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Topology requires a finite number of set intersections?

o Consider the topology on the real line with open intervals
@ Imagine a set of intervals [—%, +%] on the real line, where n goes to oo.
o Now take the infinite number of intersections...
@ 0 in the intersection is now a discrete point
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Cech complexes and Vietoris-Rips complexes

Book Chapter A.llI

Demo:
http://www.sci.utah.edu/~tsodergren/prob_net_vis_working/


http://www.sci.utah.edu/~tsodergren/prob_net_vis_working/

Vietoris-Rips Complex

Given a finite metric space (P,d), e.g., a point cloud P C R™

Definition
The Vietoris-Rips complex of P and r consisting of all subsets of
diameter at most 2r. That is, o € R(r) iff d(p,q) < 2r for all

p,q € 0.
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Cech Complex

Given a finite metric space (P,d), e.g., a point cloud P C R™:

Definition

The Cech complex of P and r consisting of all subsets whose
corresponding sets of r-balls have nonempty intersections. That is,

o € C(r) iff yep Ba(r) # 0.
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Sensor Networks




Sensor coverage with Cech complex

https://en.wikipedia.org/wiki/Cech_complex


https://en.wikipedia.org/wiki/Cech_complex

Rips complex detects “phantom” topological features

Left: Union of balls (Cech). Right: Rips.
Image courtesy of de Silva and Ghrist (2007a).



Using Rips complex to approximate Cech complex

Lemma (Edelsbrunner and Harer (2010), page 62)

Let P be a finite set of points in some Euclidean space and letting
r >0, then

R(r) C C(V2r).

Theorem (de Silva and Ghrist (2007a), Theorem 2.5)
For a point set P in R",

C(r) C R(r) C C(0r),




Time-Varying sensor networks
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A time-sequence of network graphs for a mobile network. Does this network admit a
wandering hole? de Silva and Ghrist (2007b)




Topological Data Analysis for Brain Networks

Correlating Brain Network Topology with Autism Severity
Wong et al. (2016)




Goal: Quantify the relationship between brain functional
networks and behavioral measures.

Our Contribution: Use topological features based on
persistent homology.

Result: Combining correlations with topological features gives
better prediction of autism severity than using correlations
alone.
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functional network behavior




About Autism Spectrum Disorders (ASD):
o No cure, causes unknown
o Diagnosis:
e No systematic method
e ADOS (Autism Diagnostic Observation Schedule)
Correlate functional brain network to ADOS scores
o Early diagnosis
e Treatment tracking



What is a Brain Network?

@ Represents brain regions and pairwise associations
@ Computation of Correlation Matrices:

Resting state functional MRI (R-fMRI)
Preprocessing

Define regions of interest (ROIs)

Estimate time series signals
Compute pairwise associations - Pearson Correlation




Why Topology?

How to use this data?
e Graph and graph theoretic measures (e.g. small worldness)
o Require binary associations (thresholding)
o Correlations as features
o High dimensionality, not enough samples
@ Dimensionality reduction: PCA, random projections
e May lose structures in higher dimensions



Why Topology

Projection - may lose structures in higher dimensions

Topology captures structure

e In higher dimensions
e Across all continuous thresholds



Persistent Homology

@ What are topological features? Homological features:

e Dim 0 - Connected Components
o Dim 1 - Tunnels / Loops
e Dim 2 - Voids

@ How to compute them (in a nutshell)?

e Begin with point cloud
o Grow balls of diameter ¢ around each point
o Track features of the union of balls as ¢ increases



Persistent Homology




Persistent Homology
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Persistent Homology




Persistence Diagrams

Persistent homological features - encoded as barcodes or persistent

diagrams

Figure: Barcode

Death

Birth

Figure: Persistence Diagram



Interpretation of Connected Components

@ Dim 0 features - hierarchical clustering

Cluster Dendrogram

Height




Computing Topological Features for Brain Networks




Partial Least Squares (PLS) Regression

A dimensionality reduction technique that finds two sets of latent
dimensions from datasets X and Y such that their projections on
the latent dimensions are maximally co-varying.

@ X - features from brain imaging: correlations, topological
features (zero mean)

@ Y - clinical measure of behavior: ADOS scores (zero mean)

PLS models the relations between X and Y by means of score
vectors.



PLS Regression

@ n - number of data points
e X - predictor/regressor (n x N), Y - response (n x M)
@ PLS - decompose X, Y such that:

X=TPT+F
Y =UQT +F

Where

o T,U - latent variables/score vectors (n x p), factor matrices
o P (N xp), Q (M x p) - orthogonal loading matrices
o E(nxN), F(nx M) - residuals/errors
@ T, U are chosen such that projections of X, Y, thatis, T" and
U, are maximally co-varying.



PLS Regression: the Algorithm

Iterative NIPALS algorithm Wold (1975) (nonlinear iterative partial
least squares)

@ Find first latent dimension

i.e. find vectors w, ¢ such that
t=Xw, u=Yc

have maximal covariance

@ Deflate previous latent dimensions from X, Y and repeat



Kernel PLS

Kernel form of NIPALS algorithm (kPLS)

@ Initialize random vector u

@ Repeat until convergence

Q@ t=Ku/|Kul

@ c=YTt

Q@ u=Yc/[[Yc|

Deflate K = (I — ttT)K (I — ttT)

Repeat to compute subsequent latent dimensions

©0



87 Subjects: 30 Control, 57 ASD
ADOS scores: 0 to 21

264 ROIs (Power regions)

264 x 264 correlation matrix.

34,716 distinct pairwise correlations per subject.



Given: Correlation matrices

Map to metric space

d(z,y) = /1 — Cor(z,y)

Compute persistence diagrams

Define inner product of persistence diagrams Reininghaus
et al. (2015) (i.e. kernel): Given two persistence diagrams F,

G
1 _llp—al® llp—al®
kU(F’G):%ZZG 8o — e 8o
peF qeG

where for every ¢ = (z,y) € G, ¢ = (y,x)



Performed experiments with 3 kernels:
@ K - Euclidean dot product of vectorized correlations

o KTPAo _ ysing only Dim 0 features

o KTPA1 _ ysing only Dim 1 features

Q@ KTDPA+Cor — 4y KTDAo 4 gy KTPAT 4 (1 — wy — wy ) KCO"

Baseline predictor - mean ADQOS score



@ Leave one out cross validation over parameters
e 09, 01 - (logy o) from -8.0 to 6.0 by 0.2
e wp,w; - from 0.0 to 1.0 by 0.05
o KkTDA parameters: g9 = —6.6, o1 = 1.8, w; = 0.95
o kTPA+COr parameters: g = —7.8, 01 = 2.8, wy = 0.1,
w1 = 0.4
e Compute RMSE
@ Permutation test for significance



Results and Conclusions

RMSE | ADOS mean | KTPA | feor
ADOS mean | 6.4302 - - -
KTPA 6.3553 0.316 - -
Keor 6.0371 0.055 0.095 -

KTDhA+cor 16,0156 0.048 0.075 | 0.288

Table: ADOS prediction results. Columns 2 to 4 are p-values for the
permutation test of improvement of row method over column method.

Result Highlights:

o Baseline RMSE: 6.4302
° KTDA-‘,—CO'I":

@ Only method statistically significant over baseline
@ Permutation test p-value: 0.048
e RMSE: 6.0156



Conclusion

@ Augmenting correlations with topological features gives a
better prediction of autism severity than using correlations
alone

o (Hopefully) topological features derived from R-fMRI have
the potential to explain the connection between functional
brain networks and autism severity



Alternatives to correlation

Different distance metric

o
o
o Different kernel
o Multi-site data
o

Classification (combine with TDA features)
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