Topological Space (Point set topology)

Let X : point set and U : set of subsets of X.

Def: U is a topology of X if:
1. $\emptyset, \Omega \in U$
2. Any union of sets in U is also in U.
3. A finite intersection of sets in U is in U.

Def: if U is a topology of X then (X, U) is called a topological space.

Example 1: $X = \{1, 2, 3\}$, $U = \emptyset, \Omega, \{1, 2, 3\}$

U satisfies conditions $\circ \circ \circ \circ$: U is topology on X

U is trivial topology on X.

Example 2: $X = \{1, 2, 3\}$, U : power set of X - $\emptyset, \Omega, \{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1\}, \{2\}, \{3\}$

Example 3: \mathbb{R} with B : set of all open intervals, \times set of all open sets.

Intersection and union are both open.

Def: A subset U of \mathbb{R}^n is is called open if given any point $x \in U$, there exists a real number $\varepsilon > 0$ such that for all points $y \in \mathbb{R}^n$ such that $d(x, y) < \varepsilon$ $y \in U$.

Def: A closed set is a set whose complement is an open set.
Def: A function \(f: X \to Y \) is continuous if the pre-image of every open set is open.

For all open sets \(V \subseteq Y \), \(f^{-1}(V) = \{ x \in X \mid f(x) \in V \} \) is then \(f^{-1}(V) \) is an open set in \(X \) \(\Rightarrow f \) is continuous.

Example: \(f: \mathbb{R} \to \mathbb{R} \)
\[
f(x) = \begin{cases}
0 & \text{if } x \in (-\infty, 0) \\
1 & \text{if } x \in (0, \infty)
\end{cases}
\]

for any open interval \((-\varepsilon, \varepsilon) \), \(f^{-1}((-\varepsilon, \varepsilon)) = \) Not open in \(\mathbb{R} \)

If we allow infinite intersection, by definition of topology, it will have to be open \(\Rightarrow \) a single point on real line would be open set which would mean every function is continuous.

Def: A path is a continuous function \(Y: [0, 1] \to X \)

A topological space is path connected if every pair of points is connected by a path.

Union - find

also called disjoint set data structure,

- with algorithm to test connectedness.
- Represent each set as a tree of elements.
- Maintain a collection of sets under operation \(\text{union} \)!
- Make-Set \((x)\): Create a set containing single element \(x \).
- Find \((x)\): Return the root of the tree containing \(x \).

Example: \(\{a, b, c, d, e\} \)

Union \((x, y)\): make the root of tree containing \(x \) to also be the root of tree containing \(y \).
Reversed tree data structure

1. **Make Set** \((x)\): make a singleton pointing to itself
2. **Find** \((x)\): traverse from \(x\) to root, return the root.
3. **Union** \((a, p)\):

 - **Find** \((x)\) will return \(a\).
 - **Union** \((a, p)\) will give the tree.

 ![Diagram showing the union operation]

 → issue with union: long, skinny trees will increase running time of **Find** \((e)\) \(\sim O(n)\)

 → **Union - Find running times** when roots are already known:

 - Worst case \(O(1)\)
 - Amortized \(O(1)\) \(O(\alpha(n))\) \(O(\alpha(n))\)

 where \(\alpha(n)\) is a very slow growing function (almost constant)

 → Requires 2 hacks:

 a. **Union by rank**: Always hang the smaller tree on the larger tree [Need to store rank / depth]

 b. **Path-Compression**: In the **Find** operation, having all the nodes on the path directing to the root