CS 6170: Computational Topology, Spring 2019 Lecture 06 Topological Data Analysis for Data Scientists

Dr. Bei Wang

School of Computing Scientific Computing and Imaging Institute (SCI) University of Utah www.sci.utah.edu/~beiwang beiwang@sci.utah.edu

Jan 24, 2019

Homology and Computation

Book Chapter B.IV

Chain complexes

K: a simplicial complex. p: dimension.

- Modulo 2 coefficients (or \mathbb{Z}_2 coefficients): $a_i = 0$ or 1.
- A *p*-chain is a formal sum of *p*-simplices in K, c = ∑ a_iσ_i, where a_i = 0 or 1.

 $K = \{1, 2, 3, 4, 12, 24, 13, 23, 34, 123\}$ with some abuse of notations.

- 0-chain, e.g., $c_0 = 1 + 2 + 3$
- 1-chain, e.g., $c_1 = 12 + 23 + 34 + 24$
- 2-chain, e.g., $c_2 = 124$
- Chain additions are done component-wise:

•
$$c_0 = 1 + 2 + 3$$
, $c'_0 = 1 + 3 + 4$
• $c_0 = c'_0 = 2 + 4$
• $c = \sum a_i \sigma_i$, $c' = \sum b_i \sigma_i$, then $c + c' = \sum (a_i + b_i) \sigma_i$

A group is a set G with an operation \bullet such that,

• Closure:
$$a, b \in G \implies a \bullet b \in G$$
.

- Associativity: $a, b, c \in G \implies (a \bullet b) \bullet c = a \bullet (b \bullet c)$.
- Identity element: \exists an element $e \in G$ s.t. $\forall a \in G, e \bullet a = a \bullet e = a$.
- Inverse element: $\forall a \in G, \exists b \in G \text{ s.t. } a \bullet b = b \bullet a = e$

An *abelian group* is a group where the operation also satisfies

• Commutativity: $\forall a, b \in G, a \bullet b = b \bullet a$.

Example: Check to see that $(\mathbb{Z}, +)$ and $(\mathbb{Z}_2, +)$ are both abelian groups.

Chain groups

The *p*-chains together with the additional operation form *a group of p-chains*, denoted as $(C_p, +)$, or $C_p = C_p(K)$.

- C₀: 0-chain group (elements are sums of vertices)
- C₁: 1-chain group (elements are sums of edges)
- C₂: 2-chain group (elements are sums of triangles)

Now check that C_p with \mathbb{Z}_2 coefficients is indeed an abelian group.

•
$$c, c' \in \mathsf{C}_p \implies c' + c \in \mathsf{C}_p$$

•
$$(c+c')+c''=c+(c'+c'')$$

- 0 + c = c + 0 = 0
- c + c = 0
- c + c' = c' + c

Boundaries

- The *boundary* of a p-simplex is the sum of its (p-1)-dimensional faces.
- $\sigma = [u_0, \cdots, u_p]$
- $\partial \sigma = \sum_{j=0}^{p} [u_i, \cdots, \hat{u}_j, \cdots, u_p]$, where \hat{u}_j means omitting u_j .

Example: c = 12 + 23 + 34. What is ∂c ? What is $\partial^2(c)$?

Lemma (Fundamental lemma of homology)

$$\partial_p \partial_{p+1} d = 0$$

For every integer p and every (p+1)-chain d.

- A homomorphism is a map between groups that commutes with the group operation, that is, $f: A \to B$ for groups (A, \bullet) and (B, \circ) , we have $f(A \bullet B) = f(A) \circ f(B)$.
- The boundary map $\partial_p : \mathsf{C}_p \to \mathsf{C}_{p-1}$ is a homomorphism.
- A *chain complex* is the sequence of chain groups connected by boundary homomorphisms,

$$\cdots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \cdots$$

Cycles

- A *p-cycle* is a *p*-chain with empty boundary, $\partial c = 0$.
- A group of *p*-cycles is $Z_p = Z_p(K)$, which is a subgroup of C_p .

$$\mathsf{Z}_p = \ker \, \partial_p$$

- The boundary of every vertex is 0: $C_{-1} = 0$; $Z_0 = \ker \partial_0 = C_0$.
- For p > 0, usually $Z_p \neq C_p$.

Check: c = 24 + 23 + 34 is a 1-cycle.

Boundaries

- A *p*-boundary is a *p*-chain that is the boundary of a (p + 1)-chain, $c = \partial d$ with $d \in C_{p+1}$.
- E.g., a 1-boundary is a 1-chain that is the boundary of a 2-chain.
- c = 12 + 23 + 13 "bounds something".
- c = 23 + 34 + 24 "bounds nothing".
- A group of p-boundaries form the group of p-boundaries, $B_p = B_p(K)$,

 $B_p = \mathrm{im}\partial_{p+1}$

Homology groups

• The *p*-th homology group is the *p*-th cycle group modulo the *p*-th boundary group.

$$\mathsf{H}_p = \mathsf{Z}_p/\mathsf{B}_p.$$

- C_p, Z_p, B_p are all abelian groups.
- Observe their subgroup relations.
- "Cycles that do not bound".

Edelsbrunner and Harer (2010), page 81

Homology groups

• The *p*-th homology group is the *p*-th cycle group modulo the *p*-th boundary group.

$$H_p = Z_p / B_p$$

 $\beta_p = \operatorname{rank} H_p$

• The *p*-th Betti number is the rank of H_p

- c = 23 + 34 + 24, $c \in H_1$
- c' = 12 + 24 + 34 + 13, $c' \in H_1$
- Compute H₁? Naively, looking at all cycles that do not bound.

Rank of a group

- If S is a subset of a group G, then ⟨S⟩ is the subgroup of all elements of G that can be expressed as the finite product of elements in S and their inverses. The elements in ⟨S⟩ are generators.
- If S is finite, then a group $G=\langle S\rangle$ is called finitely generated.
- The *rank* of a group G, rank(G), is the smallest cardinality of a generating set for G, that is

$$\operatorname{rank}(G) = \min\{|X| : X \subseteq G, \langle X \rangle = G\}.$$

Prepare for Project 1: Learn to Use Ripser

https://github.com/Ripser/ripser

Edelsbrunner, H. and Harer, J. (2010). *Computational Topology: An Introduction*. American Mathematical Society, Providence, RI, USA.