CS 6170: Computational Topology, Spring 2019 Lecture 04

Topological Data Analysis for Data Scientists

Dr. Bei Wang
School of Computing
Scientific Computing and Imaging Institute (SCI)
University of Utah
www.sci.utah.edu/~beiwang
beiwang@sci.utah.edu

$$
\text { Jan 17, } 2019
$$

Union-Find (Disjoint Set Data Structure)

Book Chapter A.I.

Union and find for large network connectivity

- Union command: connect two objects
- Find query: used to decide if there is a path connecting two objects.

Store a tree in a linear array

Store two trees in a single linear array using arbitrary ordering of the nodes.

Edelsbrunner and Harer (2010)[Page 7]

Store a tree in a linear array: quiz

Can you recover three trees (disjoint sets) from the following linear array?

https://www2.cs.duke.edu/courses/fall06/cps296.1/Lectures/sec-I-1.pdf

MakeSet

function MakeSet(x)

if x is not already present: add x to the disjoint-set tree

$$
\begin{array}{ll}
\text { x.parent } & :=x \\
x . r a n k & :=0 \\
\text { x.size } & :=1
\end{array}
$$

https://en.wikipedia.org/wiki/Disjoint-set_data_structure
int $\operatorname{Find}(i)$
if $V[i]$. parent \neq null $\begin{aligned} & \text { then return } \operatorname{FiND}(V[i] . \text { parent }) \\ & \text { else return } i\end{aligned}$
endif.

Edelsbrunner and Harer (2010)[Page 7]
int $\operatorname{Find}(i)$
if $V[i]$.parent \neq null then return $\operatorname{Find}(V[i]$.parent $)$ else return i
endif.
Exercise: $\operatorname{Find}(9)=$?

Edelsbrunner and Harer (2010)[Page 7]

Find via path compression

```
int FIND(i)
    if V[i].parent }\not=i\mathrm{ then
        return V[i].parent = FIND(V[i].parent)
    endif;
    return i.
```

Edelsbrunner and Harer (2010)[Page 8]

Union and Union by size

```
void \(\operatorname{UniON}(i, j)\)
    \(x=\operatorname{Find}(i) ; \quad y=\operatorname{Find}(j)\);
    if \(x \neq y\) then \(V[x]\).parent \(=y\) endif.
void \(\operatorname{UniON}(i, j)\)
    \(x=\operatorname{Find}(i) ; \quad y=\operatorname{Find}(j) ;\)
    if \(x \neq y\) then
        if \(V[x]\).size \(>V[y]\).size then \(x \leftrightarrow y\) endif;
        \(V[x]\).parent \(=y\)
    endif.
```

Edelsbrunner and Harer (2010)[Page 8]

Union by size

```
void \(\operatorname{Union}(i, j)\)
    \(x=\operatorname{Find}(i) ; \quad y=\operatorname{Find}(j)\);
    if \(x \neq y\) then
        if \(V[x]\).size \(>V[y]\).size then \(x \leftrightarrow y\) endif;
        \(V[x]\).parent \(=y\)
    endif.
```

 Exercise: Union \((8,4)=\) ?

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Simplicial Complexes

Book Chapter A.III

Simplex

0 -simplex is a vertex, 1 -simplex is an edge, 2 -simplex is a triangle, 3 -simplex is a tetrahedron, a 4 -simplex is a 5 -cell....

Simplices

Definition (Simplex)

A k-simplex is the convex hull of $k+1$ affinity independent points, $\sigma=\operatorname{conv}\left\{u_{0}, u_{1}, \ldots, u_{k}\right\}$.

- Let $u_{0}, u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$
- A point $x=\sum_{I=0}^{k} \lambda_{i} u_{i}$ is an affine combination of the u_{i} if the $\lambda_{i} \in \mathbb{R}$ sum to 1 . It is a convex combination if all $\lambda_{i} \geq 0$.
- The $k+1$ points are affinely independent iff the k-vectors $u_{i}-u_{0}$ are linearly independent (for $1 \leq i \leq k$).
- A convex hull is the smallest convex set that contains the points.
- A convex hull is the set of convex combinations.

Simplicial complexes

- A face τ of σ is the convex hull of a non-empty subset of the u_{i}, denoted as, $\tau \leq \sigma$.
- σ is the coface of τ.
- A face is proper, i.e., $\tau<\sigma$, if the subset is not the entire set.

Definition (Simplicial Complex)

A simplicial complex is a finite collection of simplicies K such that $\sigma \in K$ and $\tau \leq \sigma$ implies $\tau \in K$, and $\sigma, \sigma_{0} \in K$ implies $\sigma \cap \sigma_{0}$ is either empty or a face of both.

Čech complexes and Vietoris-Rips complexes

Book Chapter A.III

Demo:
http://www.sci.utah.edu/~tsodergren/prob_net_vis_working/

Edelsbrunner, H. and Harer, J. (2010). Computational Topology: An Introduction. American Mathematical Society, Providence, RI, USA.

