
WEB ENABLED ROBOT DESIGN AND DYNAMIC CONTROL SIMULATION SOFTWARE
SOLUTIONS FROM TASK POINTS DESCRIPTION

Tarek M. Sobh’, Bei Wang*’ and Sarosh H. Patel‘

University of Bridgeport
Bridgeport, CT 06601 U.S.A.

Abstmet: h this work, we propose a web-based solution for robot design and dynamic control simulation based on given task point
descriptions. The sotlware combines and utilizes the computational power of both the Mathematica and Matlab packages. Given the
location and velocity of each task point, our approach formulates the complete design of a 3 DOF robot model by computing its optimal
dynamic parameters such as link length, mass and inertia. Further more, our package suggests the optimal control parameters (Kp, Kv)
.for the dynamic control simulation.

Keywords: Robot design, modeling, manipulability, web-based, trajectoly generation, optimization, control loop simulation, robot
control, dynamic control simulation.

1. Introduction

A task point’s description includes a set of desired positions of an end-effector in the physical space and velocities at
these points at a particular instant of time. The problem being considered in this work is to obtain the optimal robot design
and dynamic control strategy in such a way that the task can he carried out with maximum manipulability and minimum
error in reaching the desired positions and velocities.

Current robotic researches based on task descriptions have focused on the trajectory generation [I, 41 and kinematic
synthesis [2] without taking dynamic parameters into consideration. Some research emphasizes the design and numerical
optimization of manipulability and cost function [2]. Our robot design and simulation software not only uses the kinematic
parameters of task points in designing the manipulability function, hut also utilizes the dynamic description of each’task
point (velocity, etc). Therefore, it offers the user a complete dynamic robot model instead of a simple kinematic description.

Instead of a windows application which requires local installation of Mathematica and Matlab, our web utility enables
users to access computational services provided by the server. Therefore, local installations of the complicated
mathematical packages are no longer needed.

2. Theory .

2.1 Manipulability

A robot configuration can be said to be best suited for a particular task if the manipulability or the,dexterity of the
manipulator at the set of task points is high. In the past few years numerous approaches have been proposed for calculating
the manipulability. The manipulability of a manipulator at a particular point can he defined as the “the abiliQ of the
manipulator to accelerate in all directions from that point ”.

Yosbikawa [3] suggested one such measure based on the volume of the manipulability ellipsoid as derived from
manipulator kinematic properties i.e., the Jacobian. Yoshikawa’s manipulability measure is based on kinematic data and it
calculates the manipulability bas& on how far is the point from a singularity and thus, be able to exert forces and move
uniformly in all directions.

VP*hi = JqiZq --- (1)

Where J (q) is the velocity Jacobian at that point and 4 is the joint variable vector

2.2 The Cost Function

Deciding on the best possible geometric model for a manipulator is a very difficult problem in kinematics as well as
mechanics. The equations describing the kinematic behavior of the links are nonlinear and have many variables in the order
of thousands [Z]. In some cases there might not be any closed solution, whereas in other cases there might be more than one

*Depalfment ofcomputer Science and Engineering ’ Contact author: bciwanc~bride~urt .sdu
Contact author: ~ ~ u r l ~ ~ ~ ~ ~ b r i d a ~ o o n L u l u . Department of Electrical Engineering

0-7803-7906-3/03/$17.00 02003 IEEE. 1221

closed solution [2]. One of the best ways (though not the fastest) to solve such a problem is using the theory of
optimization. Using optimization, all the possible options are evaluated using a Cost Function [2] or Objective Function [9].
Depending on whether the Cost Function has to be maximized or minimized the best pos:;ible solution is chosen. Multiple
factors influencing the modeling technique can be incorporated into the Cost Function.

The criteria used to form the cost function are:
1. Manipulability
2. Accuracy
3. Distance from the point

The cost function [2] is given by

--- (2)

Where K is the DH parameter of the robot
ql ,q2 qm arethejoint vectors ofthe taskpoints

5 is the dumping factor

W, is the manipulability
E is the weight factor
Di is the distance between the point and the origin of the end-kame of the robot
b is the extra term to eliminate singularity

L =
N

(a . + d,) where a j and d j are the length and offset Denavit-Hartenberg parameters respectively
I

i
d,e 4

The optimization parameters are all the Denavit-Hartenberg parameters other than the joint variables.

2.3 Optimizing the Cost Function

The cost function is a minimizing function. Mihimizing the function provides the optimal values for the DH table. The
function is optimized using the steepest descent algorithm [2], which fmds the minima by searching in the direction
opposite to the gradient. If the range of the function does not contain negative values, the function always converges, except
in a few rare cases when the gradient disappears [2].

2.4 Calculation of Dynamic Parameters

The Robot Design module calculates the manipulator DH table. But the dynamic parameters like Mass, Center of Gravity
and Inertia are required for the closed loop control simulation of the robot. Our software simulation package calculates
these on the following assumptions:

1.
2.
3.
4.

The manipulator links are solid and cylindrical in shape.
All links have uniform density (uniform mass distribution).
All the links are made of the Same material.
There are a k i t e number of actuators and sensors with known specifications that can be used in the design.

The user is requested to enter the link radii. The link radii are necessary for calculathg the dynamic parameters of the
maniDulator. The Darameters are calculated as follows:

Mass - The user is requested to specify the link radius. Knowing the volume and density the mass of each link can be
easily calculated.

2 m i = m i aid --- (3)

where mi is the mass of the ith link,

q is the radius of the ith link,

a; is the length of the ith link,

d is the density of the link material
Center of Gravity - The center of gravity is calculated geometrically with respect to the link coordinate kame.
Inertia - The Inertias of the links has to be calculated about the respective Center of Gravities. Since the links are
considered to be cylindrical, the hertia about the axis of a cylinder is given by:

1222

1 I --mi(
‘ - 2

Using the perpendicular axis theorem the Inertia along the other two axes is given by:
1 2 12=I,=-m,5
4

--- (4)

--- (5)

where mi is a Mass of the ith link

q is the Radius of the ith link

2.5 Trajectory Generation

The main purpose for trajectory generation is to produce a timed path, which can be tracked by a manipulator. All the
task points are lmked to generate a trajectory Itom the initial to the final point on a common time scale. Our implementation
uses a seven-degree polynomial to generate the trajectory. The control loop is implemented over to support this trajectory.

2.6 The PD Control Loop

Most of the control algorithms use proportional derivative (PD) control. In software a local PD control loop [8] is applied
to each link independently. It is advantageous to use a PD control loop for the following reasons [6]:

1.
2.

It is simple to implement.
Since it involves few calculations, it is ideal for real time control provided that the choice of Kp and Kv is
appropriate to give optimum control.
The behavior of the system can be controlled by changing the feedback gains. 3.

The torque to be applied to the manipulator in order to attain the desired position is calculated using Forward Dynamics
[7]. The feedback loop in the case of a computer simulation of the control loop encodes Inverse Dynamics, where as in the
case of real time control, the sensors provide the feedback. Figure 1 below displays a block diagram commonly found in
robot prototyping research [5] .

w
CiYStetll

Trajeclw Generation

e

0

Figure 1 : Block diagram of the robot PD control loop

Where Kp is the proportional gain, Kv is the derivative gain, e is the error h position and e’ is the error in velocity.
At every cycle in the Control Lwp the manipulator state is compared with the desired position. This gives the Position

Error at that instant. Similarly, the Velocify Error is also calculated, by comparing the instantaneous velocity of each of the
links with the desired velocity at that instant. The torque to be applied at that instant is given by:

Torque = (Kp * Position Error) + (Kv * Velocity Error)

2.7 Optimization of Kp and Kv ,
The proposed software optimizes the values of the loop gains (Kp and Kv) by trying all possible values within a given

range. The user can also specify this range. The criteria for deciding the optimum values for Kp and Kv is that the sum of
the square of errors about the desired trajectory should less than a specified threshold. The user can also run the simulation
for particular value of Kp and Kv.

1223

3. The Software Package

Our sofiware package includes four major modules: a web interface, a kinematics design module, a dynamic design
module and a dynamic control simulation module. It is intended that a user would specify the coordinates of each task
point, the velocity of the end-effector at each point and the specific time to reach each point. Through kinematic and
dynamic computations, our implementation desires a complete optimal robot model wilh dynamic parameters. It further
performs the dynamic control simulation of the obtained robot model and suggests the best control parameters, such as Kp
and Kv.

3.1 The Web Interface

The web interface is developedusing Java Server Page Technology and Servelet. It iis the central control module that
communicates with the Mathematica and Matlab applications running on the server. The basic aim is to interact with the
user and invoke the respective modules. It uses a modified version of JLink to communicate with Mathematica and a
modified version of JMatlink to communicate with Matlab. It controls the Mathematica k:emel fioin JSP pages and Matlab
60m JMatservlet (part of JMatLink).

The web interface communicates with the kinematics design module and allows the ;aser to enter task point variables,
such as coordinates, velocities and time scale. It also interacts with the dynamic design module and a dynamic control
simulation module based on user specified radii for each link and range of dynamic ,simulation variables (Kp, Kv). It
provides the web users with a complete design of the kinematic and dynamic modules, and also the optimized PD control
variables. The web implementation converts the detailed control simulation results, such as the desired path vs. obtained
path curves, into jpeg images so that they can be easily viewed on the web page.

3.2 Kinematic Design Module

The kinematic design module generates the best kinematics robot configuration with the maxim.& manipulability at
user-specified task points. With modifications based on the kinematics synthesis package [2] build on top of Roboticu
package (v.3.60, Copyright 1993 Board of Trustees, University of Illinois), this module applies numerical optimization in
constructing a kinematics robot model. The user (a robot designer) enters a set of task points into this module and obtains a
robot configuration in the form of a DH table, describing the optimal kinematics properties of the three-link robot.

The main Mathematica (V. 4.1, Wolfiam Research Inc. 2002) procedure that triggers the optimization event is defmed
as:

’

Desigdobot [taskjoints, configuration, precision, size-dump, file-name]

Where taskjoints is a matrix with xyz coordinates of task points; configuration is a string of ‘R’s and ‘P’s describing
prismatic or rotational joints. For example, “W stands for an articulated manipulator. Our module tries all possible
joints combinations for a 3-link robot, achieving the best configuration. Precision and size-dump handle the precision and
dimensions of the robot. At last, file-name specifies the location in which the robot configuration file is stored [2].

3.3 Dynamic Design Module

While the Kinematic model is only concerned with the kinematic properties of the ro’bot, the dynamic module involves
user input as task point’s velocities and operation time. Running in the MATLAB (V. 6.1, Mathworks Inc. 2001)
environment, the input to this module is the file, which is generated by Matbematica. This module reads the robot
configtiration file generated by the kinematic design module:

Using the DH parameters and the formulae discussed in the previous section, this module generates the Dynamic
parameter matrix ‘dyn’. The dynamic matrix is a (n x 20) matrix where n is the number of degrees of fieedom of the
manipulator. This matrix defines all the dynamic parameters of the manipulator. The structure of the dyn matrix is as
follows [12]:

1224

1
2 a
3
4 d
5
6
7 -

alpha Link twist angle
Link Length

theta Link rotation angle
Link offset distance

sigma Joint Type, 0 for revolute, none-zero for prismatic
mass Mass ofthe link

E\ Elements of link inertia tens& about the link'COG
14 1

. ...
8 I ' y
9 J I Z
10 I Ixx

Link COG with respect to the link coordinate frame

Table 1 : Structure of the dyn matrix

16
17
18
19
20

In order to generate the dynamic parameters the user is asked to input the radii of the links. Based on the radii, the mass
of the links, and successively the center of gravity (COG) and Inertia are calculated. Finally, a Robot object is created in
MATLAB using the dynamic parameters calculated; this robot has all the dynamic properties as desired.

3.4 Dynamic Control Simulation Module

Programmed in the MATLAB environment, this module deals with the control simulation of the dynamic robot model.
The user is asked torenter the co-ordinates of points with respect to a time frame and the velocities at those points. The
points specified by the user are linked using a seventh order polynomial in order to generate a trajectory. The PD control
loop simulation runs using this generated trajectory.

The user has a choice of either specifylng the values of Kp and Kv or else specifylng a range of values for Kp and Kv
and the step increment. In the second case the software finds the optimum values for both Kp and Kv. The same is the case
with the update frequency, where the user can either specify a value or range with the increment, in which case the software
decides the optimum.value.

4. Results

This section includes results from a complete sample program run. The user specifies a number of task points (figure 2).
Then the user specifies coordinates and velocity of each task points with respect to a time scale (figure 3). Figure 4 and
figure 5 are part of .the dynamic model generation and dynamic control simulation, showing the best Kinematic and
Dynamic model (DH table and Dynamic table), as well as the optimal values of Kp and Kv for each link. Figure 6 to figure
11 are the results of the dynamic simulation, displaying the desired path and obtained path for each link.

Jm Amateurinertia
G
B Viscous friction, motor refmed
Tct
Tc-

Reduction gear ratio. Joint speed i link speed

Coulomb friction (positive rotation), motor referred
Coulomb friction (negative rotation), motor referred

I 1!1
Figure 2. User specifies number of task points

points with respect to a time scale

1225

dynamic PD control simulation
-

8

4
$

*r

3. _-

I
Figure 6 : Uesired,Vs: obtained link displacement for link I

. a .,. . __ b .!rotr l c d -. -
I 4

Figw

Figure

values for each link

MI
Deslred Vs. obtained link disolacement for link 2

1226

I
Figure 10. Desued Vs. Obtamcd velocity for link 2

I
Figure 11: Desired Vs. Obtained vclocity for link . 3

5. Conclusion

In this paper we have presented a web-enabled software utility for the complete design and optimum dynamic control of a
manipulator kom a task points’ description. The software generates the basic configuration of a manipulator based on user
specified task points, in order to attain the greatest manipulability in the workspace. This software also provides the
optimum values ofKp, Kv for optimum dynamic control.

6. Future Development

The potential f h r e enhancements to this software include:
I. Building better objective functions, by including more design criteria and assigning weighing coefficients to each

of them according to their importance.
2. Customizable objective functions, by which the user can design a manipulator by defining hisiher own design

criteria.
3. Implementation of advanced and better trajectory generation algorithms.
4. Faster algorithms for calculation of inverse kinematics.
5. Designing a numerical solution package for inverse kinematics for a few common robot models.
6. Implementation of Proportional Integral Derivative (PID) control in addition to Proportional Derivative (PD)

control. in order to further minimize the error.

References

1. Lloyd I., Hayward V. ”A Discrete Algorithm for Fixed-path Trajectory Generation at Kinematic Singularitid’, IEEE Inl. Con/: on Robolirs and
Auromalion, Minneapalis (1996)
2. Sobh T. and Toundykov D. “Kinematic Synthesis of Robotic Manipulators from Task Descriptions”. To appear in IEEE magazine on Robolics and
Aulomalion, Summer (2003)
3. Yoshikawa T. “Manipulability ofRobot Mechanisms”. InlernalionolJoumal ofRoborics Research, ~01.4, pp.3--9 (1985)
4. Pires E., Machado I. and Oliveira P. “An Evolutionary Approach to Robot,StrucNre and Trajectory Optimization”, l0;h Inrernorional Confirenee on
AdvancedRoboficr, pg. 333-338, Budapest, Hungay, August (2001)
5. Sobh, T., Dekhil, M., Henderson T., and Sabbavarapu A. “Prototyping a Three L i d Robot Manipulator”, Internotional Journal ofRobories and
Auromoliun, Vol. 14, No. 2 (1999)
6. Dekhil, M., Sobh T., Henderson T., Sabbavarpu A. and Mecklenburg R. “Robot manipulator prototyping (Complete design review)”, University of Utah
(1994)
1. Spang M. and Vidyasagar. “Robot Dynamics and Control“, Wily, New York (1989)
8. Grigorian M., Sobh T. “Design-Simulation-ptimi~tion Package for a Generic 6-DOF Manipulator with a Spherical Wrist”, to appear in Journal of
syslem Anolwir. Modeling andSimulofion. April (2003).
9. Pamanes I., Montes P., Cuan E., Rodriguez F. “Optimal Placement and Synthesis of 3R Manipulator”, Internorional Symposium of Robolics and
Auromalion. Monterrey, Mexico (2000)

1227

