INFORMATION Security

ANNOUNCEMENT

Please come to the TA office hours!

A little bit STRING

LEFTOVER

http://www.pythonforbeginners.com/basics/string-manipulation-in-python
my_word = "Hello World!"

\# REVERSING

print my_word[:-1]
begin = 1
end = 10
step $=2$
print my_word[begin:end:step]
\# TAKE HOME: figure out what the following mean by looking
\# into Python manual or Googling print ' '.join(reversed(my_word))
!dlroW olleH
el ol
!dIroW olleH

```
# Strip off newline characters from end of the string
my_word=" Hello World!"
#strip() #removes from both ends
#lstrip() #removes leading characters (Left-strip)
#rstrip() #removes trailing characters (Right-strip)
print my_word
print my_word.strip()
print my_word.lstrip()
print my_word.rstrip()
```

Hello World!
Hello World!
Hello World! Hello World!
word = "Hello World"
print word.isalnum() print word.isalpha() print word.isdigit() print word.istitle() print word.isupper() print word.islower() print word.isspace() print word.endswith('d') print word.startswith('H')
\#check if all char are numbers
\#check if all char in the string are alphabetic \#test if string contains digits \#test if string contains title words \#test if string contains upper case \#test if string contains lower case \#test if string contains spaces \#test if string endswith a d \#test if string startswith H

False False False
True
False False False
True
True

CRYPTOGRAPHY AND KEY EXCHANGE

https://www.youtube.com/watch?v=YEBfamv-_do

Review

Communication errors
\square Binary data error: a bit changes from 0 to 1 or 1 to 0
Solutions
\square Repetition
\square Redundancy

SOME DEFINITIONS

Parity: adding a bit so that the \# of 1 s is even
Checksums: add up all the data and store the result (LATER)
Hamming Codes: add several parity bits to detect and correct an error (LATER)

Keeping Secrets

\square There is no privacy on the Internet
\square All messages get passed from one machine to the next
\square No control over which machines see a packet
\square A malicious machine could copy the message before passing it along
\square Analogy
\square Sending a secret using a postcard
\square The mail carrier can read the message

Information Security

ANY GOOD SOLUTION FOR INFORMATION SECURITY MUST ADDRESS:

\square Confidentiality: data is protected from unauthorized access Integrity: data can only be modified by appropriate mechanisms \square Detectable modifications
\square Availability: the degree to which authorized users can access information for legitimate purposes
\square How can security backfire?

"The boss is worried about information security, so he sends his messages one alphabet letter at a time in random sequence.'

Security and the Internet

The internet has created new demand for secure communication Want trusted communication without knowing for sure who the other party is:
\square Email
\square Shopping
\square
Software updates
\square Media downloads

CRYPTOGRAPHY

CRYPTOGRAPHY

\square The field of study related to encoded information
\square Greek for secret writing
\square Plaintext: original, readable
\square Ciphertext: encoded, unreadable
\square A cipher is an algorithm used to perform a particular type of encryption/decryption
\square Its key is the set of particular parameters that guide the cipher Different from a code, which links symbols to words in a code book

SUBSTITUTION CIPHERS

Substitute one character in the plaintext message with another character
\square To decode, perform the opposite substitutionExample

Example: CaESAR CIPHER

\square The Caesar cipher shifts the characters of a plaintext message by X positions in the alphabet
$\square \quad$ The key consists of the value of X and the direction to shift

SUBSTITUTION CIPHERS

Plaintext: BRUTUS WILL BETRAY YOU
 Ciphertext: ZPSRSQ UGEE ZCRPYW WMS
 What is the key to the cipher used in this encryption?

Many other ciphers:
\square Transposition ciphers
\square Book ciphers
\square One-time pad

CODE-BREAKING

\square Cryptanalysis is the attempt to figure out the plaintext message without the cipher or its key
\square How can a computer be used for code breaking?
\square Try different keys
\square Letter frequency analysis
\square Check results with an electronic dictionary

QUICK LAB!

\square htto://web.forret.com/tools/rot13.asp
N HFS GWJFP YMNX HTIJ
\square Please guess the key!

QUICK LAB!

\square htto://web.forret.com/tools/rot13.asp
N HFS GWJFP YMNX HTIJ Please guess the key! Alphabet shift: 5

A'LA'IH, DÓNEM'LN, DO'NEALLIN, ALA'IH, A'La'IH, DÓNEH'LINI, DONEH'LINI, DO'NEH'LINI, ALA'IH, A'LAIH, DONEHLLINI, ALA'IH, DO'NEH'LINI, DO'NEH'LINI, DONEHLINI . . .

FOR ADDED SECURITY, AFTER WE ENCRYPT THE DATA STREAM, WE SEND IT THROUGH OUR NAVAJO CODE TALKER.
... IS HE JUST USING NAVAJO WORDS FOR "ZERO" AND "ONE"?
WHOA, HEV, KEEP YOUR VOCE DOWN!

Key Exchange

\square The sender and the receiver of an encrypted message must share the cipher key
\square Key used to encode and then decode the message
\square Anyone with the key can decode the message
\square The key must be kept secret
\square Isn't the key at as much risk of interception as the messages?
\square Should the key be encrypted before being sent?

Key Exchange

\square Key exchange deals with the problem of exchanging keys over a possibly insecure information channel
\square All communication between the 2 people is public
\square End up with a private key that only the 2 people know
\square Uses math called one-way functions
\square Easy to use
\square Difficult to reverse
\square htto://www.youtube.com/watch?v=LGGFoQMOAYQ
Lecture 4 from 16:18 to 20:35

http://www.youtube.com/watch?v=LGGFpQMOAYQ
Lecture 4 from 16:18 to 20:35

Credit and further reading: https://en.wikipedia. org/wiki/Diffie-
Hellman_key_exchange

Diffie-Hellman Key Exchange

Basic Idea (using easier math)
$\square \quad$ Each person picks a private \#
\square A public \# is chosen by Bob and Arnold
\square Mix (multiply) your private and public \#s

Announce the results
\square Mix your private \# with the other person's shared \#
$\square \quad$ Use this as the key

Bob picks 4
\square Arnold picks 6
$\square \quad$ Public \# is 7
$\square \quad$ Bob has $4 \times 7=28$
\square Arnold has $6 \times 7=42$
\square Bob has $4 \times 42=168$
\square Arnold has $6 \times 28=168$

Better Mixing Math

\square Multiplication is not a good mixing method
\square Easy to divide, test factors
\square If public \# is 7, and Bob shares 28, easy to compute 28/7=4 (Bob's private \#)
\square Want a one-way function
\square Can't easily undo

Clock Arithmetic

\square What happens when a clock reaches 12 o'clock?
\square Starts over at 0
\square This is an example of modular arithmetic
\square Taking the module (mod), $13 \bmod 12=1$
\square A clock is module 12
\square This is just the remainder after division
$\square 23 \bmod 5=3$ (23 divided by 5 is 4, remainder 3)
\square Python: 23 \% 5
\# http://www.pythontutor.com/index.html print 6\%2
print $7 \% 2$
print 1125\%11

More Definitions

\square Raise a \# to a power
$\square \quad 3 \wedge 4=3 \times 3 \times 3 \times 3$
Multiple the base by itself 4 times
\square Prime \#s
\square A \# greater than 1 that is only evenly divisible by itself and 1
$\square \quad 4$ is not a prime as you can divide it by 1,4 and also 2
$\square \quad 5$ is a prime
$\square 2,3,5,7,11,13,17,19,23,31,37, \ldots$ are prime
\square Largest prime

As January 2016, the largest known prime number is $2^{74,207,281}-1$, a number with $22,338,618$ digits. It was found in 2016 by the Great Internet Mersenne Prime Search.

Improved Public Key Exchange

\square Each person chooses a private \#
\square Two public \#s are agreed upon
\square Base B
\square Prime \# P to be used as a modulo
\square Make a mixed \#
\square mixed $=\left(B^{\wedge}\right.$ private $) \bmod P$
\square Share the mixed \# and mix in your private \#
\square shared secret $=$ other mixed^ private $\bmod P$
means public, Red means private/secret.

1. Alice and Bob agree to use a modulus $p=23$ and base $g=5$ (which is a primitive root modulo 23).
2. Alice chooses a secret integer $a=6$, then sends $\operatorname{Bob} A=g^{a} \bmod p$

- $A=5^{6} \bmod 23=8$

3. Bob chooses a secret integer $b=15$, then sends Alice $B=g^{b} \bmod p$

- $B=5^{15} \bmod 23=19$

4. Alice computes $s=B^{a} \bmod p$

- $s=19^{6} \bmod 23=2$

5. Bob computes $s=A^{b} \bmod p$

- $s=8^{15} \bmod 23=2$

6. Alice and Bob now share a secret (the number 2).

Credit and further reading:
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Purpose of Key Exchange

\square Go to a website with secure communications
\square Often https
\square Shows lock in corner of browser
\square That website server and your computer have done a key exchange \square Encrypts further communications
\square Hides credit card \#, etc.

Try Out Key-Exchange

\square Group Exercise
\square Use calculator or Google to help
\square Google in the search bar:
$\square \quad 5^{\wedge} 3 \bmod 7$
$\square B^{\wedge}$ private mod P
\square Once you get a \#, what do you do with it?
\square Use it as a key for a cipher

THANKS!

Any questions?

You can find me at
beiwang@sci.utah.edu
http://www.sci.utah.edu/~beiwang/teaching/cs1060.html

CREDITS

Special thanks to all the people who made and released these awesome resources for free:
\square Presentation template by SlidesCarnival
\square Photographs by Unsplash

