CS 6170: Computational Topology, Spring 2019 Lecture 21 Topological Data Analysis for Data Scientists

Dr. Bei Wang

School of Computing Scientific Computing and Imaging Institute (SCI) University of Utah www.sci.utah.edu/~beiwang beiwang@sci.utah.edu

March 26, 2019

Simply Connectedness

• A topological space is simply connected if it is path-connected and every path between two points can be *continuously* transformed into any other such path while preserving the endpoints.

Homotopy

- A homotopy between two continuous functions $f, g : \mathbb{X} \to \mathbb{Y}$ is defined to be a continuous function $H : \mathbb{X} \times [0,1] \to \mathbb{Y}$ such that, if $x \in \mathbb{X}$ then H(x,0) = f(x), and H(x,1) = g(x).
- A homotopy between two continuous functions $f, g : \mathbb{X} \to \mathbb{Y}$ is a family of continuous functions $h_t : \mathbb{X} \to \mathbb{Y}$ for $t \in [0, 1]$ such that $h_0 = f$ and $h_1 = g$, and the map $(x, t) \mapsto h_t(x)$ is continuous from $\mathbb{X} \times [0, 1]$ to \mathbb{Y} .
- The two versions coincide by setting $h_t(x) = H(x,t)$.

https://en.wikipedia.org/wiki/Homotopy

- A topological space X is simply connected if it is path-connected and any loop in X defined by f : S¹ → X can be contracted to a point.
- X is simply connected if and only if it is path-connected, and whenever $p: [0,1] \to X$ and $q: [0,1] \to X$ are two paths (i.e.: continuous maps) with the same start and endpoint p(0) = q(0) and p(1) = q(1), then p can be continuously deformed into q while keeping both endpoints fixed.
- Explicitly, there exists a continuous homotopy $F:[0,1]\times[0,1]\to\mathbb{X}$ such that F(x,0)=p(x) and F(x,1)=q(x).
- X is *path-connected* if there is a path joining any two points in X.

TDA: Relation to Time Series Analysis Choudhury et al. (2012)

A story from software visualization

- Detecting circular structures in memory reference traces
- Takens embedding
- Capture recurrent nature of the program

Example

Visualize circular structures in memory access patterns

File:	sort.cpp
1:3	void bubblesort(std::vector <double>& v) {</double>
2:	for (unsigned end=v.size()-1; end >= 0; end) {
3:	bool swapped = false;
4:	<pre>for(unsigned i=0; i<end; i++)="" pre="" {<=""></end;></pre>
5:	$if(v[i] > v[i+1])$ {
6:	std::swap(v[i], v[i+1]);
7:	swapped = true;
8:)
9:)
10:	if(!swapped) break;
11:	}
12:1	

System pipeline

Visualization

loops = # comparisons

teeth = # swaps

teeth = # comparisons
loops = # comparisons and swaps

Algorithm dependent structure

File:	matmult.cpp
1:	unsigned int i, j, k;
2:	for $(i = 0; i < N; i++)$
3:	for $(i = 0; i < N; i++)$
4:	for $(k = 0; k < N; k++)$
5:	linC[i*N + j] += linA[i*N + k] * linB[k*N + j];

Algorithm dependent structure

File:	blocked-matmult.cpp
1:	unsigned int i, j, k, j0, k0;
2:	for $(k0 = 0; k0 < N; k0 += b)$
3:	for $(j0 = 0; j0 < N; j0 += b)$
4 :	for $(i = 0; i < N; i++)$
5:	for $(k = k0; k < min(k0 + b, N); k++)$ {
6:	r = linA[i*N + k];
7:	for (j = j0; j < min(j0 + b, N); j++)
8:	linC[i*N + j] += r*linB[k*N + j];
9:	}

Algorithm dependent structure

A story from mice pregnancy detection

A story from mice pregnancy detection

Which mice are pregnant? Joint work with Benjamin Smarr. Data from Smarr et al. (2016).

Jet lagged mice

Which jet lagged mice are pregnant?

Persistent homology of time-varying networks

Visual detection of structural changes in time-varying graphs using persistent homology.

Hajij et al. (2018)

Takens embedding

Maximal persistence: Khasawneh and Munch (2016)

Chatter detection

Khasawneh and Munch (2016)

Reconstruct dynamics using witness complexes

Fig. 1. Classic Lorenz attractor (r = 28, b = 8/3, $\sigma = 10$): (a) A 10⁵-point trajectory in R³ generated using fourth-order Runge-Kutta with a time step of T = 0.001. (b) A time-series trace of the x coordinate of that trajectory. (c) A 3D projection of a delay-coordinate embedding with dimension m = 5 and delay $\tau = 174T$, following (1).

Garland et al. (2016)

Reconstruct dynamics using witness complexes

Garland et al. (2016)

- Choudhury, A. I., Wang, B., Rosen, P., and Pascucci, V. (2012). Topological analysis and visualization of cyclical behavior in memory reference traces. *IEEE Pacific Visualization Symposium (PacificVis)*, pages 9–16.
- Garland, J., Bradley, E., and Meiss, J. D. (2016). Exploring the topology of dynamical reconstructions. *Physica D: Nonlinear Phenomena*, 334(1):49–59.
- Hajij, M., Wang, B., Scheidegger, C., and Rosen, P. (2018). Visual detection of structural changes in time-varying graphs using persistent homology. *IEEE Pacific Visualization Symposium (PacificVis)*.
- Khasawneh, F. A. and Munch, E. (2016). Chatter detection in turning using persistent homology. *Mechanical Systems and Signal Processing*, 70-71:527–541.
- Smarr, B. L., Zucker, I., and Kriegsfeld, L. J. (2016). Detection of successful and unsuccessful pregnancies in mice within hours of pairing through frequency analysis of high temporal resolution core body temperature data. *PLoS One.*