Topological Data Analysis for Vector Fields
The Robustness

Bei Wang

School of Computing
Scientific Computing and Imaging Institute (SCI)
University of Utah
www.sci.utah.edu/~beiwang

April 13, 2017
Robust Feature Extraction and Visualization of Vector Fields
Understanding VF is indispensable for many applications

- Turbulence combustion, global oceanic eddies simulations, etc.
- A d-dim VF: a function that assigns to each point a d-dim vector
- $f : S \subset \mathbb{R}^d \to \mathbb{R}^d, \ d = 2 \text{ or } 3$
- Critical point x: $f(x) = 0$

Simplifying 2D VF: independent of topological skeleton
First 3D VF simplification based on critical point cancellation
VF simplification

- Prior work: canceling nearby critical points based on topological skeleton: critical points connected by separatrices that divide domain into regions of uniform flow behavior
- Preserve important scientific properties of the data
- Obtain compact representation for interpretation
- Derive multi-scale view of the flow dynamics

Swirling jet simulation [Tricoche, Scheuermann, Hagen 2001]
Challenges with prior work

Topological skeleton can be unstable due to numerical instability

(a) Highly rotational flow, near Hopf bifurcations: diff separatrices intersect/switch.

(b-c) Separatrices are unstable w.r.t perturbations. Sink, saddle-sink, saddle, source, saddle-source
Contributions: Robustness-based simplification

- Canceling critical points based on stability measured by robustness
- Complementary view, independent of topological skeleton
- Efficient computation for large data, avoid numerical integration
- Handle complex boundary configurations
- Analysis generalizes to higher dimensions
In the space of all VFs, find the one closest to the original VF with a particular set of critical points removed, based on the L_∞ norm.

Results are optimal: no other simplification with a smaller perturbation.
Some teaser results: synthetic A

(a)

\[x_2 \]
\[x_1 \]
\[x_3 \]
\[x_4 \]
Some teaser results: synthetic A
Some teaser results: synthetic B
Some teaser results: synthetic C
Some teaser results: synthetic C
Some teaser results: synthetic C
Visualizing Robustness of Critical Points

Critical points clustered by robustness for time-varying ocean eddie simulation

[Wang, Rosen, Skraba, Bhatia and Pascucci (EuroVis) 2013]
Robustness of critical points

- Robustness: quantify the stability of critical points
- Intuitively, the robustness of a critical point is the minimum amount of perturbation necessary to cancel it within a local neighborhood
- Well group theory
- [Edelsbrunner, Morozov and Patel 2010, 2011], [Chazal, Patel and Skraba 2012].
- Robustness computation: based on degree theory and merge tree
Let $f, h : \mathbb{R}^2 \to \mathbb{R}^2$ be two continuous 2D vector fields. Define the distance between the two mappings as

$$d(f, h) = \sup_{x \in \mathbb{R}^2} ||f(x) - h(x)||_2.$$

We say h is an r-perturbation of f, if $d(f, h) \leq r$.

Diagram: Illustration of $f(u, v)$ and $h(u, v)$ with p.
In 2D, \(\text{deg}(x) \) of a critical point \(x \) equals its Poincaré index.

Source +1, *sink* +1, *saddle* −1.

A connected component \(C \), \(\text{deg}(C) = \sum_i \text{deg}(x_i) \).

Corollary of Poincaré-Hopf thm: if \(C \) in \(\mathbb{R}^2 \) has degree zero, then it is possible to replace the VF inside \(C \) with a VF free of critical points.
In 2D, \(\deg(x) \) of a critical point \(x \) equals its Poincaré index.

Source +1, sink +1, saddle −1.

A connected component \(C \), \(\deg(C') = \sum_i \deg(x_i) \).

Corollary of Poincaré-Hopf thm: if \(C \) in \(\mathbb{R}^2 \) has degree zero, then it is possible to replace the VF inside \(C \) with a VF free of critical points.
In 2D, \(\text{deg}(x) \) of a critical point \(x \) equals its Poincaré index.

- **Source** +1, **sink** +1, **saddle** −1.

- A connected component \(C \), \(\text{deg}(C) = \sum_i \text{deg}(x_i) \).

- Corollary of Poincaré-Hopf thm: if \(C \) in \(\mathbb{R}^2 \) has degree zero, then it is possible to replace the VF inside \(C \) with a VF free of critical points.
In 2D, $\deg(x)$ of a critical point x equals its Poincaré index.

- **Source** $+1$, **sink** $+1$, **saddle** -1.

A connected component C, $\deg(C) = \sum_i \deg(x_i)$.

Corollary of Poincaré-Hopf thm: if C in \mathbb{R}^2 has degree zero, then it is possible to replace the VF inside C with a VF free of critical points.
In 2D, $\deg(x)$ of a critical point x equals its Poincaré index.

Source $+1$, **sink** $+1$, **saddle** -1.

A connected component C, $\deg(C) = \sum_i \deg(x_i)$.

Corollary of Poincaré-Hopf thm: if C in \mathbb{R}^2 has degree zero, then it is possible to replace the VF inside C with a VF free of critical points.
Sublevel set

Given $f : \mathbb{R}^2 \to \mathbb{R}^2$, define its norm (speed of flow) $f_0 : \mathbb{R}^2 \to \mathbb{R}$ as

$$f_0(x) = \|f(x)\|_2$$

For some $r \geq 0$, define the sublevel set of f_0 as

$$\mathbb{F}_r = f_0^{-1}[0, r].$$
Track components of \mathbb{F}_r as they appear and merge, as r increases from 0.
Track components of F_r as they appear and merge, as r increases from 0.
Merge tree of f_0

Track components of \mathbb{F}_r as they appear and merge, as r increases from 0
Merge tree of f_0

Track components of F_r as they appear and merge, as r increases from 0
Track components of \mathbb{F}_r as they appear and merge, as r increases from 0.
Track components of \mathbb{F}_r as they appear and merge, as r increases from 0.
Track components of \mathbb{F}_r as they appear and merge, as r increases from 0.
Merge tree of f_0

Track components of \mathbb{F}_r as they appear and merge, as r increases from 0.
Merge tree of f_0

Track components of \mathbb{F}_r as they appear and merge, as r increases from 0
Merge tree of f_0

Track components of F_r as they appear and merge, as r increases from 0.
The robustness of a critical point is the height of its lowest degree zero ancestor in the merge tree. [Chazal, Patel, Skraba 2012]

Interpretation: robustness is the min amount of perturbation necessary to cancel a critical point.

Robustness: $rb(x_1) = rb(x_2), \ rb(x_3) = rb(x_4)$.
Suppose h is an r-perturbation of f.

$\mathbb{H}_0 = h^{-1}(0)$ is the set of critical points of h. We have inclusion:

$$i : \mathbb{H}_0 \rightarrow \mathbb{F}_r$$

i induces linear map:

$$j_h : H(\mathbb{H}_0) \rightarrow H(\mathbb{F}_r)$$

The well group, $U(r)$, is the subgroup of $H(\mathbb{F}_r)$, whose elements belong to the image of each j_h, for all r-perturbation h of f:

$$U(r) = \bigcap_h \text{im} j_h$$

Intuitively, an element in $U(r)$ is considered a stable element in $H(\mathbb{F}_r)$ if it does not disappear with respect to any r-perturbation.
Robustness quantifies the stability of a critical point w.r.t. perturbations of the VFs.

If a critical point x has a robustness r:

- Need $(r + \delta)$-perturbation to cancel x, for arbitrarily small $\delta > 0$
- Any $(r - \delta)$-perturbation is not enough to cancel x.
Visualizing robustness: Video, combustion simulation
2D VF Simplification Based on Robustness

[Skraba, Wang, Chen and Rosen (PacificVis Best Paper) 2014]
[Skraba, Wang, Chen and Rosen (TVCG) 2015]
Map each vector in C to its vector coordinates

Critical points map to the origin of $\text{im}(C)$

$\text{im}(C)$ is part of a disk of radius r, whose boundary S could be uncovered/covered.
$f : K \rightarrow \mathbb{R}^2$, K is a triangulation of C
Linear interpolation: edges and triangles in K map to those in $\text{im} (C)$.
Simplification: Key ideas

- A region contains critical points if its image space contains the origin
- Simplification: deform the VF to create a void surrounding the origin
- Simple boundary: boundary of $\text{im} (C')$ is uncovered
- Complex boundary: boundary of $\text{im} (C')$ is covered
Cut: Create a void surrounding the origin

Deform $\text{im}(C')$ to create a void surrounding the origin.

c^*: cut point

By construction: amount of perturbation $< r + \epsilon$
Example revisited: Synthetic C complex boundary

(a) original, (b) after Unwrap, (c) after Cut and (d) final output after Restore
Ocean eddie simulation
Combustion simulation: Hierarchical simplification
Stable critical points could provably be tracked more easily and more accurately in the time-varying setting. [Skraba, **Wang** (TopoInVis/Book Chapter), 2014]
Simplifying 2D Time-Varying VF

[Skraba, Wang, Chen, Rosen (TVCG), 2015]
2D Time-varying VF simplification: Video
Simplifying 3D VF

[Skraba, Rosen, Wang, Chen, Bhatia, Pascucci (PacificVis/TVCG), 2016]
3D VF simplification
Next? Tensor field simplification, stress tensor, DTI...

[Tensor field degenerate points with half integer indices]

- Index -0.5
- Index 0.5
- Index 1.5

[Corresponding anisotropy vector field critical points with integer indices]

- Index -1.0
- Index 1
- Index 3.0

[Wang, Hotz, 2017]