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Key development in TDA

1. Abstraction of the data: topological structures
2. Separate features from noise: persistent homology

2D Scalar function 

Reeb Graph/Contour Tree/Merge Tree 

Morse-Smale Complex 

van Kreveld et al. (1997); Carr et al. (2003); Edelsbrunner et al. (2003a,b)



Morse-Smale Complexes
(Edelsbrunner and Harer, 2010, VI.2)



Morse Complex

M: a smooth manifold embedded in Rn.

f : M→ R: a smooth function with gradient ∇f .

A point x ∈M is called critical if ∇f(x) = 0; otherwise it is regular.

At any regular point x, the gradient is well defined and integrating it in
both ascending and descending directions traces out an integral line,
which is a maximal path whose tangent vectors agree with the gradient.

Each integral line begins and ends at critical points.

The ascending manifolds of a critical point p are defined as all the points
whose integral lines start at p.

The descending manifolds of a critical point p are defined as all the
points whose integral lines end at p.

The ascending (descending) manifolds decompose the domain into cells.

These cells form a complex called a Morse complex of f (−f).



Descending Manifolds

All the points whose integral lines end at a critical point x.
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Ascending Manifolds

All the points whose integral lines start at a critical point y.
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Morse-Smale Complex

The set of intersections of ascending and descending manifolds creates
the Morse-Smale complex of f .

A partition of the data into monotonic regions.

Descending Manifolds Ascending Manifolds Morse-Smale Complexes
(Unstable Manifolds) (Stable Manifolds) 

Edelsbrunner et al. (2003a,b)



Persistence Simplification of Morse-Smale Complex
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Morse-Smale Complex: approximation in HD
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Applications of Morse-Smale Complexes



Terrain simplification

Bremer et al. (2003)



Morse-Smale Regression

Gerber et al. (2012)



Morse-Smale Regression

Gerber et al. (2012)



Visual exploration of HD scalar functions

Gerber et al. (2010)



Nuclear Engineering: Sensitivity Analysis

Maljovec et al. (2016)



Topological simplification: hydrogen data set

Gyulassy (2007)
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