CS 6170: Computational Topology, Spring 2019 Lecture 27 Topological Data Analysis for Data Scientists

Dr. Bei Wang

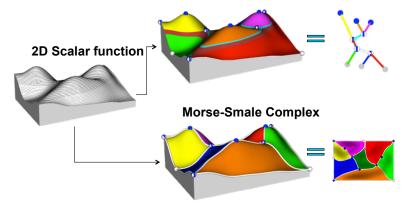
School of Computing Scientific Computing and Imaging Institute (SCI) University of Utah www.sci.utah.edu/~beiwang beiwang@sci.utah.edu

April 16, 2019

Key development in TDA

- 1. Abstraction of the data: topological structures
- 2. Separate features from noise: persistent homology

Reeb Graph/Contour Tree/Merge Tree



van Kreveld et al. (1997); Carr et al. (2003); Edelsbrunner et al. (2003a,b)

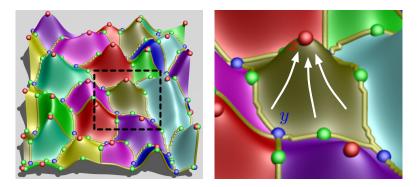
Morse-Smale Complexes

(Edelsbrunner and Harer, 2010, VI.2)

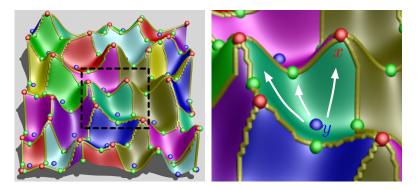
Morse Complex

- \mathbb{M} : a smooth manifold embedded in \mathbb{R}^n .
- $f: \mathbb{M} \to \mathbb{R}$: a smooth function with gradient ∇f .
- A point $x \in \mathbb{M}$ is called *critical* if $\nabla f(x) = 0$; otherwise it is *regular*.
- At any regular point x, the gradient is well defined and integrating it in both ascending and descending directions traces out an *integral line*, which is a maximal path whose tangent vectors agree with the gradient.
- Each integral line begins and ends at critical points.
- The *ascending manifolds* of a critical point *p* are defined as all the points whose integral lines **start** at *p*.
- The *descending manifolds* of a critical point *p* are defined as all the points whose integral lines **end** at *p*.
- The ascending (descending) manifolds decompose the domain into cells.
- These cells form a complex called a *Morse complex* of f(-f).

All the points whose integral lines **end** at a critical point x.

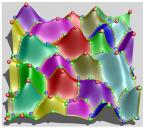


All the points whose integral lines **start** at a critical point y.

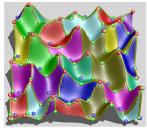


Morse-Smale Complex

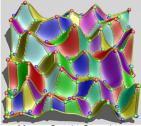
- The set of intersections of ascending and descending manifolds creates the *Morse-Smale complex* of *f*.
- A partition of the data into monotonic regions.



Descending Manifolds (Unstable Manifolds)



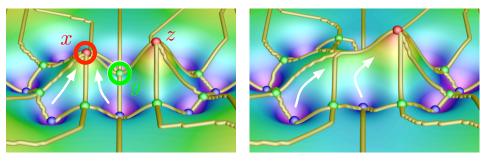
Ascending Manifolds (Stable Manifolds)



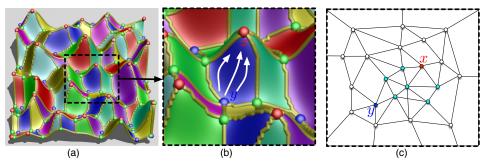
Morse-Smale Complexes

Edelsbrunner et al. (2003a,b)

Persistence Simplification of Morse-Smale Complex



Morse-Smale Complex: approximation in HD



Applications of Morse-Smale Complexes

Terrain simplification

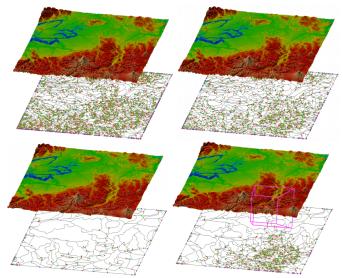
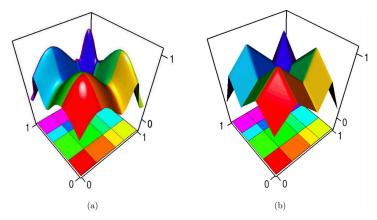


Figure 11: (Upper-left) Puget Sound data after topological noise removal. (Upper-right) Data at persistence of 1.2% of the maximum height. (Lower-left) Data at persistence 20% of the maximum height. (Lower-right) View-dependent reliment (purple: view frustum).

Bremer et al. (2003)

Morse-Smale Regression



Gerber et al. (2012)

Morse-Smale Regression

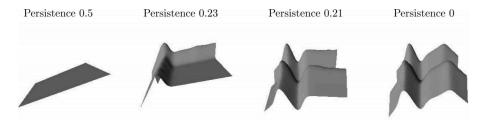
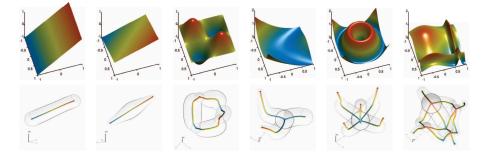


Figure 3.

A hierarchy of regression models induced by the persistence simplification of the Morse-Smale complex. Starting at the highest persistence, with a single minimum and maximum, on the left, to multiple extrema, at zero persistence, on the right.

Gerber et al. (2012)

Visual exploration of HD scalar functions



Gerber et al. (2010)

Nuclear Engineering: Sensitivity Analysis

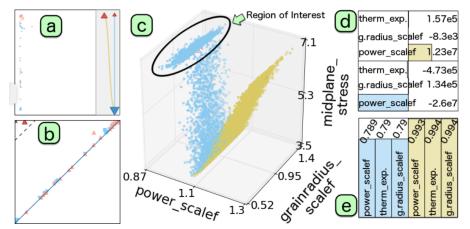
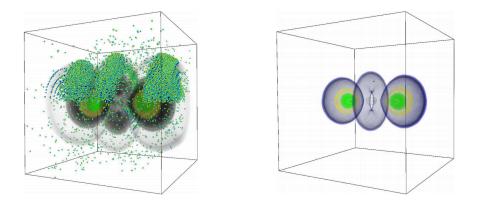


Figure 5: SA of the new nuclear fuel dataset: (a) topology map, (b) persistence diagram, (c) linked scatter plot projection, (d) linear coefficients, and (e) fitness view with stepwise R^2 scores.

Maljovec et al. (2016)

Topological simplification: hydrogen data set



Gyulassy (2007)

- Bremer, P.-T., Edelsbrunner, H., Hamann, B., and Pascucci, V. (2003). A multi-resolution data structure for two-dimensional Morse-Smale functions. *IEEE Visualization*.
- Carr, H., Snoeyink, J., and Axen, U. (2003). Computing contour trees in all dimensions. *Computational Geometry: Theory and Applications*, 24(3):75–94.
- Edelsbrunner, H. and Harer, J. (2010). *Computational Topology: An Introduction*. American Mathematical Society, Providence, RI, USA.
- Edelsbrunner, H., Harer, J., Natarajan, V., and Pascucci, V. (2003a). Morse-Smale complexes for piece-wise linear 3-manifolds. *Proceedings* 19th Annual symposium on Computational geometry, pages 361–370.
- Edelsbrunner, H., Harer, J., and Zomorodian, A. J. (2003b). Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. *Discrete and Computational Geometry*, 30(87-107).

- Gerber, S., Bremer, P.-T., Pascucci, V., and Whitaker, R. (2010). Visual exploration of high dimensional scalar functions. *IEEE Transactions on Visualization and Computer Graphics*, 16:1271 1280.
- Gerber, S., Rübel, O., Bremer, P.-T., Pascucci, V., and Whitaker, R. T. (2012). Morse-smale regression. *Journal of Computational and Graphical Statistics*, pages 193–214.
- Gyulassy, A. (2007). Combinatorial construction of Morse-Smale complexes for topology-based data analysis and visualization. PhD thesis, University of California, Davis.
- Maljovec, D., Wang, B., Rosen, P., Alfonsi, A., Pastore, G., Rabiti, C., and Pascucci, V. (2016). Rethinking sensitivity analysis of nuclear simulations with topology. *IEEE Pacific Visualization Symposium* (*PacificVis*), pages 64–71.
- van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., and Schikore, D. (1997). Contour trees and small seed sets for isosurface traversal. *Proceedings 13th Annual Symposium on Computational Geometry*, pages 212–220.