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Center for Extreme Data Management Analysis and
Visualization (CEDMAV)

Research summary from members from our research group:
Valerio Pascucci (SCI, CEDMAV director, pascucci@sci.utah.edu)
Peer-Timo Bremer (SCI & LLNL, bremer5@llnl.gov)
Bei Wang (SCI, beiwang@sci.utah.edu)
Attila Gyulassy (SCI, jediati@sci.utah.edu)
Brian Summa (SCI, bsumma@sci.utah.edu)
Many SCI faculties, research scientists, students and collaborators...

Image/Video Courtesy of Valerio Pascucci



A Data Analysis and Visualization Center Can be a
Catalyst for a Virtuous Cycle of Collaborative Activities

Tight cycle of: basic research, software deployment and user support

Coordination among multiple projects: unified techniques for several
applications

Strong University-Lab-Industry collaboration

Focused technical approach:

performance tools for fast data access
general purpose data exploration
error bounded quantitative analysis
feature extraction and tracking



A Data Analysis and Visualization Center Can be a
Catalyst for a Virtuous Cycle of Collaborative Activities

Interdisciplinary collaboration with domain scientists (from math to
physics):

motivating the work
formal theoretical approaches
feedback to specific disciplines



Part 1: Large Data Analysis and Visualization for Science Discovery



Massive Simulation and Sensing Devices Generate Great
Challenges and Opportunities
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Traditional Data Analysis Tools are Often Ineffective for
Massive Models

Massive models are challenging, e.g. Rayleigh Taylor instability
(instability of an interface between two fluids of different densities
that occurs when one of the fluids is accelerated into the other)

Sheer volume of info
Complexity of the info represented
Complexity of presentation



Furthermore...

Tools do not scale with the data sizes

Difficult to capture multiple scales

Numerical methods unstable and sensitive to noise

Need proper abstractions and metaphors to convey information
reliably and efficiently

Data Management, Analysis and Visualization are needed in a Unified
Environment!



A Cyber-infrastructure Requires Efficient Data
Management and Processing

Advanced data storage techniques

Data re-organization
Compression

Advanced algorithmic techniques

Streaming
Progressive multi-resolution
Out of core computations



A Cyber-infrastructure Requires Efficient Data
Management and Processing

Scalability across a wide range of running conditions:

From laptop, to office desktop, to cluster of PC, to BG/L
Memory, to disk, to remote data access



We Redesigned the Data Management and Visualization
Pipeline with New Principles

Basic core techniques:

Slicing

Volume rendering

Iso-surfaces



We Redesigned the Data Management and Visualization
Pipeline with New Principles

Cache-oblivious out-of-core processing optimizing access
locality for any size of data blocks

Coarse-to-fine construction of multi-resolution models

Pipelines of progressive algorithms

Remote data streaming



We Consider the Three Main Components Defining a
Computing Infrastructure

FEEDBACK LINES

LOCAL FEEDBACK

REMOTE DATA ACCESS 
AND ACQUISITION
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The use of top-down and bottom-up processes have a
strong impact on the data stream

Accuracy 

Decimation: 
full resolution 
data needed first 

Progressive refinement: 
coarse representation  
immediately available 

Challenge: 
minimize the quality differential 

Benefit: pipeline of progressive modules 

Input Output 

Output Input 



We Introduced Multi-resolution Cache Oblivious Layouts
for Image Data

Z-order curve used to define a hierarchical sub-sampling over a grid

Improve access locality:

Interleaving hierarchical levels
Maintaining geometric proximity

Data layout is independent of the traversal of the data



Cache-Oblivious Data Layouts Scale Well Across Different
Storage Blocking Factors

Formal analysis predicts performance and scalability

Performance improved by orders of magnitude

Independence of architecture and storage characteristics
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We Demonstrated Performance and Scalability in a Variety
of Applications



Brief Introduction to Topological Data Analysis...



Topology is an Effective Language to Describe
Abstractions of Features from Raw Data

Hierarchical topology of a 2D Miranda vorticity field



We Adopt Robust Topological Methods to Abstract
Features from Raw Data

Provably robust computation

Provably complete feature extraction and quantification

Hierarchical structures used to capture multiple scales

Error-bounded approximations associated with each scale

Formal definition associated with each analysis

Streaming techniques to achieve scalable performance



A really old joke...

Who thinks the coffee mug and a donut is the same?



Key development in topological data analysis (TDA)

1. Abstraction of the data: topological structures and their combinatorial
representations
2. Separate features from noise: persistent homology

2D Scalar function 

Reeb Graph/Contour Tree/Merge Tree 

Morse-Smale Complex 



Contour tree



Contour tree



Contour tree



Contour tree



Contour tree



Contour tree



Contour tree



Reeb graph

Graph obtained by continuos contraction of all the contours in a scalar field,
where each contour is collapsed to a distinct point.

[K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci. Loops in Reeb Graphs of 2-Manifolds. 2004]



Jacobi Set

[H. Edelsbrunner and J. Harer. Jacobi sets of multiple Morse functions. 2002]



Morse-Smale Complex

Partition data into monotonic regions based on gradient flow

(a) (b) (c)
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Morse-Smale complex

[P.-T Bremer, H. Edelsbrunner, B. Hamann and V. Pascucci. A Multi-resolution
Data Structure for Two-dimensional Morse-Smale Functions. 2003]



Morse-Smale complex

[A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, B. Hamann. Topology-
based Simplication for Feature Extraction from 3D Scalar Fields, 2005]

Figure: Topology simplication applied on electron density data for a hydrogen atom: the input has a large number of
critical points, several of which are identied as being insignicant and removed by repeated application of two atomic operations.
Features are identied by the surviving critical points and enhanced in a volume rendered image by an automatically designed
transfer function



Persistent homology

[H. Edelsbrunner, D. Letscher and A. Zomorodian. Topological persistence and
simplification. 2002] [A. Zomorodian, G. Carlsson. Computing Persistent Homol-
ogy. 2004] Persistence diagram v.s. barcodes and persistence modules.



Persistent homology

When data is corrupted by noise, how can we tell features from noise?
”The eye, or the brain, performs the marvelous task of taking the sense
data of individual points and assembling them into a coherent image of a
continuumit infers the continuous from the discrete.”

Figure: The Seine at La Grande Jatte by Georges Seurat

[S. Weinberger. What is persistent homology? 2011]



Persistent homology

Simplifying topological features



Persistent homology

Simplifying topological features



Persistent homology

Simplifying topological features



Why is Topo-In-Vis cool for large data science discovery?
Some Application Stories...



Combustion simulation



Tracking 2D Combustion



Chemical compound: C4H4



Molecular dynamics

Molecular dynamics simulation (left) with abstract graph
representation of its features at two scales (right)

Coarse scale:  
blue = molecules 

Medium scale:  
red-blue = dipoles 



Retinal connectome

A connectome is a comprehensive map of neural connections in the brain
[wiki]



Case Study A: Material science

Quantitative Analysis of the Impact of a Micrometeoroid in a Porous
Medium; reconstructing the structure of porous medium

Micrometeoroid 

impact  
direction 



Case study A: Topological Reconstruction
The Topological Reconstruction Method is Validated with a Controlled Test Shape

Preparation: we develop control test data to validate the approach



Case study A: Control Data (dist. of topological features)

We Report the Distribution of Topological Features in the Full Resolution Data
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q 

(f(p), f(q)) 

maximum 

saddle 



Case study A: Control Data (Hierarchical MSC)

The Hierarchical Morse-Smale Complex Has Very Good Reconstruction Properties



Case study A: Porous Medium (dist. of topological
features)

We Compute the Complete Morse-Smale Complex for the Porous Medium



Case study A: Porous Medium

Need to Find Proper Threshold Values and Characterize the Stability of the Solution



Case study A: Porous Medium

Need to Find Proper Threshold Values and Characterize the Stability of the Solution



Case study A: Porous Medium

We Obtain a Robust Reconstruction of the Filament Structures in the Material



Case study A: Porous Medium

We Track the Evolution of the Filament Structure of the Material Under Impact

Time comparison of the reconstructions 



Case study A: Porous Medium

The Extracted Structures Allow to Quantify the Change in Porosity of the Material

Density profiles!
!
!
!
!
!
!

Decay in porosity of the material !



Case study B: feature definition - Bubble Tracking

Analyze high-resolution Rayleigh Taylor instability simulations

bubble maximum 



Case study B: persistence simplification

Analyze high-resolution Rayleigh Taylor instability simulations

p1 
p2 

Saddle 



Case study B: robust segmentation

The segmentation method is robust from early mixing to late turbulence

T=100!

T=353!

T=700!



Case study B: multiple scales

We Evaluated Our Quantitative Analysis at Multiple Scales
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Case study B: event characterization

We characterize events that occur in the mixing process

Pascucci-17Comp AD 07-DRC

death

merge

split

birth



Case study B: Exciting Result

First Time Scientists Can Quantify Robustly Mixing Rates by Bubble Count
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Case study B: Exciting Result

We Provide the First Quantification of Known Stages of the Mixing Process
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Case study B: Exciting Result

We Provided the First Feature-Based Validation of a LES with Respect to
a DNS

2 5 10 20 50

0.005

0.01

0.05

0.1

0.5

1

Normalized Time!

DNS (Direct Numerical Simulation)!

LES (Large Eddy Simulation)!



Tracking Bubbles in a Rayleigh-Taylor Instability (video)



Coming up next:
What about hight dimensional? Data analysis and visualization is
not seperable...



High dimensional scalar function

[S. Gerber, P.-T. Bremer, V. Pascucci, R. Whitaker. Visual Exploration of High Dimensional Scalar Functions. 2010]



High dimensional scalar function

[S. Gerber, P.-T. Bremer, V. Pascucci, R. Whitaker. Visual Exploration of High Dimensional Scalar Functions. 2010]

10 dimensional data set describing the 
heat release wrt. to various chemical 
species in a combustion simulation 



What are some of the cool open problems?



For both analysis and visualization...

Robustness of topological structures

Scalability, approximation

High-dimensional data

Integration with statistics and manifold learning

Usability



Break!



Part 2:

Exploration of High Dimensional Functions for Sensitivity Analysis

Joint work: Samuel Gerber, Ross Whitaker,
Dan Maljovec, Bei Wang,

Diego Mandelli, Peer-Timo Bremer, Valerio Pascucci



Key ideas

Domain decomposition using Morse-Smale approximation

Geometric summaries of each crystal using regression

Dimension reduction to embed regression curves

Later, more machine learning capabilities



Morse-Smale Complex

Partition data into monotonic regions based on gradient flow
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Persistence Simplification 2D Example



Persistence Simplification 2D Example



Persistence Simplification 2D Example



Persistence Simplification 2D Example



Persistence Simplification 2D Example



Approximating MSC in high dimensions

Based on KNN graph and gradient approximations

x

y

x
y



A simple example



Multi-Level Persistence Simplification



Key ideas: Revisited

Domain decomposition using Morse-Smale approximation

Geometric summaries of each crystal using regression

Dimension reduction to embed regression curves



Integrated Views



Integrated presentation of statistics and topology



Integrated presentation of statistics and topology



Combustion Dataset



Combustion

Data: Combustion simulation of Jet flames

Sample: 700K samples of chemical composition and temperature
extracted point-wise from the simulation

Input: Composition of 10 chemical species, i.e. H2 and CO (fuel),
O2 (Oxidizer)

Output: Temperature (heat released)

Key: Understand extinction and re-ignition phenomena



Combustion: Input Detail

Chemical species involved in combustion simulation:

O2 (Oxygen gas / Oxidizer)

O (Oxygen)

OH (Hydroxide)

H2O (water)

H (Hydrogen)

HO2

CO (Carbon monoxide)

CO2 (Carbon dioxide)

HCO



Interface: Topological Summary



Interface: Topological Summary



Interface: Statistical Summary



Interface: Statistical Summary



Visual Interface: Inverse Coordinate Plots



Visual Interface: Parallel Coordinates Plots



Visual Interface: Interactive Projection

User manipulate how each axis is projected



Visual Interface: Pairwise Scatter Plots



Combustion: Using PCA



Combustion: Full Resolution



Combustion: Example 1

1 crystal (1 min, 1 max)
min: high level of oxidizer, lack of fuel, no combustion
max: peak corresponds to combustion, many chemical reactions
occur which is reflected in the high std of the peak



Combustion: Example 2 , Crystal (c)

3 crystals (3 min and 1 max), 4 distinct modes of combustion; 3
minima have distinct chemical compositions.
Min (c): pure oxidizer (O2). Lack of fuel. No chem. reaction.



Combustion: Example 2, Crystal(b)

Min (b): pure fuel (H2 and CO). Lack of oxidizer.
No chem. reaction.



Combustion: Example 2, Crystal(a)

Min (a): extinction. Fuel and oxidizer is highly turbulent and
blows the flame out, resulting large amount of HO2.



Combustion Dataset: Live Demo



Climate Dataset



Climate

Data: Community Atmosphere Climate Model. Understand
uncertainty in climate simulation by using an ensemble of
simulations for various input parameters.

Sample: 593 runs of Community Atmosphere Climate Model

Input: 21 parameters setting, describe various aspects of physics

Output: thermal radiation (net long wave flux, leaving the planet)

Key: How radiation (total upwards long wave flux) influenced by
input parameters



Climate: Input Detail

For example,

tau: deep convection (> 500 hPa). Convection: thermal
driven upwelling of warm, moist air.

cftau: shallow convection (< 500 hPa).

tau, cftau: both are related to cloud formation, there
imbalance leads to fewer clouds and high thermal radiation



Climate: Full Resolution



Climate: Example, Crystal (a)

2 crystals (2 max and 1 min)
max (a): high radiation, small tau, large cmftau, unbalanced.



Climate: Example, Crystal (b)

max (b): high radiation, large tau, small cmftau, unbalanced.
This is not apparent in standard statistical approach.



Climate Dataset: Live Demo



Crime Dataset



Crime

Data: Communities and crimes

Sample: 1990 FBI uniform crime report, 1993 data points

Input: 100 social and economic variables of communities across the
US, i.e. median income, unemployment rate, etc.

Output: Per capita crimes

Key: Understand how social and economical factors affect crime
rate



Crime: Full Resolution



Crime: Example, Crystal (a)

3 Crystals. Multiple peaks indicate different factors leading to high
crime rate. Max (a): urban, high median income (MedIncome),
and high unemployment rates, a large gap between rich and poor.



Crime: Example, Crystal (b)

Max (b): urban, high percentage of officers assigned to drug cases



Crime: Example, Crystal (c)

Max (c): rural, low Urban percentage, high percentage of low
income housing occupancy, low employment



Crime Dataset: Live Demo



Concrete Dataset



Concrete

Data: Concrete compressive strength

Sample: 1030 samples of different concrete cores tested for strength

Input: 8 chemical components, i.e. cement, water, fly ash, etc.

Output: (compressive) strength

Key: Examine the effect of different cement mixtures on
compressive strength of the resulting concrete



Concrete: Input Details

Chemical species involved in concrete formation:

Cement

Blast furnace slag (BFS)

Fly ash

Water

Superplasticizer

Coarse aggregate (CA)

Fine aggregate (FA)

Age



Concrete: Full Resolution



Concrete: Example 1

1 crystal (singe max, single min)
Cement/water ratio, the higher, the stronger



Concrete: Example 2

3 crystals: different mixtures could lead to similar strength
Minima differ in their settings of Fly ash, BFS, CA/FA ratio



Concrete Dataset: Live Demo



Nuclear 6D Dataset (INL)



Nuclear 6D

Data: extracted from a VR+
2 nuclear reactor simulator

Sample: an ensemble of 10000 simulation trials where a SCRAM is
simulated due to a failure in the system. A SCRAM event is
when the control rods of the reactor are inserted into the core
in order to prevent overheating of the reactor core.

Input: 6 parameters:

PumpTripPre - min pressure in the heat exchange pump
causing the SCRAM to trip
PumpStopTime - relaxation time of pump’s phase-out
PumpPow - end power of the pump
SCRAMtemp - max temp. causing the SCRAM to trip
CRinject - control rod position at the end of SCRAM
CRtime - relaxation time of the control rod system

Output: peak coolant temperature (PCT), measured in Kelvin

Key: what combination of conditions (in the form of input
parameters) can cause potential reactor failure (i.e. nuclear
meltdown witnessed by PCT exceeding a threshold value).



Nuclear 6D: interface

6 crystal (singe min, six max)



Nuclear 6D: inverse coordinate plots

All crystals combined:



Nuclear 6D Dataset: Live Demo



Nuclear 4D Dataset (INL)



Nuclear 4D

Data: analysis of recovery from an aircraft crash into nuclear reactor. The
reactor decay heat is released to the atmosphere through four
cooling towers. During a simulation, the plant is operating at 100%
power when an airplane crashes into the plant, destroying three of
the four towers. A recovery crew then arrives at the site and
attempts to reestablish the capability of the reactor by restoring the
damaged towers one by one.

Sample: 610 simulations has been generated, and among which 132 cases are
considered system failures when the reactor reaches a maximum
temperature of 1000K before the end of simulation.

Input: 4 parameters, time for the crew to arrive at the plant t0, and the
time for them to recover the first, second and third tower (t1, t2
and t3)

Output: e.g. maximum temperature reached in the simulation (MT)

Key: understand how these input variables impact system dynamics, help
domain scientists to make decisions regarding repair strategies and
evacuation plans.



Visual interface highlighting clustering structure

(a) (b) (c)1

2

1

2

Case (A.1)

1
2

Figure: (a) The topological summary visual interface. (b) Inverse
coordinate plots for both crystals individually and combined. (c) Parallel
coordinate plots.



Nuclear 4D Dataset: Live Demo



Nuclear 9D Dataset (INL)



Nuclear 9D

Data: analysis of recovery attempts of a Loss of Offsite Power event
followed by loss of diesel generators resulting in Station BlackOut
(SBO).

Sample: 19996 simulations generated, among which 6597 failed, i.e. reactor
temperature breached threshold resulting in reactor core damage.
13399 trials were successfully able to keep the temperature below
the threshold temperature while either diesel generator power or
offsite power were restored, or the firewater system is aligned
allowing cooling to the core via the firewater system.

Output: Maximum clad temperature reached in the simulation (MT)

or: Reactor Power

Key: (a) understand how these input variables impact system dynamics,
help domain scientists to make decisions regarding probability of
success/failure with regard to different stochastic variables. (b) the
impact of increased reactor power on safety of the nuclear plant, in
terms of time required for various recovery procedures.



Nuclear 9D

Input: 9 parameters (each dimension is normalized to have a zero mean
and a standard deviation of one):

FailureTimeDG - Failure time of the diesel generators
ACPowerRecoveryTime - Minimum time to recovery either
offsite AC Power or power from the diesel generators
SRVstuckOpenTime - Time when one safety relief valve gets
stuck in the open position
cladFailureTemp - Threshold temperature representing
system failure
CoolingFailToRunTime - The time when both the High
Pressure Core Injection (HPCI) cooling system and the Reactor
Core Isolation Cooling (RCIC) fail to run
ReactorPower - Percent of upscaling of the raw material used
in the reactor core
ADSactivationTimeDelay - Time delay between triggering of
an HCTL event and the time it takes to activate the ADS.
FWTime - Time to align the firewater system
TotalBatteryLife - Time where the secondary cooling
system’s DC power source fails



Visual interface highlighting clustering structure



Nuclear 9D Dataset: Live Demo



Material Science Dataset (PNNL)



Material Science Dataset: Live Demo



Break!



Part 3: Perspective from a Nuclear Scientist



Part 4: Discussions



Some references to be found at:

http://www.sci.utah.edu/∼beiwang/

http://www.pascucci.org/

http://cedmav.sci.utah.edu/research-projects/high-d-data-
anal-and-vis.html



Thank you!
beiwang@sci.utah.edu
maljovec@cs.utah.edu
diego.mandelli@inl.gov


