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Guest Lecture, Salt Lake City, February 7 2019

Ingrid Hotz
Scientific Visualization, Linköping University

Applied topology in visualization 
Between beautiful concepts and practical needs 
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Analysis 
Abstraction Rendering Perception 

Cognition

Data Model Image Knowledge

Experiment

Simulation

Reality

InteractionExploration - Driving Questions

Specifications

Visual Data Analysis

Complexity reduction
Concepts – Techniques – Algorithms

Specific to questions
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• Methods for data reduction 
and abstraction tailored to 
specific questions

• Topology is one way to 
approach this goal
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We consider experimental data of a turbulent swirling jet undergoing vortex breakdown. The jet is 
discharged from a round nozzle into steady ambient fluid. The dynamics of the flow are dominated 
by large scale oscillations that arise from a super-critical Hopf bifurcation to a global mode.  
Visualizations are based on the three-dimensional phase-averaged velocity field (Re=20000) that is 
constructed from uncorrelated 2D PIV snapshots. Thereby the focus is placed on three flow features: 
the internal recirculation zone that is characteristic for vortex breakdown (semi-transparent gray 
pathline-surface in the center); the meandering vortex core that acts as the pacemaker for the global 
oscillations (central streak-lines and bluish streak-surface); helical waves in the outer shear layer that 
amplify near the nozzle and roll up to spiral vortices (semi-transparent greenish streak-surface).  R"#.&4+*N%"+;%M#,&<L)STUVV@&

Image: Petz, ZIB, Amira

Generate an environment for scientific reasoning through visual 
interaction with data

Visual Data Analysis

Topology in Visualization



5

Topology in visualization

Topological	data	analysis
concepts
theories
theorems

Algorithmic	
realiza5ons

Constraints	with	respect	to
-	real	5me	computa5on
-	spa5al	accuracy
-	reliability
-	parallelizability

Fishing	for	
interes5ng	
concepts

Embedding	in	a	
bigger	framework,
adding	seman5cs

Interac5ve
visual	analy5cs	
framework
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Topological features in visualization – historical development

Tensor fields

Degenerate points
Trisector, Wedgepoints
Separatrices

Limit sets
Sources, Sinks, Saddles
Closed Orbits
Separatrices

Vector fields

Critical points
Maxima, Minima, Saddles
Separatrices

Scalar fields
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Vector Field Topology in Visualization
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Vector field topology – Basic ingredient

Streamlines (Integral curve)
• Everywhere tangential to vector 

field at fixed time

Image: Jens Kasten, ZIB, Amira

A streamline of v at time t0 is a curve

parameterized by 

and

 s∈I = [0,S]⊂ !

 

c : I → D
   s! c(s)

dc
ds
|| v(c(s),t0 )

c(0) = x0

Let !: D → ℝ& be a vector field
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Vector field topology – Motivation mostly comes from flow analysis

Combustion and fuel injection into 
engines 

Pollution  distribution of particles in 
the atmosphere or  water systems  

à Mixing process

Medicine – flow in blood vessels
§ Anomalies
§ Vortices

Typical Questions

Mixing of a fluid – color pH value of fluid. 
CAP Arts of Physics, vis thymol blue.

Vortex in blood flow in aneurysm

Flow around a body (e.g. car, 
airplane)
§ Vortex formation
§ Flow separation
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Vector field topology – Motivation mostly comes from flow analysis

Anticipated typical flow structures
§ Relation of  vortex formation and separation?
§ Characteristic singularities of  the flow field? 

Often recirculation zones form behind obstacles .
Does separation cause recirculation?

bubble
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Vector field topology – Motivation mostly comes from flow analysis

Hand drawn sketches
Separation and vortex formation 

Images: Dallmann, German Aero Space, DLR
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Vector field topology – Motivation mostly comes from flow analysis

Obviously there is some structure in most vector field data. 
Feature extractions tries to make this structure explicit.

Image: kitware.com
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à Vector field topology answers 
this question for ALL streamlines.

0                absolute value of thevector field max

Vector field topology – Intuition

A few streamlines

What about the other streamlines? 
Can we tell where they go?
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Ingredients

1. Critical points – zeros
- Positions
- Classification

2. Separatices

v(x, y) = 0
0
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Vector field topology – Intuition



15

Ingredients

1. Critical points – zeros
- Positions
- Classification

2. Separatices

Spiraling sink

Saddle point

Vector field topology – Intuition

v(x, y) = 0
0
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Ingredients

1. Critical points – zeros
- Positions
- Classification

2. Separatices

Vector field topology – Intuition

Segment characterized by
Streamline with “same origin” and “same end”

à Segmentation of domain into 
areas of similar streamline 
behavior

Based on ideas from Poincaré over 
qualitative investigations of differential 
equations (19th century) ,
Theory of dynamical systems
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Critical points: Zeros of the vector field (Local definition)

Closed orbits: attracting or repelling (No local definition) 

Attracting cycle Repelling cycle Unstable cycle

Extracting closed 

streamlines robustly 
is a challenging task

Alternative terms:
singularities, singular 
points, zeros, 

stagnation points

There are also boundary contributions

Vector field topology – Basic concept LIMIT SETS
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Definition 
α-limit (ω-limit) set to streamline cp through point P
for vector field  v :D→ !n

!
Α(cp ) := q ∈D | ∃ tn( )n=0

∞ ⊂ R!!!with!! lim
n→∞

tn = −∞,!such!that! lim
n→∞

cp (tn ) = q { }

Streamline origin / destination
à Define start-set / end-set for every streamline

!
Ω(cp ) := q ∈D | ∃ tn( )n=0

∞ ⊂ R !with! lim
n→∞

tn = ∞,  !such!that! lim
n→∞

cp (tn ) = q { }

Vector field topology – Basic concept LIMIT SETS
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Separatrices

§ Limiting curves – Separatrices are streamlines connecting the saddle 
points with other critical points
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à The topological graph or skeleton of a planar 2D vector field consists 
of all limit sets and separatrices

Vector field topology – Basic concept
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Given a linear vector field 
!: # → ℝ&with ! ' = ) * ' + ,, 
where ) ∈ ℝ&×& and , ∈ ℝ&

Vector field topology – Classification

Linear vector fields
•More complex vector fields can be first 
order approximated by linear vector 
fields (use Jacobi-Matrix).

•Linear vector fields can be analyzed 
relatively easily

•On tetrahedral grids with linear 
interpolation we deal with linear fields

The matrix A can be used to 
classify the behavior of the 
vector field in the 
neighborhood a critical point.
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Trace A

Classification of critical points
based on eigenvalues of A

 

 λ1/2 =
tr(A)

2
± Δ

1
4

tr2 (A)− detA

Discriminant Δ
! "## $##

Vector field topology – Linear vector fields

!" # = %&& + %((+ %))
det # = -& . -( . -)
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Vector field topology – Challenges

Topological graph segments the domain into equivalence classes of streamlines
-- coherent limit behavior
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Vector field topology – Challenges

Eulerian view

• Observer has fixed Position
• No individual particles are 

considered
• Position, velocity, … are associated 

with grid v(x)

Lagrangian view

• Observer moves with particles
• ‘Individual particles’ can be

identified
• Position, velocity, … are associated 

with particle i: vi(t)

• Often flow data is time-dependent
• The concept of limit set loses its meaning for data given for limited time interval
• Critical points become dependent on the frame of reference
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Vector field topology – Looking for coherent structures

Streamlines – Observer: Reference frame of the cylinder

Streamlines – Observer: Moving with constant mean flow velocity

Lagrangian perspective (FTLE):  Highlighting separation of particles
FTLE: finite time Lyapunov exponent

Kasten et al. Localized Finite-time Lyapunov Exponent for Unsteady Flow Analysis. 2009

26

Two Vector field topology application
Uniform streamline placement
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Vector field topology for streamline placement

Typical placements
• Interactive choice of single start points
• Start streamlines in all mesh vertices
• Start streamlines at random positions

à Often very inhomogeneous coverage

Goals
• Coverage 
• Uniformity 
• Continuity
• Highlight features (CPs) 

Olufemi Rosanwo et al. Dual Streamline Seeding. 2009
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Vector field topology for streamline placement

Idea: Use dual vector field as auxiliary structure

Input: Primal field v Dual field R(v) = v × n 

Images: Rosanwo, ZIB
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Vector field topology for streamline placement

Topologies of both fields serves as 
initialization
à Both fields have identical critical points

Dual critical points
à Saddles - saddles (rotated)
à Spirals – spirals (inverse rotation)
à Center - focus 

Result: Quadrangular cells of varying 
size
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Vector field topology for streamline placement

• Streamline seeding in the center of long segments
• Only streamlines of the primal field are shown in the final image

Segment
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• Motivation: Rupturing aneurysms lead 
often to the death of the patient. 

• Data: Blood flow simulation based on 
imaging data.

• Goal: Flow simulations and 
visualizations shell help to predict the 
of the rupture risk. 

Visualization of the wall shear stress and flow 
stagnation points on the aneurysm wall.

Blood flow analysis in aneurysms for treatment planning

Vector field topology for streamline placement
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Two Vector field topology application
Coherent flow structures for blood flow clustering
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Vector field topology – Looking for coherent structures

Data: Leonid Goubergrits
German  Heartcnter. Berlin

Rickard Englund et al. Coherence Maps for Blood Flow Exploration. 2017
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Coherence maps for flow clustering

Data: Leonid Goubergrits
German  Heartcnter. Berlin Visualization: Rickard Englund
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measuring
separation

Results in implicit segmentation
represented as ridge lines

ridge lines
lines of high 
separation

Low separation
within a segment

Coherence maps for flow clustering

Finite time Lyapunov Exponent
FTLE – measures separation and coherence
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FTLE – measuring separation and coherence

Cluster representative: pathline seeded 
at locations of minimal separation

Cluster representativeSeparation minimum

Coherence maps for flow clustering
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Coherence maps for flow clustering

• Summary of the prominent behavior of the flow in terms of similar flow patterns.
• The map serves as interface for interactive exploration and the derivation of key 

measures of the individual clusters.

Visualization: Rickard Englund
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Coherence maps for flow clustering

Coherence  map also shows 
regions that  cannot be 
meaningfully clustered and 
gives a general overview over 
the coherence of the flow.

Visualization: Rickard Englund
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Scalar Field Topology in Visualization
Popular concepts
Why do people like scalar field topology so much?
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Scalar fields in visualizaiton

• Mapping  from domain D into a set 
of  scalar attributes S ⊂ R. 

 ! 

s : !D→ S  ⊂ !
D⊂ ! : !!!!!!!!!!!x !!!!!" !!!s(x)!!!!
D⊂ !2 : !!!!!!(x, y)!" !s(x, y)!!
D⊂ !3 : !!!!(x, y,z)" s(x, y,z)

Scalar field

D

S

2-dimensional scalar field

function plot - height field

!: # ⊂ ℝ& → ( ⊂ ℝ
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Scalar fields in visualizaiton

• Which points x in domain D have value equal to S(x) = w (isovalue)? 

- D ⊂ R2 à set of points is called isocurve or isocontour I
- D ⊂ R3 à set of points is called isosurface I
The isocontour respectively isosurface to w is given by  I = S-1(w)

• What are interesting isovalues?

• Where does the function reach its „maximum values“?

- Extremal points

- Ridge and valley lines à topological analysis

• Are there any separating surfaces in the data set (scalar value changes rapidly), 

e.g. material surfaces? 

- Edge detection à segmentation methods

- Automated transfer function design (color map) for  volume rendering

• Are there any specific patterns, symmetries? 

• …
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• Height fields (1D and 2D) (function graph)
Interpret the scalar value as height over the observation space and render the 
resulting surface.

• Cutting Planes (3D) with Color Mapping
– Assign color to every scalar value. 
– Intersect the domain with a plane. 
– Display every point of the plane with the respective color.

• Direct Volume Rendering (3D) 
Assign optical properties to every scalar value (emission absorption, etc.) and 
compute the corresponding image.

• Isocontour (2D) resp. isosurface extraction (3D)
Determine and display the curve (surface), representing all points in the plane 
(space) with corresponding scalar value w, i.e., compute S-1({w}).

Scalar fields in visualization - Direct Visualization Methods
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Why do people like scalar field topology so much?

Function 
values

Some concepts are easy to explain - Contour tree
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Why do people like scalar field topology so much?

Image: Carlos Correa

Same concepts are easy to explain - Extremal structures 

A sparse subsets of the Morse-Smale complex
Encodes adjacency of extrema  
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Why do people like scalar field topology so much?

Extremal structures of the vorticity field 
as basis for streamline seeding

There are more and more convincing examples

Relativistic hydrodynamics simulations

Data: Luciano Rezzolla, AEI Potsdam
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Why do people like scalar field topology so much

Also the complexity of the topology strongly increases over time

Full extremal structure Full extremal structure

T=2 T=7

Reininghaus et al. TADD: A Computational Framework for Data Analysis using Discrete Morse Theory. 2010
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Why do people like scalar field topology so much?

T=2 T=7

Statistical Analysis + Exploration
E.g. Scatterplots, 

Histograms

Feature guided visualization
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Topology in Applications
Some examples in flow visualization
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Some basic application in flow visualization

Vortex region extraction based on extremal 
structures of the acceleration magnitude

Two corotating Oseen vortices

Van Karman vortex street

Jens Kasten et al. Acceleration Feature Points of Unsteady Shear Flows, 2016
Kasten et al. Two-dimensional Time-dependent Vortex Regions based on the Acceleration Magnitude, 2011
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Some basic application in flow visualization
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All critical points in 
one time slice

Vortex merge graph - Filtering based on integrated persistence

Stable tracking of critical points 

Kasten et al. Vortex Merge Graphs in Two-dimensional Unsteady Flow Fields. 2012
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Stable tracking of critical points 

• Analytic function rotated over time
• Amount of noise decreases over time

Numerical tracking
Without filter

Numerical tracking
Filter: Line length

Combinatorial FFF
Filter:  Integrated Persistence

tim
e

[Jan Reininghaus et al. Combinatorial feature flow fields: Tracking critical points in discrete scalar fields, 2011]
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Stable tracking of critical points 

Comparison, abstraction, analysis, quantification, , exploration

t

λ2

Vorticity 

Acceleration 

Kasten et al. Analysis of vortex merge graphs. 2012
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Some basic applications

t

Comparison, abstraction, analysis, quantification, exploration

Visualization: Jens Kasten, 

Challenges for the use of topology in Applications
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Why do people like scalar field topology so much?

The success of scalar field topology is 
largely due to

• Explicit feature geometry that can be 
used for further exploration

• Hierarchical data abstraction 
(Persistence as importance measure)

• Stable extraction methods 
• Rigorous mathematical guaranties
• Comes in many different flavors 

However this comes not for free

Conceptual challenges for Topo in Vis
• Geometric embedding is essential for 

visualization
• Some people don’t want to learn topology, 

it often must be hidden under familiar 
concepts

• What is the right field to explore
• Counting and measuring is not objective

Algorithmic design decisions
• Simulation of simplicity can introduce 

artifacts
• Piecewise linear interpolation does not 

always fit the application needs
• Tracking and simplification does not 

commute
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Geometric Embedding of Separatrices 

No engineer will accept such images

Sampling error and quantization error

Reininghaus et al. Fast Combinatorial Vector Field Topology. 2011
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Geometric Embedding of Separatrices 

Sampling error and quantization error

Reininghaus et al. Combinatorial Gradient Fields for 2D Images with Empirically Convergent Separatrices. 2012
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Geometric Embedding of Separatrices – Empirical Convergent Separatrices

The (continuous) gradient direction cannot be represented exactly, 
Pick an edge according to a random variable defined by the data

standard standard (512)

random (512)

standard (4096)

random (4096)

randomized

standard randomizedreference
Visualization: Jan Reininghaus
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Geometry and Topology – Scale Space Persistence 

Does not distinguish between different types of maxima
outliers, ridges or hills are treated the same 

Topological stability Persistence
Lifetime of homology classes of sublevel sets  

Reininghaus et al. A Scale Space Based Persistence Measure for Critical Points in 2D Scalar Fields. 2011
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Applied topology in visualization

• The goal of visual data analysis and exploration is to generate an environment 
for scientific reasoning through interaction with data. 

• The basis for such an effective environment is a multi-scale data abstraction 
that can serve as a backbone for data navigation. 

• Topological data analysis provides an excellent means for this purpose 
especially with respect to the rapid development of robust extraction 
algorithms. 

• Mathematical rigorous guarantees contribute strongly to the acceptance of 
topological analysis tools. 

• However, every application implies new challenges: practical and efficient 
solutions put into semantic context are needed. 

• Sometimes this might also mean to give up some of the beauty of the 
mathematical concepts for approximations and heuristics.



61

TopoInVis workshop in Sweden, June 17-19, 2019 

April 15, 2019: deadline for full papers and extended abstracts
May 20, 2019: author notification

Visualization center Norrköping, Linköping University


