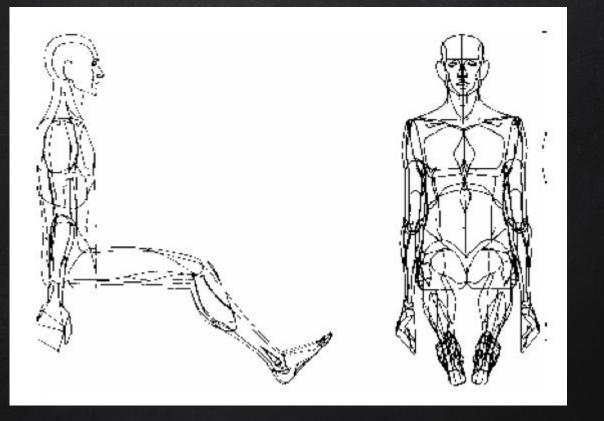


COMPUTER GRAPHICS WHAT POWERS

INSTAGRAM?

ANNOUNCEMENT

- Quiz 3 Today!
- Please go to TA's office hours!
- The best way to learn is to practice, to get hands-on experience!
- □ And Ask questions!


COMPUTER GRAPHICS

A small detour...

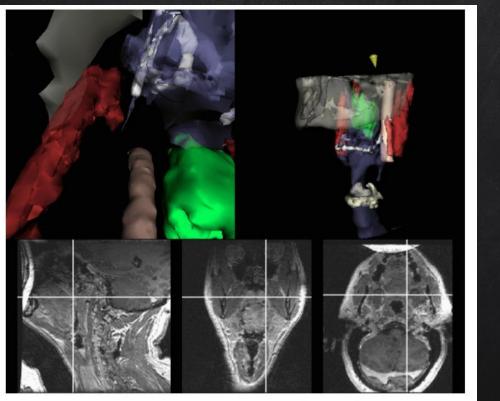
WHAT IS YOUR FAVORITE GRAPHICS APPLICATIONS?

WHAT IS COMPUTER GRAPHICS?

- Different from graphic design: illustration, etc.
 Creation, manipulation, viewing of models
 Physical simulation, human-computer interfaces
- Building art tools
- Games
- Animation

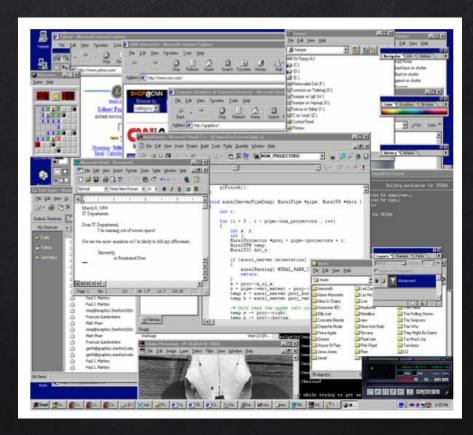
William Fetter of Boeing coins the term computer graphics from his human factors cockpit drawings (1960)

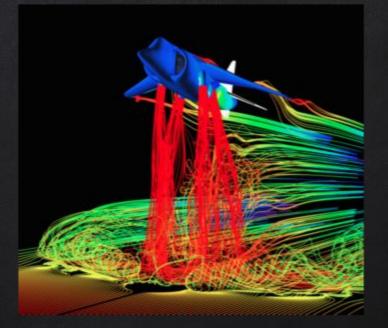
ENTERTAINMENT


https://www.youtube.com/watch?v=CG2T7upUVAk

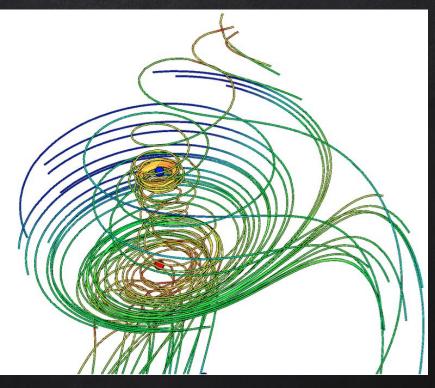
HOW FAR WE HAVE COME

Circus Atari (Atari)


GRAPHICS APPLICATIONS: MEDICAL VISUALIZATION

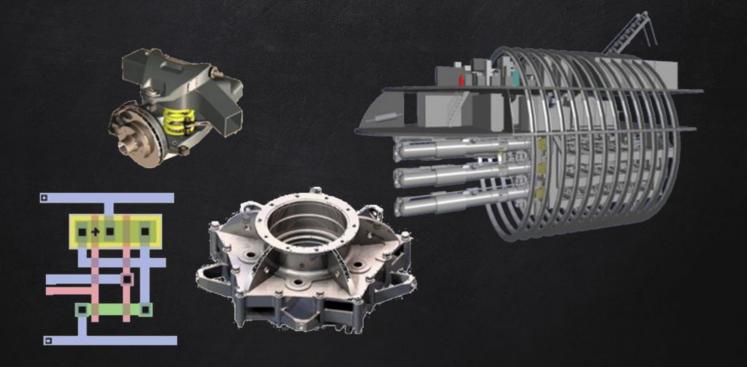

MIT: Image-Guided Surgery Project

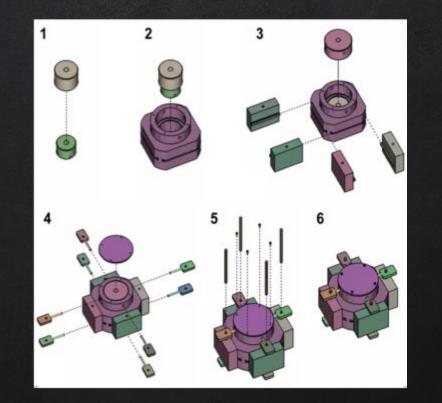
GRAPHICS APPLICATIONS: EVERYDAY USE



GRAPHICS APPLICATIONS: SCIENTIFIC VISUALIZATION

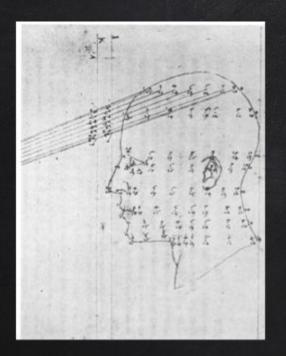
Airflow around a Harrier Jet: NASA


GRAPHICS APPLICATIONS: SCIENTIFIC VISUALIZATION


3D Vector Fields Visualization

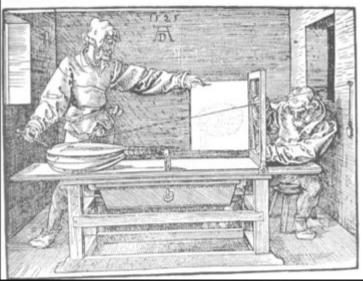
(Primoz Skraba, Paul Rosen, Bei Wang, Guoning Chen, Harsh Bhatia and Valerio Pascucci 2015)

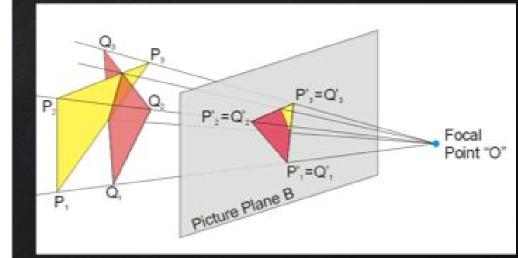
GRAPHICS APPLICATIONS: COMPUTER AIDED DESIGN (CAD)



GRAPHICS APPLICATIONS: TRAINING

Design effective Step by Step Assembly Instructions (Maneesh Agrawala et. al.)

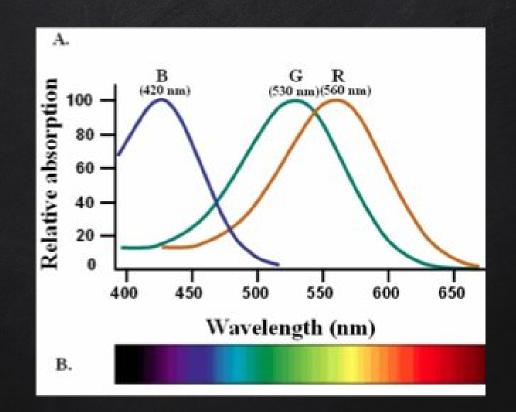

THIS IS NOT A NEW ENDEAVOR: MAKING MODELS



THIS IS NOT A NEW ENDEAVOR: VIEWING MODELS

Rendering, turning a model into an image that can be viewed

331. Two draughtsmen plotting points for the drawing of a lute in foreshortening, from Dürer's Underweysung, 1525.

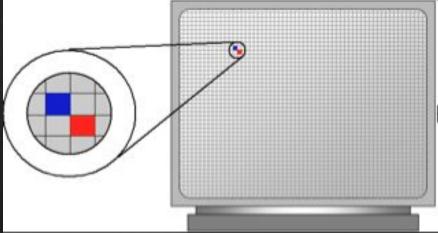

ENABLING MODERN COMPUTER GRAPHICS

- Moore's Law: every 12-18 months, computer power improves by factor of 2
- Significant advances in graphics chips every 6 months, outrunning CPU chip advance
- Graphics subsystems (GPUs)
 - Offloads graphics processing from CPU to chip designed for doing graphics operations fast
 - NVidia GeForce, ATI Radeon
 - GPUs are being ganged together to make supercomputers

GRAPHICS BASICS

- Color: our perception of the various frequencies of light
- Perception is quite subtle: optical illusions
- Our retinas have 3 types of cone cells
 - Respond to red, green and blue
 - How do we see other colors?
 - In a computer, color is represented as an RGB value
 - 3 numbers indicating the relative contribution of each
 - □ Given a scale of 0-255, (255,0,0) represents red
 - \Box full contribution from R
 - \Box No contribution from G or B

GRAPHICS BASICS


GRAPHICS BASICS

Color depth: the amount of data used to represent a color, usually expressed in terms of # of bits

- □ HiColor (16-bits)
 - □ 5 bits used for each number in RGB
 - extra bit sometimes used to represent transparency
- TrueColor (24-bit)
 - 8 bits used for each number in RGB, giving a range of 0-255
 - More than 16.7 million unique colors

Representing Images

- Pixel: a picture element
 Each pixel is composed of a single color
- Arrange pixels in a 2D array to make an image
- Resolution: # of pixels used in an image

IMAGE MANIPULATION

- Have you ever edited an image?
- Is this the same as manipulating an image?
- Kerry Fonda 2004 election photo controversy: Composition of 2 different images one of Kerry taken on June 13, 1971, one of Jane Fonda taken in August, 1972

Actives And Anti-War Antivist Jane Fonda Speaks to a crowd of Vietnam Veterans an Activist and formar Vietnam Viet John Kenry (LEFT) listens and prepares to speak neut concerning the war in Vietnam (AP Photo)

Uses of image manipulation

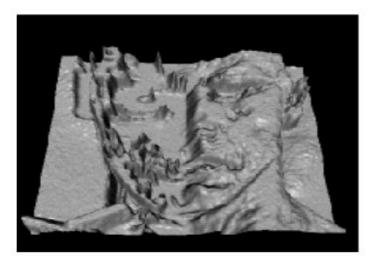
Image and video **retargeting**: recomposing the image to fit on different screens, like a cell phone (Bruce Gooch, U of U alum)

WHAT POWERS INSTAGRAM?

LINEAR FILTERS

IMAGE AS A FUNCTION

Treat each image as a function on the plane f: R^2 -> R
 At a location (x,y), f(x,y) is the intensity of the position (x,y)
 A color image is three functions paste together, think about it as a vector-valued function


$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

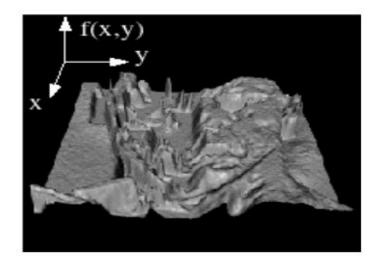


IMAGE AS FUNCTIONS

Credit:

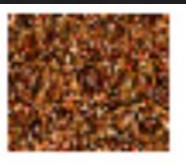
http://web.eecs.umich.edu/~jjcorso/t/598F14/files/lecture_0924_filtering.pdf Credit: Seitz and Szeliski Slides

DIGITAL IMAGE

We work with digital image: points on a grid, every function value is an integer.

1	2	88	22	23	4
3	4	1	24	25	8
2	6	23	22	28	10
24	8	88	25	30	8
22	88	89	78	32	2
20	24	26	26	20	4

How do you filter away noise in the image?


How do we smooth away noise in an image?

1	2	88	22	23	4
3	4	1	24	25	8
2	6	23	22	28	10
24	8	88	25	30	8
22	88	89	78	32	2
20	24	26	26	20	4

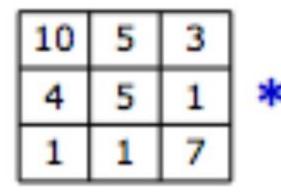
IMAGE NEIGHBORHOOD

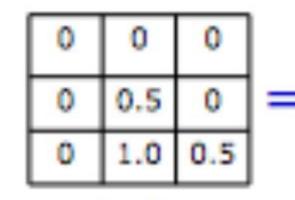
What happens if we reshuffle all pixels in an image? No change to the histograms: pointwise operations are not affected Filters reflect spatial information

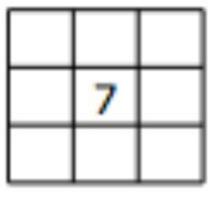
Credit: http://www.cs.utexas.edu/~grauman/courses/378/slides/lecture4.pdf

IMAGE FILTERING

Modify the pixels in an image with a function of local neighborhood of a pixel


1	2	3
4	5	6
7	8	9




0	0	0
0	5	0
0	0	0

LINEAR FILTERS

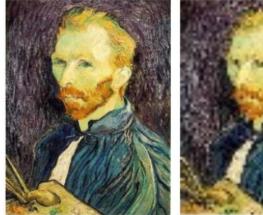
Replace each pixel with an linear combination of its neighbors Convolution kernel: prescription for the linear combination

Credit: http://www.cs.utexas.edu/~grauman/courses/378/slides/lecture4.pdf

WHY FILTER THE IMAGE?

- □ Noise Reduction
- Image Enhancement
- Feature Extraction

De-noising


Super-resolution

Original

Salt and pepper noise

In-painting

Credit: http: //web.eecs. edu/~jjcorso/t/ 598F14/files/le cture_0924_fil tering.pdf

Image Inpainting, M. Bertalmio et al. http://www.iua.upf.es/~mbertalmio//restoration.html Source: Savarese Slides

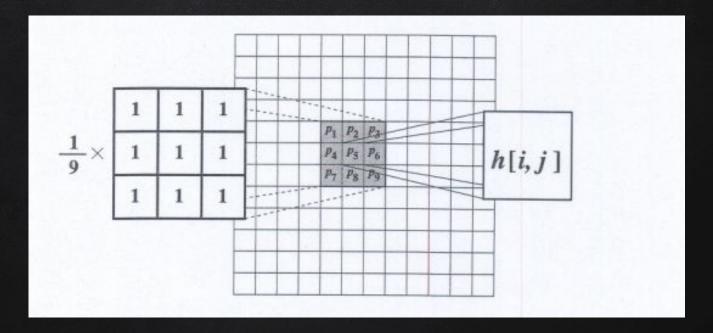
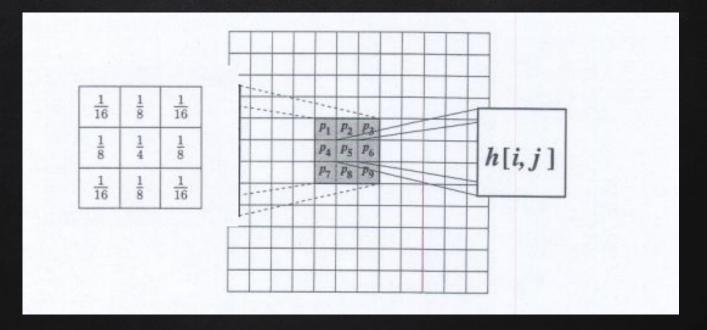


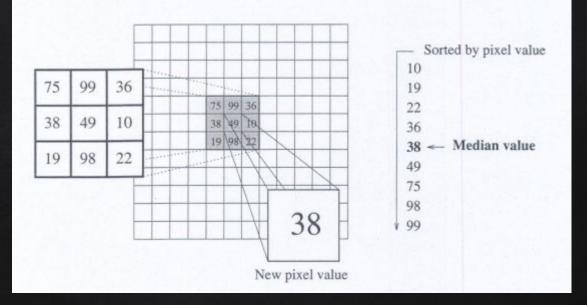
Image Inpainting, M. Bertalmio et al. http://www.iua.upf.es/~mbertalmio//restoration.html


http://www.cs.toronto.edu/~jepson/csc420/notes/linearFiltering.pdf

MEAN FILTER

http://www.cse.usf.edu/~r1k/MachineVisionBook/MachineVision.files/MachineVision_Chapter4.pdf

MEAN FILTER: COMMON WEIGHTS


http://www.cse.usf.edu/~r1k/MachineVisionBook/MachineVision.files/MachineVision_Chapter4.pdf

MEDIAN FILTER

Replace each pixel value with Median value of its neighbors...

Median[1,2,3,4,5,6,7] Median[23, 45, 78, 100, 122] Median[2,3,4,6] = (3+4)/2 = 3.5

MEDIAN FILTER

http://www.cse.usf.edu/~r1k/MachineVisionBook/MachineVision.files/MachineVision_Chapter4.pdf

NEXT: HOW TO CREATE YOUR OWN IMAGE FILTER?

NEXT: HOW DID INSTAGRAM SUCCEED?

Any questions?

You can find me at beiwang@sci.utah.edu

http://www.sci.utah.edu/~beiwang/teaching/cs1060.html

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>