
Recursion Revisited

The Rise of Google

Searching and

Sorting

Announcement

� Bonus Project 3 Posted: Essay
� Please go to TA’s office hours: this should be a norm, not an anomaly
� Quiz 3 posted: have 1 week to talk to the TA and request in writing

regrading
� Class participation: 5%. TAs are keeping track...you are already here,

why not actively participate?

Recursion Revisited

http://www.pythontutor.com/index.html

http://www.pythontutor.com/index.html
http://www.pythontutor.com/index.html

What is Recursion?

A picture of a painter who is painting a picture of painter who is painting a
picture ...

A Brocolli

What is a recursion?

� Joke: in order to understand recursion, you need to understand
recursion…

� A recursion function is a function that calls itself
� Recursion is hard to understand...some people get it, some don’t
Two things:
1. Understand how to solve a simpler problem

2. Understand how to trace a recursive function

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

The hate-love-hate relationship with Recursion

1. You hate it because you do not understand it
2. You love it because it is cool after you understand it
3. You hate it because it is typically inefficient

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

“Classic Recursion

Solving a "big" problem recursively means to
solve one or more smaller versions of the

problem, and using those solutions of the smaller
problems to solve the "big" problem.

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

� Solving problems recursively typically means that there are smaller
versions of the problem solved in similar ways.

� Think about summing over an array of 10 numbers v.s. summing
over an array of 5 numbers.

� Use the same technique: a counter
� Solution to the smaller problem helps you to solve the larger

problem.

Big-version v.s. Small-version of the same problem

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

Basic Unit of a recursion is a function call

Four steps to understand recursion
1. Write and define the prototype of the function

2. Write out a sample function call
3. Think of the smallest version of the problem
4. Think of smaller version of the function call
Putting it all together!

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

Task: sum up numbers

from 1 to x

1. Write and define the prototype of the function

def compute_sum(x): # add numbers from 1 to x

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

2. Write out a sample function call

def compute_sum(x): # add numbers from 1 to x
...

print compute_sum(1)
print compute_sum(2)
print compute_sum(3)

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

3. Think of the smallest version of the problem

Base case: the smallest version of the problem
Base case here: x = 1
Base case is where the recursion eventually stops
When x = 1, compute_sum(x) should return 1

def compute_sum(x):
if x ==1:

return 1
...

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

4. Think of smaller version of the function call

compute_sum(x) # compute sum from 1 to x
compute_sum(x-1) # compute sum from 1 to x-1
If we want to solve a bigger problem with solving a smaller problem first:

compute_sum(x) = x + compute_sum(x-1)

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

Putting it all together!

def compute_sum(x):
if x ==1:

return 1
else:

return x + compute_sum(x-1)

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

Putting it all together!

def a_simple_recursive_function(x):
if (base case)

return some simple expression
else:

some work before
recursive call
some work after

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

Classic Recursion

Thinking “backwards”:
Instead of building a solution from nothing, you pretend you are at the
solution, and want to take a step back and ask how to solve the
problem if you were a step back.
Alternatively, thinking about how the solution of a bigger problem can
be constructed from a solution of a smaller problem.
compute_sum(x) = x + compute_sum(x-1)

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

Another example

How to reverse a string?
reverse_string(‘hello”) → “olleh”
reverse_string(“abcdefg”) → “gfedcba”

reverse_string(“abcdefg”): put “g” first, add it to the reversed result of
“bcdefg”

reverse_string(str) = str[l-1] + reverse_string(str[0:l-1])

Another example

def a_simple_recursive_function(x):
if (base case)

return some simple expression
else:

some work before
recursive call
some work after

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

Final Example

Compute a*b with only additions/subtractions:
a*b = b + b + … b = a copies of b
1. multiply(a,b)

2. multiply(3,4)
3. multiply(1, b)
4. multiply(a,b)

a. multiply(a-1, b)
b. multiply(a,b) = b + multiply(a-1,b)

More readings on Recursion

Tracing recursive functions:
http://www.pythontutor.com/index.html
https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/trace-
recursion.html
More readings:
https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.
html

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/trace-recursion.html
https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/trace-recursion.html
https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/trace-recursion.html
https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html
https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html
https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion.html

Try tracing the following code in http://www.pythontutor.com/index.
html
Using “Forward” step by step

def f(x):
 if x==1:
 return 1
 else:
 return x + f(x-1)

print f(3)

http://www.pythontutor.com/index.html
http://www.pythontutor.com/index.html
http://www.pythontutor.com/index.html

Searching

Lists

Data Structures

An important part of computer science is data structure:
� A data structure is a particular way of storing data so it can be

processed efficiently
For example: Storing numbers

A type of data structure: Lists

Imaging tracking the names of basketball players who scored in a
basketball game:
Brekkott Chapman, Isaiah Wright, Austin Eastman, Jake Connor, Brandon Taylor, Dakarai Tucker, Lorenzo Bonam

Chris Reyes, Jordan Loveridgel, Kenneth Ogbe, Gabe Bealer, Jayce Johnson, Kyle Kuzma, Makol Mawien, Austin Montgomery

Jakob Poeltl

� Need to store that information in a variable
� Make a new variable for each scorer: scorer1, scorer2, …
� Use as needed as the game progresses

Lists

A list is a collection of information
� Variable length
� Can add or remove item from the list
� Can look at items in a list
What are some examples of lists in real-life?

Lists in real life

Shopping list:
shopping_list = [‘apple’, ‘orange’, ‘meat’, ‘napkin’]

Lists on a Computer

� You can make lists different
ways on a computer

� One way is to use an array:
in Python-- it is a list

� Each individual item is
accessed by its place in the
collection

� We call the location number
for a value an index

More Lists in Python

shopping_list = [‘apple’, ‘orange’, ‘meat’, ‘napkin’]
course_list = [‘physics’, ‘chemistry’,’computer science’]
number_list = [1, 2, 3, 4, 5]
alphabet_list =[‘a’, ‘b’,’c’,’d’]

Review: Lists

Lists
� Contain multiple items
� Expands to hold as many items as needed
� Look at a particular item with an index number
� Add, remove, replace items in a list

course_list = ['physics', 'chemistry', 'english', 'biology'];
number_list = [1, 2, 3, 4, 5, 6, 7];

print "course_list[0]: ", course_list[0]
print "number_list[1:5]: ", number_list[1:5]

course_list[0]: physics
number_list[1:5]: [2, 3, 4, 5]

course_list = ['physics', 'chemistry', 'english', 'biology'];

print "Value at index 2 : "
print course_list[2]
course_list[2] = 2001;
print "New value at index 2 : "
print course_list[2]
print course_list

Value at index 2 :
english
New value at index 2 :
2001
['physics', 'chemistry', 2001, 'biology']

course_list = ['physics', 'chemistry', 'english', 'biology'];

print "Value at index 2 : "
print course_list[2]

print course_list
del course_list[2]
print "After deleting value at index 2 : "
print course_list

Value at index 2 :
english
['physics', 'chemistry', 'english', 'biology']
After deleting value at index 2 :
['physics', 'chemistry', 'biology']

course_list = ['physics', 'chemistry', 'english', 'biology'];

print course_list[2]
print course_list[-1]
print course_list[1:]

english
biology
['chemistry', 'english', 'biology']

course_list = ['physics', 'chemistry', 'english', 'biology'];

print len(course_list)
print [1,2,3]+[4,5,6]
print 'hello'*4
print 3 in [1,2,3]
for x in course_list:
 print x

4
[1, 2, 3, 4, 5, 6]
hellohellohellohello
True
physics
chemistry
english
biology

Coming Up Next:

More on Lists

 and Sorting

thanks!

Any questions?

You can find me at
beiwang@sci.utah.edu

http://www.sci.utah.edu/~beiwang/teaching/cs1060.html

Credits

Special thanks to all the people who made and released
these awesome resources for free:
� Presentation template by SlidesCarnival
� Photographs by Unsplash

http://www.slidescarnival.com/
http://unsplash.com/

