CS 6170: Computational Topology, Spring 2019 Lecture 06

Topological Data Analysis for Data Scientists

Dr. Bei Wang
School of Computing
Scientific Computing and Imaging Institute (SCI)
University of Utah
www.sci.utah.edu/~beiwang
beiwang@sci.utah.edu

$$
\text { Jan 24, } 2019
$$

Homology and Computation

Book Chapter B.IV

Chain complexes

K : a simplicial complex. p : dimension.

- Modulo 2 coefficients (or \mathbb{Z}_{2} coefficients): $a_{i}=0$ or 1 .
- A p-chain is a formal sum of p-simplices in $K, c=\sum a_{i} \sigma_{i}$, where $a_{i}=0$ or 1 .

$K=\{1,2,3,4,12,24,13,23,34,123\}$ with some abuse of notations.

Chain complexes

- 0-chain, e.g., $c_{0}=1+2+3$
- 1-chain, e.g., $c_{1}=12+23+34+24$
- 2-chain, e.g., $c_{2}=124$
- Chain additions are done component-wise:
- $c_{0}=1+2+3, c_{0}^{\prime}=1+3+4$
- $c_{0}=c_{0}^{\prime}=2+4$
- $c=\sum a_{i} \sigma_{i}, c^{\prime}=\sum b_{i} \sigma_{i}$, then $c+c^{\prime}=\sum\left(a_{i}+b_{i}\right) \sigma_{i}$

Review: Groups and Abelian Groups

A group is a set G with an operation • such that,

- Closure: $a, b \in G \Longrightarrow a \bullet b \in G$.
- Associativity: $a, b, c \in G \Longrightarrow(a \bullet b) \bullet c=a \bullet(b \bullet c)$.
- Identity element: \exists an element $e \in G$ s.t. $\forall a \in G, e \bullet a=a \bullet e=a$.
- Inverse element: $\forall a \in G, \exists b \in G$ s.t. $a \bullet b=b \bullet a=e$

An abelian group is a group where the operation also satisfies

- Commutativity: $\forall a, b \in G, a \bullet b=b \bullet a$.

Example: Check to see that $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{2},+\right)$ are both abelian groups.

Chain groups

The p-chains together with the additional operation form a group of p-chains, denoted as $\left(\mathrm{C}_{p},+\right)$, or $\mathrm{C}_{p}=\mathrm{C}_{p}(K)$.

- C_{0} : 0-chain group (elements are sums of vertices)
- C_{1} : 1-chain group (elements are sums of edges)
- C_{2} : 2-chain group (elements are sums of triangles)

Now check that C_{p} with \mathbb{Z}_{2} coefficients is indeed an abelian group.

- $c, c^{\prime} \in \mathrm{C}_{p} \Longrightarrow c^{\prime}+c \in \mathrm{C}_{p}$
- $\left(c+c^{\prime}\right)+c^{\prime \prime}=c+\left(c^{\prime}+c^{\prime \prime}\right)$
- $0+c=c+0=0$
- $c+c=0$
- $c+c^{\prime}=c^{\prime}+c$

Boundaries

- The boundary of a p-simplex is the sum of its $(p-1)$-dimensional faces.
- $\sigma=\left[u_{0}, \cdots, u_{p}\right]$
- $\partial \sigma=\sum_{j=0}^{p}\left[u_{i}, \cdots, \hat{u}_{j}, \cdots, u_{p}\right]$, where \hat{u}_{j} means omitting u_{j}.

Example: $c=12+23+34$.
What is ∂c ? What is $\partial^{2}(c)$?

Lemma (Fundamental lemma of homology)

$$
\partial_{p} \partial_{p+1} d=0
$$

For every integer p and every $(p+1)$-chain d.

Check $\partial^{2}(123)=0$.

- A homomorphism is a map between groups that commutes with the group operation, that is, $f: A \rightarrow B$ for groups (A, \bullet) and (B, \circ), we have $f(A \bullet B)=f(A) \circ f(B)$.
- The boundary map $\partial_{p}: \mathrm{C}_{p} \rightarrow \mathrm{C}_{p-1}$ is a homomorphism.
- A chain complex is the sequence of chain groups connected by boundary homomorphisms,

$$
\cdots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_{p} \xrightarrow{\partial_{p}} C_{p-1} \xrightarrow{\partial_{p-1}} \cdots
$$

Cycles

- A p-cycle is a p-chain with empty boundary, $\partial c=0$.
- A group of p-cycles is $Z_{p}=Z_{p}(K)$, which is a subgroup of C_{p}.

$$
\mathrm{Z}_{p}=\operatorname{ker} \partial_{p}
$$

- The boundary of every vertex is $0: \mathrm{C}_{-1}=0 ; \mathrm{Z}_{0}=\operatorname{ker} \partial_{0}=\mathrm{C}_{0}$.
- For $p>0$, usually $Z_{p} \neq \mathrm{C}_{p}$.

Check: $c=24+23+34$ is a 1 -cycle.

Boundaries

- A p-boundary is a p-chain that is the boundary of a $(p+1)$-chain, $c=\partial d$ with $d \in \mathrm{C}_{p+1}$.
- E.g., a 1-boundary is a 1-chain that is the boundary of a 2-chain.
- $c=12+23+13$ "bounds something".
- $c=23+34+24$ "bounds nothing".
- A group of p-boundaries form the group of p-boundaries, $\mathrm{B}_{p}=\mathrm{B}_{p}(K)$,

$$
B_{p}=\operatorname{im} \partial_{p+1}
$$

$$
c=12+23+13 \text { is a } 1 \text {-boundary. }
$$

Homology groups

- The p-th homology group is the p-th cycle group modulo the p-th boundary group.

$$
\mathrm{H}_{p}=\mathrm{Z}_{p} / \mathrm{B}_{p} .
$$

- $\mathrm{C}_{p}, \mathrm{Z}_{p}, \mathrm{~B}_{p}$ are all abelian groups.
- Observe their subgroup relations.
- "Cycles that do not bound".

Edelsbrunner and Harer (2010), page 81

Homology groups

- The p-th homology group is the p-th cycle group modulo the p-th boundary group.

$$
\mathrm{H}_{p}=\mathrm{Z}_{p} / \mathrm{B}_{p}
$$

- The p-th Betti number is the rank of H_{p}

$$
\beta_{p}=\operatorname{rank} \mathrm{H}_{p}
$$

- $c=23+34+24, c \in \mathrm{H}_{1}$
- $c^{\prime}=12+24+34+13, c^{\prime} \in \mathrm{H}_{1}$
- Compute H_{1} ? Naively, looking at all cycles that do not bound.

Rank of a group

- If S is a subset of a group G, then $\langle S\rangle$ is the subgroup of all elements of G that can be expressed as the finite product of elements in S and their inverses. The elements in $\langle S\rangle$ are generators.
- If S is finite, then a group $G=\langle S\rangle$ is called finitely generated.
- The rank of a group $G, \operatorname{rank}(G)$, is the smallest cardinality of a generating set for G , that is

$$
\operatorname{rank}(G)=\min \{|X|: X \subseteq G,\langle X\rangle=G\}
$$

$\operatorname{rank}\left(\mathrm{H}_{1}\right)=1$.

Prepare for Project 1: Learn to Use Ripser

https://github.com/Ripser/ripser

Edelsbrunner, H. and Harer, J. (2010). Computational Topology: An Introduction. American Mathematical Society, Providence, RI, USA.

