Path Compression: Find(x_i): all nodes along the path from x_i to root attached directly to root

Example 1:

Traversing the tree up from x_i, apply Find(.) to parent of x_i, and set root to be parent of x_i.

Example 2: Find(9)

Pseudocode:

1. MakeSet(x)
 - parent(x) ← x
 - rank(x) ← 0

2. Find(x)
 - if $x \neq$ parent(x)
 - parent(x) ← Find(parent(x))
 - return (parent(x))
Union \((x, y)\)

\[
A \leftarrow \text{Find } (x) \\
B \leftarrow \text{Find } (y) \\
\text{if } \text{rank}(A) > \text{rank}(B) \text{ then} \\
\text{parent}(B) \leftarrow A \\
\text{else} \\
\text{parent}(A) \leftarrow B \\
\text{if } \# \text{rank}(A) = \# \text{rank}(B) \text{ then} \\
\text{rank}(B) = \text{rank}(B) + 1
\]

Claim:

the rank here is the upper bound of the true rank.

Data Motivation: Sensor Network Coverage.

Assume that sensors are points on the plane and coverage is modelled as disks.

Problems:
- detecting intruders
- detecting uncovered area [holes in coverage]
- mobile sensors: time varying positions & coverage

Dim 1 homology: Tunnel (hole in coverage)

… Tunnel persists over time then intruders can avoid detection as long as tunnel persists

[Dim 1 persistent homology]

SoC News: Catching a wireless thief
Detecting unauthorized use of cellular spectrum

We can model sensor coverage as simplicial complexes ([Čech] problem transformed into a problem of finding structure).
Čech Complex $C(\varepsilon)$: Form a d-simplex when there is a common point of intersection of all the $d+1 \left(\frac{\varepsilon}{2}\right)$-balls.

$d=2$: 2-simplex is a triangle
- 0-simplex: vertex
- 1-simplex: edge
- 2-simplex: triangle
- 3-simplex: tetrahedron

Rips Complex $R(\varepsilon)$: Form a d-simplex if there are pairwise intersections among all the $\left(\frac{\varepsilon}{2}\right)$-balls.
- hole in coverage but we still form the 2-simplex.

[www.sci.utah.edu/mtsodergren/network_vis/]

Def. Given $K+1$ points (u_0, u_1, \ldots, u_K) in \mathbb{R}^d, they are affinely independent if the K vectors $(u_i - u_0)$ for $1 \leq i \leq K$ are linearly independent.

(intuitively: no three points lie on the same line)

Def. A convex hull of a set of points X in \mathbb{R}^d is the smallest convex set containing X.

(think of a rubber band stretched around all points)

Def. A point $x = \sum_{i=0}^{K} \lambda_i u_i$ where $\lambda_i \in \mathbb{R}$ is an [affine combination] of u_i if $\sum_{i=0}^{K} \lambda_i = 1$.

x is a [convex combination] in $\sum_{i=0}^{K} \lambda_i = 1$ AND $\lambda_i \geq 0$.
Def: A k-simplex δ is the convex hull of $k+1$ affinely independent points.

$$\delta = \text{conv} \left\{ u_0, u_1, \ldots, u_k \right\}$$

dimension of δ: $\dim(\delta) = k$

Convex hull: all points that can be represented as a convex combination of the $k+1$ points.