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Deep Learning with Topological Features
The devil is in the detail...



Deep learning and TDA: pipeline

Hofer et al. (2017)
Main idea: transform persistent diagram via an input layer to be used by a

neuron network



Computing topological signatures for images

Hofer et al. (2017)



Sublevel set filtration of height functions

Hofer et al. (2017)

Filtration: sub level sets of a height function + essential classes (green)

Using multiple directions (32 directions)

Scaling! And f values are lifted to edges by taking the maximum.

Extended persistence! (See more on elevation function)



Network architecture

https://papers.nips.cc/paper/6761-deep-learning-with-topological-signatures

32 independent input branches, 1 for each direction

i-th branch gets PDs from directions di−1 , di and di+1 .

https://papers.nips.cc/paper/6761-deep-learning-with-topological-signatures


Computing topological signatures for graphs/networks

Hofer et al. (2017)
Filtration by vertex degree: f([v0]) = deg(v0) (or normalize).

Lift f to K1 by taking the maximum.
Hint: the above pic needs correction!



Take home message of Hofer et al. 2017

Using topological signatures is below the state-of-the-art.

The proposed architecture is still better than other approaches that are
specifically tailored to the problem.

Most notably, TDA approach does not require any specific data
preprocessing, e.g., some sort of contour extraction.



Challenges in using persistence in learning

Data pre-processing

Choose filtrations and metrics

Choose kernels or distance measures

Choose ML models

Understand strengths and weaknesses of TDA methods in learning!



Persistence Landscapes
Bubenik (2015); Bubenik and Dlotko (2017)



Persistence landscapes

Bubenik (2015)



Persistence landscapes: implementations

https://github.com/MathieuCarriere/sklearn_tda

https://scikit-tda.org/libraries.html

https://github.com/scikit-tda/scikit-tda

https://github.com/MathieuCarriere/sklearn_tda

https://github.com/MathieuCarriere/sklearn_tda
https://scikit-tda.org/libraries.html
https://github.com/scikit-tda/scikit-tda
https://github.com/MathieuCarriere/sklearn_tda


Topological Regularizer for Classifiers
Chen et al. (2019)



Topological Regularizer

Chen et al. (2019)



Measure importance of decision boundaries

Chen et al. (2019)



Some technical details

Chen et al. (2019)

Hinge loss: `(y) = max(0, 1− t · y), prediction y, intended output t = ±1



Some technical details

Chen et al. (2019)



Classic Morse Theory (CMT) and Morse Functions
Edelsbrunner and Harer (2010): B.VI



Basic set up

(Classic) Morse theory studies the topological change of Xa as a varies.

X: a compact, smooth d-manifold

f : X→ R: differentiable

sublevel set: Xa = f−1(−∞, a]
A point x ∈ X is critical if the derivative at x equals zero

λ(x): the Morse index of a non-degenerate critical point x is the number
of negative eigenvalues in the Hessian matrix

Next page: p1, p2, p3, p4, index 0, 1, 1, and 2

f is a Morse function if all critical points are non-degenerate and its
values at the critical points are distinct



Example

Goresky and MacPherson (1988)



Two fundamental results of CMT

Theorem (CMT-A)

Let f : X→ R be a differentiable function on a compact smooth
manifold X.

Let a < b be real values such that f−1[a, b] is compact and
contains no critical points of f .

Then Xa is diffeomorphic to Xb.

A diffeomorphism is an isomorphism of smooth manifolds.

It is an invertible function that maps one differentiable
manifold to another such that both the function and its
inverse are smooth.



Two fundamental results of CMT

Theorem (CMT-B)

Let f be a Morse function on X.

Consider two regular values a < b such that f−1[a, b] is compact
but contains one critical point u of f , with index λ.

Then Xb is homotopy equivalent (diffeomorphic) to the space
Xa ∪B A, that is, by attaching A along B.

The pair of spaces (A,B) = (Dλ ×Dd−λ, (∂Dλ)×Dd−λ) is the
Morse data, where d is the dimension of X and λ is the Morse
index of u, Dk denotes the closed k-dimensional disk and ∂Dk is
its boundary.



CMT Example

Goresky and MacPherson (1988)



CMT Morse Data

(A,B) = (Dλ ×Dd−λ, (∂Dλ)×Dd−λ)

Goresky and MacPherson (1988)
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