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Course Overview

Course Syllabus, Final Project

Course Schedule

Course Webpage: for latest lectures, due dates, etc.

Canvas: for assignments submission, announcements etc.

Introduction: topological data analysis

Examples of past projects
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Topological Data Analysis (TDA): a brief history

A marriage: math and computer science

Topological data analysis is cool: many data applications!

Many great and fun people are players in this field: mathematicians,
computer scientists, statisticians...

Interdisciplinary: CS, math (algebraic topology, differential topology,
i.e. Homology, Morse theory), statics (machine learning, manifold
learning), electrical engineering (sensor networks), physics (universe)

It is young (20 years), and a lot of open problems, that is, challenges
and opportunities! (Imaging the field of computational geometry at
its infancy...)

The researchers are only in their 2nd generation (approximately):
room to grow!

Topological data analysis and visualization is inseparable



Three mutually inclusive modules

TDA Foundations and Pipeline (FP)

TDA, Machine Learning and Statistics (ML)

TDA in Data Science (DS)



TDA in Data Science (DS)



Market/Gene Segmentation

Lum et al. (2013)



Brain Networks

Wong et al. (2016)



Combustion simulation

Image courtesy: V. Pascucci



Tracking 2D Combustion

Image courtesy: V. Pascucci



Material science

Quantitative Analysis of the Impact of a Micrometeoroid in a Porous Medium;
reconstruction the structure of porous medium

Micrometeoroid 

impact  
direction 

Gyulassy et al. (2007)



Astronomy: study the formation of filaments

•TDA+ASTRONEMY 
POTENTIALS

•FILAMENTS STRUCTURE T. SOUSBIE, DISPERSE

http://www2.iap.fr/users/sousbie/disperse.html

http://www2.iap.fr/users/sousbie/disperse.html


TDA Foundations and Pipeline (FP)



Case study: feature definition

Analyze high-resolution Rayleigh Taylor instability simulations

bubble maximum 

Laney et al. (2007)



Case study: persistence simplification

Analyze high-resolution Rayleigh Taylor instability simulations

p1 
p2 

Saddle 

Laney et al. (2007)



Case study: robust segmentation

The segmentation method is robust from early mixing to late turbulence

T=100!

T=353!

T=700!

Laney et al. (2007)



Case study: event characterization

We characterize events that occur in the mixing process

Pascucci-17Comp AD 07-DRC

death

merge

split

birth

Laney et al. (2007)



A really old joke...

Who thinks the coffee mug and a donut is the same?



Key development in TDA

1. Abstraction of the data: topological structures
2. Separate features from noise: persistent homology

2D Scalar function 

Reeb Graph/Contour Tree/Merge Tree 

Morse-Smale Complex 

van Kreveld et al. (1997); Carr et al. (2003); Edelsbrunner et al. (2003a,b)



Contour tree

Image courtesy: V. Pascucci



Contour tree

Image courtesy: V. Pascucci



Contour tree

Image courtesy: V. Pascucci



Contour tree

Image courtesy: V. Pascucci



Contour tree

Image courtesy: V. Pascucci



Contour tree

Image courtesy: V. Pascucci



Contour tree

Image courtesy: V. Pascucci



Reeb graph

Graph obtained by continuos contraction of all the contours in a scalar field,
where each contour is collapsed to a distinct point.

Cole-McLaughlin et al. (2003)



Jacobi Set

Edelsbrunner and Harer (2004)



Morse-Smale complex

A partition of the data into monotonic regions

Ascending Manifolds Descending Manifolds Morse-Smale Complex

Edelsbrunner et al. (2003a,b)



Ascending Manifolds

Compute steepest ascent gradient from each point in dataset



Descending Manifolds

Compute steepest descent gradient from each point in dataset



Terrain simplification

Bremer et al. (2003)



Persistent homology

When data is corrupted by noise, how can we tell features from noise?
”The eye, or the brain, performs the marvelous task of taking the sense
data of individual points and assembling them into a coherent image of a
continuum infers the continuous from the discrete.”

Figure: The Seine at La Grande Jatte by Georges Seurat

Weinberger (2011)



Persistent homology: computation

Edelsbrunner et al. (2002)



Persistent homology

Simplifying topological features



Persistent homology

Simplifying topological features



Persistent homology

Simplifying topological features



TDA, Machine Learning and Statistics (ML)



TDA with regression: topological partition

Fit linear models to each partition.
Gerber et al. (2010); Maljovec et al. (2016)



Understanding how CNN learn using TDA

CNN: convolutional neural networks

https://www.ayasdi.com/blog/artificial-intelligence/

going-deeper-understanding-convolutional-neural-networks-learn-using-tda/

https://www.ayasdi.com/blog/artificial-intelligence/going-deeper-understanding-convolutional-neural-networks-learn-using-tda/
https://www.ayasdi.com/blog/artificial-intelligence/going-deeper-understanding-convolutional-neural-networks-learn-using-tda/


TDA with dimensionality reduction: circular structures

Parametrizing data (for circular features) in high-dimensions.

(a) (b)

(c) (d) (e)

de Silva et al. (2009)



Detect branching features in high-dim data

Parametrizing data in high-dimensions.
x (a)

w

x

(b)

(c) (d)

x
x

x

w

x

(e) (f)

(h) (i)(g)

Wang et al. (2011)



Stratification learning in high dimensions

The coarsest stratification of a pinched torus
1. Decompose into manifold pieces (strata). 2. Pieces fit “nicely”.

= ∪ ∪ ∪

Bendich et al. (2012)



Stratification learning in high dimensions

Bendich et al. (2012)



Challenges and Opportunities



Challenges and opportunities for data science

Robustness of topological structures

Scalability, approximation

High-dimensional data

Integration with statistics and machine learning

Integration with visualization

Many applications! Usability, interpretability
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