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Topology requires a finite number of set intersections?

Consider the topology on the real line with open intervals

Imagine a set of intervals [− 1
n ,+

1
n ] on the real line, where n goes to ∞.

Now take the infinite number of intersections...

0 in the intersection is now a discrete point

0

0



Čech complexes and Vietoris-Rips complexes

Book Chapter A.III

Demo:

http://www.sci.utah.edu/~tsodergren/prob_net_vis_working/

http://www.sci.utah.edu/~tsodergren/prob_net_vis_working/


Vietoris-Rips Complex

Given a finite metric space (P, d), e.g., a point cloud P ⊂ Rn:

Definition

The Vietoris-Rips complex of P and r consisting of all subsets of
diameter at most 2r. That is, σ ∈ R(r) iff d(p, q) ≤ 2r for all
p, q ∈ σ.



Čech Complex

Given a finite metric space (P, d), e.g., a point cloud P ⊂ Rn:

Definition

The Čech complex of P and r consisting of all subsets whose
corresponding sets of r-balls have nonempty intersections. That is,
σ ∈ C(r) iff

⋂
x∈σ Bx(r) 6= 0.



Sensor Networks



Sensor coverage with Čech complex

https://en.wikipedia.org/wiki/Cech_complex

https://en.wikipedia.org/wiki/Cech_complex


Rips complex detects “phantom” topological features

Left: Union of balls (Čech). Right: Rips.

Image courtesy of de Silva and Ghrist (2007a).



Using Rips complex to approximate Čech complex

Lemma (Edelsbrunner and Harer (2010), page 62)

Let P be a finite set of points in some Euclidean space and letting
r ≥ 0, then

R(r) ⊆ C(
√

2r).

Theorem (de Silva and Ghrist (2007a), Theorem 2.5)

For a point set P in Rn,

C(r) ⊂ R(r) ⊂ C(θr),

whenever θ ≥
√

2n
n+1 .



Time-Varying sensor networks

A time-sequence of network graphs for a mobile network. Does this network admit a

wandering hole? de Silva and Ghrist (2007b)



Topological Data Analysis for Brain Networks

Correlating Brain Network Topology with Autism Severity

Wong et al. (2016)



Big Picture

Goal: Quantify the relationship between brain functional
networks and behavioral measures.

Our Contribution: Use topological features based on
persistent homology.

Result: Combining correlations with topological features gives
better prediction of autism severity than using correlations
alone.



Motivation

About Autism Spectrum Disorders (ASD):

No cure, causes unknown
Diagnosis:

No systematic method
ADOS (Autism Diagnostic Observation Schedule)

Correlate functional brain network to ADOS scores

Early diagnosis
Treatment tracking



What is a Brain Network?

Represents brain regions and pairwise associations

Computation of Correlation Matrices:

Resting state functional MRI (R-fMRI)
Preprocessing
Define regions of interest (ROIs)
Estimate time series signals
Compute pairwise associations - Pearson Correlation



Why Topology?

How to use this data?

Graph and graph theoretic measures (e.g. small worldness)

Require binary associations (thresholding)

Correlations as features

High dimensionality, not enough samples

Dimensionality reduction: PCA, random projections

May lose structures in higher dimensions



Why Topology

Projection - may lose structures in higher dimensions

Topology captures structure

In higher dimensions
Across all continuous thresholds



Persistent Homology

What are topological features? Homological features:

Dim 0 - Connected Components
Dim 1 - Tunnels / Loops
Dim 2 - Voids

How to compute them (in a nutshell)?

Begin with point cloud
Grow balls of diameter t around each point
Track features of the union of balls as t increases



Persistent Homology



Persistent Homology



Persistent Homology



Persistent Homology



Persistent Homology



Persistent Homology



Persistence Diagrams

Persistent homological features - encoded as barcodes or persistent
diagrams

Figure: Barcode Figure: Persistence Diagram



Interpretation of Connected Components

Dim 0 features - hierarchical clustering



Computing Topological Features for Brain Networks



Partial Least Squares (PLS) Regression

A dimensionality reduction technique that finds two sets of latent
dimensions from datasets X and Y such that their projections on
the latent dimensions are maximally co-varying.

X - features from brain imaging: correlations, topological
features (zero mean)

Y - clinical measure of behavior: ADOS scores (zero mean)

PLS models the relations between X and Y by means of score
vectors.



PLS Regression

n - number of data points

X - predictor/regressor (n×N), Y - response (n×M)

PLS - decompose X, Y such that:

X = TP T + E

Y = UQT + F

Where

T,U - latent variables/score vectors (n× p), factor matrices
P (N × p), Q (M × p) - orthogonal loading matrices
E (n×N), F (n×M) - residuals/errors

T,U are chosen such that projections of X,Y , that is, T and
U , are maximally co-varying.



PLS Regression: the Algorithm

Iterative NIPALS algorithm Wold (1975) (nonlinear iterative partial
least squares)

Find first latent dimension

i.e. find vectors w, c such that

t = Xw, u = Y c

have maximal covariance

Deflate previous latent dimensions from X, Y and repeat



Kernel PLS

Kernel form of NIPALS algorithm (kPLS)
1. Initialize random vector u
2. Repeat until convergence

(a) t = Ku/‖Ku‖
(b) c = Y T t
(c) u = Y c/‖Y c‖

3. Deflate K = (I − ttT )K(I − ttT )
4. Repeat to compute subsequent latent dimensions



Data

87 Subjects: 30 Control, 57 ASD

ADOS scores: 0 to 21

264 ROIs (Power regions)

264 × 264 correlation matrix.

34,716 distinct pairwise correlations per subject.



Experiments

Given: Correlation matrices

Map to metric space

d(x, y) =
√

1− Cor(x, y)

Compute persistence diagrams

Define inner product of persistence diagrams Reininghaus
et al. (2015) (i.e. kernel): Given two persistence diagrams F ,
G

kσ(F,G) =
1

8πσ

∑
p∈F

∑
q∈G

e−
‖p−q‖2

8σ − e−
‖p−q̄‖2

8σ

where for every q = (x, y) ∈ G, q̄ = (y, x)



Experiments

Performed experiments with 3 kernels:
1. KCor - Euclidean dot product of vectorized correlations

2. KTDA = w0K
TDA0 + (1− w0)KTDA1

KTDA0 - using only Dim 0 features

KTDA1 - using only Dim 1 features

3. KTDA+Cor = w0K
TDA0 +w1K

TDA1 + (1−w0 −w1)KCor

Baseline predictor - mean ADOS score



Experiments

Leave one out cross validation over parameters

σ0, σ1 - (log10 σ) from -8.0 to 6.0 by 0.2
w0, w1 - from 0.0 to 1.0 by 0.05

kTDA parameters: σ0 = −6.6, σ1 = 1.8, w1 = 0.95

kTDA+Cor parameters: σ0 = −7.8, σ1 = 2.8, w0 = 0.1,
w1 = 0.4

Compute RMSE

Permutation test for significance



Results and Conclusions

RMSE ADOS mean KTDA Kcor

ADOS mean 6.4302 - - -

KTDA 6.3553 0.316 - -

Kcor 6.0371 0.055 0.095 -

KTDA+cor 6.0156 0.048 0.075 0.288

Table: ADOS prediction results. Columns 2 to 4 are p-values for the
permutation test of improvement of row method over column method.

Result Highlights:

Baseline RMSE: 6.4302
KTDA+Cor:

Only method statistically significant over baseline
Permutation test p-value: 0.048
RMSE: 6.0156



Conclusion

Augmenting correlations with topological features gives a
better prediction of autism severity than using correlations
alone

(Hopefully) topological features derived from R-fMRI have
the potential to explain the connection between functional
brain networks and autism severity



Future Work

Alternatives to correlation

Different distance metric

Different kernel

Multi-site data

Classification (combine with TDA features)
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