohomology

e∗5 : C1 → Z has value 1 on e5 and 0 on other edges. Ignore orientations
(for now).

δe∗5 has values 1 on ∆1 and ∆2, because e5 appears in ∂∆2 and ∂∆1.

δe∗5 = ∆∗2 + ∆∗1.

δv∗1 = e∗2 + e∗1, δv∗3 = e∗3 + e∗2 + e∗5.

1-cochain α = e∗1 + e∗5 + e∗3 is a 1-cocycle since
δ(α) = δ(e∗1) + δ(e∗5) + δ(e∗3) = (∆∗1) + (∆∗2 + ∆∗1) + (∆∗2) = 0.

α is also a 1-coboundary since α = δ(v∗1 + v∗3).



Cohomology

1-chain α1 = e∗6 + e∗7 + e∗8 + e∗9 + e∗10 is a 1-cocycle

δ(α1) = δ(e∗6) + ..+ δ(e∗10)

= ∆∗3 + (∆∗4 + ∆∗3) + (∆∗5 + ∆∗4) + (∆∗6 + ∆∗5) + ∆∗6 = 0.



Cohomology

1-chain α1 = e∗6 + e∗7 + e∗8 + e∗9 + e∗10 is not a 1-coboundary.

[α1] ∈ H1, and α1 can be used as the representative of the 1-dimensional
cohomology class.

α1 (bold red) is cohomologous to α2 (bold orange), as we can check
α1 + α2 = δ(v∗4 + v∗5 + v∗6).



Homology groups of a torus
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H1 is generated by the 1-chains a1 (red) and a2 (blue).

a1 = [a, b] + [b, c] + [c, a] and a2 = [a, d] + [d, e] + [e, a].

a1 and a2 are 1-cycles, as ∂(a1) = ∂(a2) = 0.

a1 and a2 are not 1-boundaries.

In addition, a1 and a2 are not homologous.



Cohomology groups of a torus
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H1 is generated by the 1-cochains α1 (red) and α2 (blue). α1 and α2 are
1-cocycles, not 1-coboundaries, and are not cohomologous.

The duality between cohomology and homology generators is
counter-intuitive.

Here, α1 ∈ H1 (bold red) is dual to a1 ∈ H1 (bold red), while α2 ∈ H1

(bold blue) is dual to a2 ∈ H1 (bold blue).



Cohomology based parametrization

de Silva et al. (2009)

Using a principle from homotopy theory: relates circular coordinates with
cohomology.

Let [X,S1] be the set of equivalence classes of continuous maps from
space X to S1 under the homotopy relation.

For topological spaces with the homotopy type of a cell complex, there is
an isomorphism H1(X; Z) ∼= [X,S1]
This implies that if X has a non-trivial 1-dimensional cohomology class
[α] ∈ H1(X; Z), we can construct a continuous function θ : X → S1
from a representative α.



Future Directions and Discussions



What is the most valuable tool
you have leant in this class?



What is on your wish list?



What do you think are the future directions for
topological data analysis?



Advanced Topics

Topology in visualization: vector field topology, tensor field topology

TDA for biomedicine: high-dimensional data analysis, mapper

TDA for materials science, astronomy, music, signal processing

Multi-parameter persistent homology

Discrete Morse theory, discrete Stratified Morse theory



Future directions

Better understanding of multi-parameter persistent homology

Scalable computation

Machine learning

New visualization tools, uncertainty visualization

New theory leads to new algorithms and applications!



Topological Data Analysis of Functional MRI
Connectivity in Time and Space Domains

Anderson et al. (2018), Best Paper at MICCAI CNI 2018.



Key findings

Functional connectivity in time and space domains produced
complementary information about brain function.

Results from topological data analysis is significantly correlated with
cognitive performance, especially fluid intelligence.

Time and Space topology are both correlated with fluid intelligence, but
the spatial domain picks up additional behavior and allows us to localize
brain regions.



Flipping the time series



Time domain connectivity matrix



TDA: Significant correlation with fluid intelligence



TDA: Significant correlation with reading comprehension



Extract Robust Features From Stress Tensor Fields

Wang and Hotz (2017); Jankowai et al. (2018)



Stress tensor field: two point load
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Figure: Visualization of the robustness of a slice of a stress tensor field. (a) A single
slice of the data embedded in a 3D context visualized using volume rendering. (b) A
textured slice with degenerate cells. White triangles represent trisectors and black
ones represent wedges. Degenerate points in each cell are visualized with a
brown-to-turquoise colormap. Degenerate points with infinite robustness are in red.



Robustness of degenerate points



Stress tensor field: two point load
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(c)

Figure: Visualization of the robustness of a slice of a stress tensor field. (c) The full
merge tree.



Diffusion tensor imaging

(a) (b)

Figure: A slice of a diffusion tensor imaging data set. (a) 3D context visualization
using volume rendering of the anisotropy. (b) The histogram of the robustness values
of degenerate points.



Diffusion tensor imaging

(c) (d)

Figure: (c) All degenerate cells are color-coded according to their robustness values.
(d) Most robust degenerate cells are highlighted in turquoise.



Thank you for a wonderful and energetic semester!
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