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Abstract
Massive simulations and arrays of sensing devices, in combination with increasing computing resources, have
generated large, complex, high-dimensional datasets used to study phenomena across numerous fields of study.
Visualization plays an important role in exploring such datasets. We provide a comprehensive survey of advances
in high-dimensional data visualization over the past 15 years. We aim at providing actionable guidance for data
practitioners to navigate through a modular view of the recent advances, allowing the creation of new visualiza-
tions along the enriched information visualization pipeline and identifying future opportunities for visualization
research.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1 Introduction

With the ever-increasing amount of available computing
resources, our ability to collect and generate a wide vari-
ety of large, complex, high-dimensional datasets continues
to grow. High-dimensional datasets show up in numerous
fields of study, such as economy, biology, chemistry, polit-
ical science, astronomy, and physics, to name a few. Their
wide availability, increasing size and complexity have led
to new challenges and opportunities for their effective vi-
sualization. The physical limitations of the display devices
and our visual system prevent the direct display and instanta-
neous recognition of structures with higher dimensions than
two or three. In the past decade, a variety of approaches have
been introduced to visually convey high-dimensional struc-
tural information by utilizing low-dimensional projections
or abstractions: from dimension reduction to visual encod-
ing, and from quantitative analysis to interactive exploration.
A number of surveys have focused on different aspects of
high-dimensional data visualization, such as parallel coordi-
nates [Ins09, HW13], quality measures [BTK11], clutter re-
duction [ED07], visual data mining [HG02, Kei02, DOL03],
and interactive techniques [BCS96]. High-dimensional as-
pects of scientific data have also been investigated within the
surveys [BH07,KH13]. The surveys [WB94,Cha06,Mun14]
focus on the various aspects of visual encoding techniques

for multivariate data. These papers provide a valuable sum-
mary of existing techniques and inspiring discussions of fu-
ture directions in their respective domains. However, few
surveys in the past decade have aimed at providing a general,
coherent, and unified picture that addresses the full spectrum
of techniques for visualizing high-dimensional data.

We provide a comprehensive survey of advances in high-
dimensional data visualization over the past 15 years, with
the following objectives: providing actionable guidance for
data practitioners to navigate through a modular view of the
recent advances, allowing the creation of new visualizations
along the enriched information visualization pipeline, and
identifying opportunities for future visualization research.

Our contributions are as follows. First, we propose a cat-
egorization of recent advances based on the information vi-
sualization (InfoVis) pipeline [CMS99] enriched with cus-
tomized action-driven classifications (Figure 2, Section 2).
We further assess the amount of interplay between user in-
teractions and pipeline-based categorization and put user in-
teractions into a measurable context (Table 1, Section 6).
Second, we highlight key contributions of each advancement
(Sections 3, Section 4, Section 5). In particular, we provide
an extensive survey of visualization techniques derived from
topological data analysis (Section 3.5, Section 4.4), a new
area of study that provides a multi-scale and coordinates-
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free summary of high-dimensional data [Car09]. Further-
more, we connect advances in high-dimensional data visu-
alization with volume rendering and machine learning (Sec-
tion 7). Finally, we reflect on our categorization with respect
to actionable tasks, and identify emerging future directions
in subspace analysis, model manipulation, uncertainty quan-
tification, and topological data analysis (Section 8).

Figure 1: Interactive survey website for paper navigation.

2 Survey Method and Categorization

We conduct a thorough literature review based on relevant
works from major visualization venues, namely Visweek,
EuroVis, PacificVis, and the journal IEEE Transactions on
Visualization and Computer Graphics (TVCG) from the pe-
riod between 2000 and 2014. To ensure the survey covers
the state-of-the-art, we further selectively search through ref-
erences within the initial set of papers. Beyond the visual-
ization field, we also dedicate special attention to the ex-
ploratory data analysis techniques in the statistics commu-
nity. Through such a rigorous search process, we have iden-
tified more than 200 papers that focus on a wide spectrum
of techniques for high-dimensional data visualization. To
help organize the large quantity of papers, we have produced
an interactive survey website (www.sci.utah.edu/
~shusenl/highDimSurvey/website, based on the
SurVis [Bec14] framework; a screen shot is shown in Fig-
ure 1) that allows readers to interactively select and filter
papers through various tags. However, due to the space limi-
tation, only a subset of the complete list of references (avail-
able through the survey website) is mentioned in the paper.

As illustrated in Figure 2, we base our main catego-
rization on the three transformation steps of the informa-
tion visualization pipeline [CMS99] (and its minor varia-
tion in [BTK11]), namely, data transformation, visual map-
ping, and view transformation. Each category is enriched
with novel, customized subcategories. Data transformation
(Section 3) corresponds to the analysis-centric methods such
as dimension reduction, regression, subspace clustering, fea-
ture extraction, topological analysis, data sampling, and ab-
straction. Visual mapping (Section 4), the key for most vi-
sual encoding tasks, focuses on organizing the information
from the data transformation stage for visual representa-

tion. This category includes visual encodings based on axes
(e.g., scatterplots and parallel coordinate plots), glyphs, pix-
els, and hierarchical representations; together with anima-
tion and perception. View transformation (Section 5) corre-
sponds to methods focusing on screen space and rendering,
including illustrative rendering for various visual structures,
as well as screen space measures for reducing clutter or arti-
facts and highlighting important features.

Such a design allows us to easily classify the core con-
tribution of vastly different methods that operate on en-
tirely different objects, but at the same time, reveal their
interconnections through the linked pipeline. In addition,
the pipeline-based categorization provides the reader with
a modular view of the recent advances, allowing new sys-
tems to be configured based on possibilities provided by the
reviewed methods.

User interactivity is an integral part within each pro-
cessing step of the pipeline, as illustrated in Figure 2.
Based on the amount of user interaction, we can classify
all high-dimensional data visualization methods into three
categories: computation-centric, interactive exploration, and
model manipulation. The distinction between interactive ex-
ploration and model manipulation is made to emphasize a
particular manipulation paradigm, where the underlying data
model is modified based on interaction to reflect user inten-
tion. A summary of the interplay between processing steps
and interactions is illustrated in Table 1, where user interac-
tions are put into a measurable context. The corresponding
details are discussed in Section 6.

3 Data Transformation

We start by describing different types of high-dimensional
datasets. We then give an in-depth discussion on the action-
driven subcategories centered around typical analysis tech-
niques during data transformation, namely, dimension re-
duction, clustering (in particular, subspace clustering) and
regression analysis. We focus especially on their usages in
visualization methods. In addition, we pay special attention
to topological data analysis, which is a promising emerging
field.

3.1 High-Dimensional Data
We provide an overview of the different aspects of high-

dimensional datasets, to define the scope of our discussion
and highlight distinct properties of these datasets. Our dis-
cussions on different data types are inspired by the book by
Munzner [Mun14].

Data Types. In our survey, we limit our exposition to
table-based data, and exclude (potentially high-dimensional)
graph/network data from the discussion. A high-dimensional
dataset is commonly modeled as a point cloud embedded in
a high-dimensional space, with the values of attributes cor-
responding to the coordinates of the points. Based on the un-
derlying model of the data and the analysis and visualization
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Figure 2: Categorization based on transformation steps within the information visualization pipeline, with customized action-
driven subcategories.

goals, the attributes consist of input parameters and output
observations, and the data could be modeled as a scalar or
vector-valued function (where the function values are based
on the output observations) on the point cloud defined by the
input parameters. Topological data analysis (Section 3.5) ap-
plies to both point cloud data and functions on point cloud
data (e.g., [GBPW10, SMC07]), while regression analysis
(Section 3.4) typically applies to the latter (e.g., [PBK10]).

Attribute Types. The attribute type (e.g., nominal vs. nu-
merical) can greatly impact the visualization method. In
many fields and applications, the value of the attributes is
nominal in nature. However, most commonly available high-
dimensional data visualization techniques such as scatter-
plots or parallel coordinate plots are designed to handle
numerical values only. When utilizing these methods for
visualizing nominal data, information overlapping and vi-
sual elements stacking usually exist. One way to address
the challenge is mapping the nominal values to numeri-
cal values [RRB∗04] (e.g. as implemented in the Xmdv-
Tool [War94]). Through such a mapping, each axis is used
more efficiently and the spacing becomes more meaningful.
In the Parallel Sets work [BKH05], the authors introduce a
new visual representation that adapts the notion of parallel
coordinates but replaces the data points with a frequency-
based visual representation that is designed for nominal
data. The Conjunctive Visual Form [Wea09] allows users to
rapidly query nominal values with certain conjunctive rela-
tionships through simple interactions. The GPLOM (Gener-
alized Plot Matrix) [IML13] extends the Scatterplot Matrix
(SPLOM) to handle nominal data.

Spatiotemporal Data. Some recent advances focus on de-
veloping visual encoding that capture the spatiotemporal as-

pects of high-dimensional data. Visual analysis of the finan-
cial time series data is explored in the work by Ziegler et
al. [ZJGK10]. The work presented by Tam et al. [TFA∗11]
studies facial dynamics utilizing the analysis of time-series
data in parameter space. Datasets with spatial information
such as multivariate volumes [BDSW13] or multi-spectral
images [LAK∗11] are very common in scientific visualiza-
tion, and numerous methods have been introduced within the
scientific visualization domain, see [BH07, KH13] for com-
prehensive surveys on these topics. We discuss the intrinsic
interconnections between these two areas in Section 7.

3.2 Dimension Reduction
Dimension reduction techniques are key components for

many visualization tasks. Existing work either extends the
state-of-the-art techniques, or improves upon their capabili-
ties with additional visual aid.

Linear Projection. Linear projection uses linear transfor-
mation to project the data from a high-dimensional space to
a low-dimensional one. It includes many classical methods,
such as Principal component analysis (PCA), Multidimen-
sional scaling (MDS), Linear discriminate analysis (LDA),
and various factor analysis methods.

PCA [Jol05] is designed to find an orthogonal linear
transformation that maximizes the variance of the result-
ing embedding. PCA can be calculated by an eigende-
composition of the data’s covariance matrix or a singular
value decomposition of the data matrix. The interactive PCA
(iPCA) [JZF∗09] introduces a system that visualizes the re-
sults of PCA using multiple coordinated views. The system
allows synchronized exploration and manipulations among
the original data space, the eigenspace, and the projected
space, which aids the user in understanding both the PCA
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process and the dataset. When visualizing labeled data, class
separation is usually desired. Methods such as LDA aim to
provide a linear projection that maximizes the class separa-
tion. The recent work by Koren et. al. [KC03] generalizes
PCA and LDA by providing a family of flexible linear pro-
jections to cope with different kinds of data.

Non-linear Dimension Reduction. There are two distinct
groups of techniques in non-linear dimension reduction, un-
der either the metric or non-metric setting. The graph-based
techniques are designed to handle metric inputs, such as
Isomap [TDSL00], Local Linear Embedding (LLE) [RS00],
and Laplacian Eigenmap (LE) [BN03], where a neighbor-
hood graph is used to capture local distance proximities and
to build a data-driven model of the space.

The other group of techniques address non-metric prob-
lems commonly referred to as non-metric MDS or stress-
based MDS by capturing non-metric dissimilarities. The
fundamental idea behind the non-metric MDS is to mini-
mize the mapping error directly through iterative optimiza-
tions. The well-known Shepard-Kruskal algorithm [Kru64]
begins by finding a monotonic transformation that maps the
non-metric dissimilarities to the metric distances, which pre-
serves the rank-order of dissimilarity. Then, the resulting
embedding is iteratively improved based on stress. The pro-
gressive and iterative nature of these methods has been ex-
ploited recently by Williams et al. [WM04], where the user
is presented with a coarse approximation from partial data.
The refinement is on-demand based on user inputs.

Control Points Based Projection. For handling large and
complex datasets, the traditional linear or non-linear di-
mension reductions are limited by their computational effi-
ciency. Some recent developments, e.g., [DST04, PNML08,
PEP∗11a, JPC∗11, PSN10], utilize a two-phases approach,
where the control points (anchor points) are projected first,
followed by the projection of the rest of the points based on
the control points location and local features preservation.
Such designs lead to a much more scalable system. Further-
more, the control points allow the user to easily manipulate
and modify the outcome of the dimension reduction compu-
tation to achieve desirable results.

Distance Metric. For a given dimension reduction algo-
rithm, a suitable distance metric is essential for the com-
putation outcome as it is more likely to reveal important
structural information. Brown et al. [BLBC12] introduce
the distance function learning concept, where a new dis-
tance metric is calculated from the manipulation of point
layouts by an expert user. In [Gle13], the author attempts
to associate a linear basis with a certain meaningful con-
cept constructed based on user-defined examples. Machine
learning techniques can then be employed to find a set of
simple linear bases that achieve an accurate projection ac-
cording to the prior examples. The structure-based analysis
method [LMZ∗14] introduces a data-driven distance metric

inspired by the perceptual processes of identifying distance
relationships in parallel coordinates using polylines.

Dimension Reduction Precision Measure. One of the fun-
damental challenges in dimension reduction is assessing and
measuring the quality of the resulting embeddings. Lee et al.
introduce the ranking-based metric [LV09] that assesses the
ranking discrepancy before and after applying dimension re-
duction. This technique is then generalized [MLGH13] and
used for visualizing dimension reduction quality. A projec-
tion precision measure is introduced in [SvLB10], where a
local precision score is calculated for each point with a cer-
tain neighborhood size. In the distortion-guided exploration
work [LWBP14], several distortion measures are proposed
for different dimension reduction techniques, where these
measures aid in understanding the cause of highly distorted
areas during interactive manipulation and exploration. For
MDS, the stress can be used as a precision measure. Seifert
et al. [SSK10] further develop this idea by incorporating the
analysis and visualization for better understanding of the lo-
calized stress phenomena.

3.3 Subspace Clustering
Clustering is one of the most widely used data-driven

analysis methods. Instead of providing an in-depth discus-
sion on all clustering techniques, in this survey, we fo-
cus on subspace clustering techniques which have a great
impact for understanding and visualizing high-dimensional
datasets. Dimension reduction aims to compute one sin-
gle embedding that best describes the structure of the data.
However, this could become ineffective due to the increas-
ing complexity of the data. Alternatively, one could perform
subspace clustering, where multiple embeddings can be gen-
erated through clustering either the dimensions or the data
points, for capturing various aspects of the data.

Dimension Space Exploration. Guided by the user, dimen-
sion space exploration methods interactively group relevant
dimensions into subsets. Such exploration allows us to better
understand their relationships and to identify shared patterns
among the dimensions. Turkay et al. introduce a dual visual
analysis model [TFH11] where both the dimension embed-
ding and point embedding can be explored simultaneously.
Their later improvement [TLLH12] allows for the group-
ing of a collection of dimensions as a factor, which per-
mits effective exploration of the heterogeneous relationships
among them. The Projection Matrix/Tree work [YRWG13]
extends a similar concept to allow a recursive exploration of
both the dimension space and data space. Several visual en-
coding methods also rely on the concept of dimension space
exploration. These methods are discussed in Section 4.3.

Clustering Subsets of Dimensions. Comparing to the di-
mension space exploration, where the user is responsible
for identifying patterns and relationships, subspace clus-
tering/finding methods automatically group related dimen-
sions into clusters. Subspace clustering filters out the in-
terferences introduced by irrelevant dimensions, allowing
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lower-dimensional structures to be discovered. These meth-
ods, such as ENCLUS [CFZ99], originate from the data
mining and knowledge discovery community. They in-
troduce some very interesting exploration strategies for
high-dimensional datasets, and can be particularly effec-
tive when the dimensions are not tightly coupled. The
TripAdvisorND [NM13] system employs a sightseeing
metaphor for high-dimensional space navigation and explo-
ration. It utilizes subspace clustering to identify the sights
for the exploration. The subspace search and visualization
work [TMF∗12] utilizes the SURFING (subspaces rele-
vant for clustering) [BPR∗04] algorithm to search the high-
dimensional space and automatically identifies a large can-
didate set of interesting subspaces. For the work presented
by Ferdosi et al. [FBT∗10], morphological operators are ap-
plied on the density field generated from the (3D) PCA pro-
jection of the high-dimensional data for identifying subspace
clusters.

Non-Axis-Aligned Subspaces. Instead of clustering the di-
mensions, which essentially creates axis-aligned linear sub-
spaces, identifying non-axis-aligned subspaces is a more
flexible alternative. Projection Pursuit [FT74] is one of the
earliest works aimed at automatically identifying the inter-
esting non-axis-aligned subspaces. Projections are consid-
ered to be more interesting when they deviate more from a
normal distribution. Some advances have been made in the
machine learning community to perform non-axis-aligned
subspace clustering [Vid11]. Instead of clustering the dimen-
sions, the points are grouped together for sharing similar lin-
ear subspaces. In particular, we assume the complex struc-
ture of the data can be approximated by a mixture of linear
subspaces (of varying dimensions), and each of the linear
subspaces corresponds to a set of points where their rela-
tionships can be approximately captured by the same linear
subspace.

For very high-dimensional data, the subspace finding
algorithms typically have a relatively high computational
complexity. By utilizing random projection, Anand et
al. [AWD12] introduce an efficient subspace finding algo-
rithm for data with thousands of dimensions. It generates a
set of candidate subspaces through random projections and
presents the top-scoring subspaces in an exploration tool.

3.4 Regression Analysis
Regression analysis in high dimension is an extensive and

active field of research in its own right. We make no attempt
to survey the entire area, but rather focus on the interplay
between visualization and regression analysis.

Optimization and Design Steering. Pure optimization
problems often are not the focus in the visualization com-
munity. What is more common are design steering methods
where, in addition to a multivariate input space, the user has
one or several output or response variables they want to ex-
plore (e.g., [BPFG11,TWSM∗11]), where the results require
a qualitative examination, or are used to inform decisions.

HyperMoVal [PBK10] is a software system used for val-
idating regression models against actual data. It uses sup-
port vector regression (SVR) [SS04b] to fit a model to high-
dimensional data, highlights discrepancies between the data
and the model, and computes sensitivity information on the
model. The software allows for adding more model param-
eters to refine their regression to an acceptable level of ac-
curacy. Berger et al. [BPFG11] utilize two different types of
regression models (SVR and nearest neighbor regression) to
analyze a trade-off study in performance car engine design.
Utilizing the predictive power of the regression, they are able
to provide a guided navigation of the high-dimensional space
centered around a user-selected focal point. The user adjusts
the focal point through multiple linked views, and sensitiv-
ity and uncertainty information are encoded around the focal
point.

Tuner [TWSM∗11] begins as an automated adaptive sam-
pling algorithm where a sparse sampling of the parame-
ter space is refined by building a Gaussian Process Model
(GPM) (see [RW06] for a good overview) and using adap-
tive sampling to focus additional samples in areas with ei-
ther a high goodness of fit or high uncertainty. The software
then relies heavily on user interaction to study the sensitivi-
ties with respect to each input parameter and steers the com-
putation toward the user-defined optimal solution. Demir et
al. [DW13] improve the effectiveness of GPMs by utiliz-
ing a block-wise matrix inversion scheme that can be im-
plemented on the GPU, greatly increasing efficiency. In ad-
dition, their method involves progressive refinement of the
GPM and can be halted at any point, if the improvement be-
comes insignificant.

Most of these methods convey sensitivity information
through user exploration of the input space. In Section 4.2,
explicit visual encodings for understanding sensitivity infor-
mation are also discussed.

Structural Summaries. Researchers have also used re-
gression to summarize data as in the works by Reddy et
al. [RPH08] and Gerber et al. [GBPW10]. Both methods
summarize the structures of the data via skeleton repre-
sentations. Reddy et al. [RPH08] use a clustering algo-
rithm followed by construction of a minimum spanning
tree of the cluster centroids in order to determine possible
trends in the data. These trends are then fitted with princi-
ple curves [HS89] which go through the medial-axis of the
data. HDViz [GBPW10], on the other hand, approximates a
topological segmentation (for more details, see Section 3.5)
and constructs an inverse linear regression for each segment
of the data. In both examples, regression is used as a post-
processing step of the algorithms in order to present sum-
maries of the extracted subsets of the data.

3.5 Topological Data Analysis
A crucial step in gaining insights from large, complex,

high-dimensional data involves feature abstraction, extrac-
tion, and evaluation in the spatiotemporal domain for ef-
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fective exploration and visualization. Topological data anal-
ysis (TDA), a new field of study (see [Zom05, BDFF∗08,
EH08,EH10,Car09,Ghr08] for seminal works and surveys),
has provided efficient and reliable feature-driven analysis
and visualization capabilities. Specifically, the construction
of topological structures [Ree46, Sma61] from scalar func-
tions on point clouds (e.g., Morse-Smale complexes, con-
tour trees, and Reeb graphs) as “summaries” over data is at
the core of such TDA methods. Reeb graphs/contour trees
capture very different structural information of a real-valued
function compared to the Morse-Smale complexes as the for-
mer is contour-based and the latter is gradient-based (Figure
3). They both provide meaningful abstractions of the high-
dimensional data, which reduces the amount of data needed
to be processed or stored; and they utilize sophisticated hier-
archical representations capturing features at multiple scales,
which enables progressive simplifications of features differ-
entiating small and large scale structures in the data.

Morse-Smale Complexes. The Morse-Smale complex
(MSC) [EHNP03, EHZ03] describes the topology of a func-
tion by clustering the points in the domain into regions of
monotonic gradient flow, where each region is associated
with a sink-source pair defined by local minima and max-
ima of the function. The MSC can be represented using a
graph where the vertices are critical points and the edges
are the boundaries of areas of similar gradient behavior. The
simplification of the MSC is obtained by removing pairs
of vertices in the graph and updating connectivities among
their neighboring vertices, merging nearby clusters by redi-
recting the gradient flow. MSCs have been shown to be ef-
fective in identifying, ordering, and selectively removing
features of large-scale data in scientific visualizations (e.g.,
[BEHP04, GBPH08, GNP∗05]).

HDViz [GBPW10] employs an approximation of the
MSC (in high dimensions) to analyze scalar functions on
point cloud data. It creates a hierarchical segmentation of
the data by clustering points based on their monotonic flow
behavior, and designs new visual metaphors based on such
a segmentation. Correa et al. [CL11] suggest that by con-
sidering a different type of neighborhood structure, we can
improve the accuracy in the extracted topology compared to
those obtained within HDViz.

Reeb Graphs and Contour Trees. The Reeb graph of a
real-valued function describes the connectivity of its level
sets. A contour tree is a special case of Reeb graph that arises
in simply-connected domains. The Reeb graph stores infor-
mation regarding the number of components at any function
value as well as how these components split and merge as the
function value changes. Such an abstraction offers a global
summary of the topology of the level sets and enables the
development of compact and effective methods for modeling
and visualizing scientific data, especially in high dimensions
(i.e., [NLC11, SMC07]).

Efficient algorithms for computing the contour

tree [CSA03] and Reeb graph [PSBM07] in arbitrary dimen-
sions have been developed. A generalization of the contour
tree has been introduced by Carr et al. [CD14, DCK∗12]
called the joint contour net (JCN), which allows for the
analysis of multi-field data.

2D Scalar function 

Reeb Graph/Contour Tree/Merge Tree 

Morse-Smale Complex 

Figure 3: Contour- and gradient-based topological structure
of a 2D scalar function.

Other Topological Features. Ghrist [Ghr08] and Carls-
son [Car09] both offer several applications of TDA and in
particular highlight the topological theory used in a study
of statistics of natural images [LPM03]. Mapper [SMC07]
decomposes data into a simplicial complex resembling a
generalized Reeb graph, and visualizes the data using a
graph structure with varying node sizes. The software is
shown to extract salient features in a study of diabetes by
correctly classifying normal patients and patients with two
causes of diabetes. Wang et al. [WSPVJ11] utilize TDA
techniques developed by Silva et al. [dSMVJ09] to re-
cover important structures in high-dimensional data con-
taining non-trivial topology. Specifically, they are interested
in high-dimensional branching and circular structures. The
circle-valued coordinate functions are constructed to repre-
sent such features. Subsequently, they perform dimension re-
duction on the data while ensuring such structures are visu-
ally preserved.

4 Visual Mapping

Visual mapping plays an essential role in converting the
analysis result or the original dataset into visual structures
based on various visual encodings. Here, we divide the ap-
proaches based on their structural patterns, compositions,
and movements (i.e., animations). In addition, the methods
that evaluate the effectiveness of visual encoding are also
discussed.

4.1 Axis-Based Methods
Axis-based methods refer to visual mappings where el-

ement relationships are expressed through axes represent-
ing the dimensions/variables. These methods include some
of the most well-known visual mapping approaches, such as
scatterplot matrices (SPLOMs) and parallel coordinate plots
(PCPs).

Scatterplot Matrix. A scatterplot matrix, or SPLOM, is a
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collection of bivariate scatterplots that allows users to view
multiple bivariate relationships simultaneously. One of the
primary drawbacks of SPLOMs is the scalability. The num-
ber of the bivariate scatterplots increases quadratically with
respect to the dataset’s dimensionality. Numerous studies
have introduced methods for improving the scalability of
SPLOMs by automatically or semi-automatically identify-
ing more interesting plots.

Scagnostics are a set of measures designed for identify-
ing interesting plots originally introduced by John W. Tukey.
The recent works of Wilkinson et al. [WAG05, WAG06] ex-
tend the concept to include nine measures capturing proper-
ties such as outliers, shape, trend, and density. In addition,
they improve the computational efficiency by using graph-
theoretic measures. Scagnostics is also extended to handle
time series data [DAW13]. Guo [Guo03] introduces an inter-
active feature selection method for finding interesting plots
by evaluating the maximum conditional entropy of all pos-
sible axis-parallel scatterplots. The rank by feature frame-
work [SS04a, SS06] allows users to choose a ranking crite-
rion, such as histogram distribution properties and correla-
tion coefficients between axes, for scatterplots in SPLOMs.

Data class labels can play an important role in identifying
interesting plots and selecting a meaningful ranking order.
Sips et al. utilize class consistency [SNLH09] as a quality
metric for 2D scatterplots. The class consistency measure
is defined by the distance to the class’s center or entropies
of the spatial distributions of classes. Tatu et al. [TAE∗09]
introduce different metrics for ranking the “interestingness”
of scatterplots and PCPs for both classified and unclassified
datasets. For data with labels, a class density measure and a
histogram density measure are adopted as ranking functions
for the scatterplots.

The ranking order provides only an indirect way to as-
sess the scatterplots, Lehmann et al. [LAE∗12] introduces a
system for visually exploring all the plots as a whole. By re-
ordering the rows and columns in the SPLOMs, this method
groups relevant plots in the spatial vicinity of one another. In
addition, an abstraction can be obtained from the reordered
SPLOM to provide a global view.

Parallel Coordinates. Compared to a SPLOM, where only
bivariate relationships can be directly expressed, the Paral-
lel Coordinate Plot (PCP) [Ins09, ID91] allows patterns that
highlight multivariate relations to be revealed by showing
all the axes at once (typically, in a vertical layout). How-
ever, due to the linear ordering of the PCP axes, for a given
n-dimensional dataset, there are n! permutations of the or-
dering of the axes. Each of the orderings highlights certain
aspects of the high-dimensional structure. Therefore, one of
the significant challenges when dealing with PCPs is deter-
mining an appropriate order of the axes. In addition, as the
number of points increases, the line density in the PCP in-
creases dramatically, which can lead to overplotting and vi-
sual clutter thus hindering the discovery of patterns.

A few methods have proposed metrics for ordering
the axes automatically. Tatu et al. [TAE∗09] introduce
PCP ranking methods for both classified and unclassified
datasets. For unlabeled data, the Hough space measure is
used, and for labeled data, a similarity measure and overlap
measures are adopted. Ferdosi et al. introduce a dimension
ordering method [FR11] that is applicable for both PCPs
and SPLOMs utilizing the subspace analysis method from
their earlier work [FBT∗10] discussed in the Section 3.3.
Johansson and Johansson [JJ09] propose an interactive sys-
tem adopting a weighted combination of quality metrics for
dimension selection and automatic ordering of the axes to
enhance visual patterns such as clustering and correlation.
Hurley et al. utilize Eulerian tours and Hamiltonian decom-
positions of complete graphs, which represent the relation-
ship between the dimensions, in their recent work [HO10] to
address the axis ordering challenge.

Clutter reduction is another important aspect in PCPs, es-
pecially for large point counts. Peng et al. [PWR04] were
able to reduce clutter for both SPLOMs and PCPs without
altering the information content simply by reordering the di-
mensions. A focus+context visualization scheme can also be
used for reducing the clutter and highlighting the essential
features in the PCP [NH06]. In this context, the overview
captures both the outliers and the trends in the dataset. The
outliers are indicated by single lines, and the trends that cap-
ture the overall relationship between axes are approximated
by polygon strips. The selected data items are emphasized
through visual highlighting. In addition, several of the clut-
ter reduction methods employing screen space measures are
discussed in detail in Section 5.4.

Finally, many visual encoding improvements exist for
PCPs. Progressive PCPs [RZH12] demonstrate the power of
a progressive refinement scheme for enhancing the ability
of PCPs to handle large datasets. In the work of Dang et
al. [DWA10], density is expressed by stacking overlapping
elements. For the PCP case, a 3D visualization is presented,
where either the edges are stacked as curves or the points on
the axes are stacked vertically as dots.

Radial Layout. The star coordinate plot [Kan00], also re-
ferred to as a bi-plot [HGM∗97], is a generalization of the
axis-aligned bivariate scatterplot. The star coordinate axes
represent the unit basis vectors of an affine projection. The
user is allowed to modify the orientation and the length of
the axes as a way of altering the projection. However, due
to the unbounded manipulation, star coordinates may pro-
duce affine projections where substantial distortion occurs.
Lehmann et al. extend the star coordinate concept with an
orthographic constraint [LT13] to restrict the generated pro-
jection to be orthographic, which better preserves the struc-
ture of the original dataset.

Similar to the star coordinates, Radviz [HGM∗97] adopts
a circular pattern.The difference is that Radviz does not de-
fine an explicit projection matrix. In Radviz, n dimensional
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anchors are placed along the perimeter of a circle, each rep-
resenting one of the dimensions of an n-dimensional dataset.
A spring model is constructed for each point, where one end
of a spring is attached to a dimensional anchor and the other
is attached to the data point. The point is then displayed
where the sum of the spring forces equals zero. Albuquerque
et al. [AEL∗10] devise a RadViz quality measure allowing
automatic optimization of the dimensional anchor layout.

DataMeadow [EST07] introduces a radial visual encod-
ing named DataRoses, which is represented as a PCP laid
out radially as opposed to linearly. Lastly, PolarEyez [JN02]
introduces a focus+context visualization where the high-
dimensional function parameter space is encoded in a radial
fashion around a user-controlled focal point. Data near the
focal point is represented with more precision, and the focal
point can be altered to focus on different parts of the data.

Figure 4: Scattering points in parallel coordinates by Yuan et
al. [YGX∗09].

Hybrid Construction. The axis-based methods can also be
combined to create new visualizations. The scattering points
in parallel coordinate work [YGX∗09] (Figure 4) embeds a
MDS plot between a pair of PCP axes. The flexible linked
axes work [CvW11] is a generalization of the PCP and the
SPLOM. The tool gives the user the ability to create new
configurations by drawing and linking axes in either scat-
terplot or PCP style. Proposed by Fanea et al., the integra-
tion of parallel coordinate and star glyphs [FCI05] provides
a way to “unfold” the overlapped values in the PCP axis in
3D space. In this work [FCI05], each axis in the PCP is re-
placed with a star glyph that represents the values across all
points, and then each high-dimensional point is described as
a set of line segments in 3D connecting the individual values
in the star glyphs.

In addition, there is a number of visual representations
that derive from the the well-known visual mappings. Angu-
lar histograms [GPL∗11] introduced a novel visual encoding
that improves the scalability of PCPs by overcome the over-
plotting issue. The tiled PCP [CMR07] adopts a row-column
2D configuration instead of the 1D linear layout of the tra-
ditional PCP for simultaneous visualization of multiple time
steps and variables.

4.2 Glyphs
Chernoff faces [Che73] are one of the first attempts to map

a high-dimensional data point into a single glyph. The sys-

tem works by mapping different facial features to separate
dimensions. In a few recent works, glyphs have been utilized
to provide statistical and sensitivity information in order to
present trends in the data. By utilizing local linear regression
to compute partial derivatives around sampled data points
and representing the information in terms of glyph shape,
sensitivity information can be visually encoded into scatter-
plots [CCM09, CCM10, GWRR11, CCM13].

Correa et al. [CCM09] aimed at incorporating uncertainty
information into PCA projections and k-means clustering
and accomplished this goal by augmenting scatterplots with
tornado plots. Together these glyphs encode uncertainty and
partial derivative information. The idea of mapping sen-
sitivity information to a line segment through each data
point has been extended in their later work [CCM10] with
the introduction of the flow-based scatterplot (FBS) that
highlights functional relationships between inputs and out-
puts. The works by Guo et al. [GWRR11] and Chan et
al. [CCM13] attempt to provide more than a single partial
derivative information into their scatterplots by experiment-
ing with different glyph shapes such as star plots among oth-
ers. [GWRR11] also uses a bar chart similar to the tornado
plot used in [CCM09], and [CCM13] provides two other in-
terpretations. The first is a generalization of the FBS called
the generalized sensitivity scatterplot (GSS). By using or-
thogonal regression, GSSs can represent the partial deriva-
tive of any variable with respect to any other variable. The
other is a fan glyph that works similarly to the star glyph,
allowing for viewing multiple partial derivatives, but rather
than displaying magnitude as in the star glyph, the fan glyph
highlights the direction of each partial derivative, since all
line segments are normalized in length.

The methods described above all deal with encoding ex-
tra information per data point into glyphs, but the DICON
system [CGSQ11] attempts to show the trend of data within
a collection of data points by visually encoding statistical
information about the set of points being represented. DI-
CON uses dynamic icons based on treemap visualization to
encode clusters of data into separate icons, and allows the
user to interactively merge, split, filter, regroup, and high-
light clusters or data within clusters. Due to the interactive
nature, the authors have developed a stabilized Voronoi lay-
out that allows data within the treemap to maintain spatial
coherence as the user edits the clusters. They further encode
skew and kurtosis into the shape of the icon before applying
the Voronoi algorithm, thus allowing for statistical details to
be presented.

Finally, Ward [War08] gives a thorough, practical treat-
ment of generating and organizing effective glyphs for mul-
tivariate data, paying particular attention to the common pit-
falls involving the use of glyphs.

4.3 Pixel-Oriented Approaches
In an effort to encode the maximal amount of informa-

tion, several works have targeted dense pixel displays. Re-
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searchers have focused on encoding data values as individ-
ual pixels and creating separate displays, or subwindows, for
each dimension.

Some of the earliest works in this area date back to the mid
1990s [KK94,AKpK96]. VisDB [KK94] visualizes database
queries by creating a 2D image for each dimension involved
in the query and mapping individual values of a dimension
to pixels. The mapped data is sorted and colored by rele-
vance such that the data most related to the query appears
in the center of the image, and the data spirals outward as
it loses relevance to the query. Circle segments [AKpK96]
arrange multidimensional data in a radial fashion with equal
size sectors being carved out for each dimension.

The pixel concept can be applied to bar charts to create
pixel bar charts [KHL∗01]. Pixel bar charts first separate
data into separate bars based on one dimension or attribute,
and it can also split the data along the orthogonal direction
using another dimension, although most results are reported
using only one direction for splitting data. Once split, the
data points are sorted along the horizontal axis within the
bars using one dimension and ordered along the vertical axis
using another dimension. Wattenberg introduces the jigsaw
map [Wat05], which again maps data points to pixels and
uses discrete space-filling curves in order to fill a 2D plane
in a more sensible fashion than a comparative treemap lay-
out.

The Value and Relation (VaR) displays [YPS∗04,
YHW∗07] combine the recursive pattern displays [KKA95]
with MDS in order to lay out the separate subwindows
such that similar dimensions are placed closer together. A
latter iteration [YHW∗07] enhances the work by provid-
ing more robust visualizations including jigsaw maps, scat-
terplot glyphs, and a novel concept known as the Rainfall
metaphor geared at establishing the relationship of all di-
mensions to a single dimension of interest.

4.4 Hierarchy-Based Approaches
For visualizing high-dimensional datasets, hierarchical vi-

sual representations are used to capture dimensional rela-
tionships, represent contour tree structure, and provide new
visual encodings for representing high-dimensional struc-
tures.

Dimension Hierarchies. Large numbers of dimensions hin-
der our ability to navigate the data space and cause scala-
bility issues for visual mapping. A hierarchical organization
of dimensions explicitly reveals the dimension relationships,
helping to alleviate the complexity of the dataset. Yang et
al. propose an interactive hierarchical dimension ordering,
spacing, and filtering approach [WPWR03] based on dimen-
sion similarity. The dimension hierarchy is represented and
navigated by a multiple ring structure (InterRing [YWR02]),
where the innermost-ring represents the coarsest level in the
hierarchy.

Topology-Based Hierarchies. In Section 3.5, we have dis-

cussed topological structures, which can provide a ranking
of features with the help of persistence simplification and
thus be treated as a hierarchy.

Various visual metaphors have been designed for con-
tour trees [PCMS09, WBP12]. In particular, variations of
topological landscapes have been proposed [BMW∗12,
DBW∗12, HW10, OHJS10, OHJ∗11, WBP07]. These visual
metaphors have, or potentially have, capabilities for the visu-
alization of high-dimensional datasets. In particular, Weber
et al. [WBP07] have presented such a metaphor for visu-
ally mapping the contour tree of high-dimensional functions
to a 2D terrain where the relative size, volume, and nest-
ing of the topological features are preserved. Harvey and
Wang [HW10] have extended this work by computing all
possible planar landscapes and they are able to preserve ex-
actly the volumes of the high-dimensional features in the
areas of the terrain. In addition, the works of Oesterling et
al. [OHJS10, OHJ∗11] have used this same metaphor to vi-
sualize a related structure, the join tree. They use a novel
high-dimensional interpolation scheme in order to estimate
the density from the raw data points, and visually map the
density as points on top of their generated terrains.

Oesterling et al. [OHWS13] continued this line of work
by creating a linked view software system including user in-
teractions into the analysis by allowing users to brush and
link with PCPs and PCA projections of the data. In addition,
they have presented a new method of sorting the features
based on either persistence, cluster size, or cluster stability,
thus adjusting the placement of features in the topological
landscape.

Other Hierarchical Structures. In the structure-based
brushes work [FWR00], a data hierarchy is constructed to
be visualized by both a PCP and a treemap [Shn92], allow-
ing users to navigate among different levels-of-detail and se-
lect the feature(s) of interest. The structure decomposition
tree [ERHH11] presents a novel technique that embeds a
cluster hierarchy in a dimensional anchor-based visualiza-
tion using a weighted linear dimension reduction technique.
It provides a detail plus overview structural representation,
and conveys coordinate value information in the same con-
struction. The system supports user-guided pruning, opti-
mization of the decision tree, and encoding the tree structure
in an explorable visual hierarchy. Kreuseler et al. present a
novel visualization technique [KS02] for visualizing com-
plex hierarchical graphs in a focus+context manner for vi-
sual data mining tasks.

4.5 Animation
Many techniques for visualizing high-dimensional data

utilize animated transitions to enhance the perception of
point and structure correspondences among multiple rele-
vant plots.

The GGobi system [SLBC03] provides a mechanism for
calculating a continuous linear projection transition between
any pair of linear projections based on the principal an-
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gles between them. In the Rolling the Dice work [EDF08],
a transition between any pair of scatterplots in a SPLOM
is made possible by connecting a series of 3D tran-
sitions between scatterplots that share an axis. Rnav-
Graph [WO11] constructs a graph connecting a number of
interesting scatterplots. A smooth animation is generated be-
tween all scatterplots that are connected by an edge. The
TripAdvisorND [NM13] system allows users to explore the
neighborhood of a subspace by tilting the projection plane
using a polygonal touchpad interface.

4.6 Perception Evaluation
The design goal of visual mapping and encoding is to di-

rectly convey the information to the user through visual per-
ception. The evaluation of this mapping is vitally important
in determining the effectiveness of the overall visualization.

Sedlmair et al. have carried out an extensive investigation
of the effectiveness of visual encoding choices [SMT13],
including 2D scatterplot, interactive 3D scatterplot, and
SPLOMs. Their findings reveal that the 2D scatterplot is
often decent, and certain dimension reduction techniques
provide a good alternative. In addition, SPLOMs some-
times add additional value, and the interactive 3D scatter-
plot rarely helps and often hurts the perception of class
separation. The efficacy of several PCP variants for clus-
ter identification has been studied in [HVW10]. The com-
parison is performed among nine PCP variations based on
existing methods and combinations of them. The evalu-
ation reveals that, aside from the scatterplots embedded
into parallel coordinates [YGX∗09], a number of seemingly
valid improvements do not result in significant performance
gains for cluster identification tasks. Heer et al. investi-
gate the animated transition effectiveness between statistic
graphs [HR07] such as bar charts, pie charts, and scatter-
plots. Their results reveal that animated transitions, when
used appropriately, can significantly improve graphical per-
ception.

5 View Transformation

View transformations dictate what we ultimately see on
the screen. As pointed out by Bertini et al. [BTK11], the
view transformation can also be described as the rendering
process that generates images in the screen space.

5.1 Illustrative Rendering
Illustrative rendering describes methods that focus on

achieving a specific visual style by applying custom-
designed rendering algorithms. The illustrative PCPs
work [MM08] provides a set of artistic style rendering
techniques for enhancing parallel coordinate visualization.
Some of the rendering techniques include spline-based edge
bundling, opacity-based hints to convey cluster density, and
shading effects to illustrate local line density. Illuminated
scatterplots [SW09] (Figure 5) classify points based on
the eigenanalysis of the covariance matrix, and give the

user the opportunity to see effects such as planarity and
linearity when visualizing dense scatterplots. Johansson et
al. [JLJC05] reveal structures in PCPs by adopting the trans-
fer function concept commonly used in volume rendering.
Based on user input, the transfer function maps the line den-
sities into different opacities to highlight features.

Illustrative rendering techniques are also used for high-
lighting the focused areas, such as the well-known Table-
Lens approach [RC94] for visualizing large tables. Such a
magic lens based approach permits fast exploration of an
area of interest without presenting all the details, therefore,
reduces clutter in the view. MoleView [HTE11], for visual-
izing scatterplots and graphs, adopts a semantic lens for al-
lowing users to focus on the area of interest and keep the in-
focused data unchanged while simplifying or deforming the
rest of data to maintain context. A survey on the distortion-
oriented magic lens techniques is presented by Leung and
Apperley [LA94].

Figure 5: Illuminated 3D scatterplot by Sanftmann et
al. [SW09].

5.2 Continuous Visual Representation
For most high-dimensional visualization techniques, a

discrete visual representation is assumed since each element
corresponds to a data point. However, due to limitations such
as visual clutter and computational cost, many applications
prefer a continuous representation.

The work of Bachthaler and Weiskopf [BW08] presents a
mathematical model for constructing a continuous scatter-
plot. The follow-up work [BW09] introduces an adaptive
rendering extension for continuous scatterplots increasing
the rendering efficiency. This concept is extended to create
continuous PCPs [HW09] based on the point and line duality
between scatterplots and parallel coordinates. The authors
propose a mathematical model that maps density from a con-
tinuous scatterplot [BW08] to parallel coordinates. Lehmann
et al. introduce a feature detection algorithm design for con-
tinuous PCPs [LT11].

Clutter caused by overlapping in PCPs and scatterplots
occludes data distribution and outliers. In the splatterplot
work [MG13], the authors introduce a hybrid representation
for scatterplots to overcome the overdraw issue when scal-
ing to very large datasets. The proposed abstraction auto-
matically groups dense data points into an abstract contour
representation and renders the rest of the area using selected
representatives, thus preserving the visual cue for outliers. A
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splatting framework for extracting clusters in PCPs is pre-
sented by [ZCQ∗09], where a polyline splatter is introduced
for cluster detection, and a segment splatter is used for clut-
ter reduction.

5.3 Accurate Color Blending
When rendering semi-transparent objects, color blending

methods have a significant impact on the perception of order
and structure.

As stated in the Hue-Preserving Color-Blending
work [KGZ∗12], the commonly adopted alpha-compositing
can result in false colors that may lead to a deceiving visual-
ization. The authors propose a data-driven machine learning
model for optimizing and predicting a hue-preserving
blending. This model can be applied to high-dimensional
visualization techniques such as illustrative PCPs [MM08],
where a depth ordering clue is better preserved. In the
Weaving vs. Blending work [HSKIH07], the authors
investigate the effectiveness of two color mixing schemes:
color blending and color weaving (interleaved pattern). The
results indicate that color weaving allows users to better
infer the value of individual components; however, as the
number of components increases, the advantage of color
weaving diminishes.

5.4 Image Space Metrics
As discussed in Section 4.1, a number of quality mea-

sures have been proposed to analyze the visual structure and
automatically identify interesting patterns in PCPs or scat-
terplots. In this section, we discuss the image space based
quality measures that are applied in the screen space.

Arterode et al. propose a method [AdOL04] for uncov-
ering clusters and reducing clutter by analyzing the density
or frequency of the plot. Image processing based techniques
such as grayscale manipulation and thresholding are used to
achieve the desired visualization. Johansson et al. introduce
a screen space quality measure for clutter reduction [JC08]
to address the challenge of very large datasets. The metric
is based on distance transformation, and the computation is
carried out on the GPU for interactive performance.

Pargnostics [DK10], a portmanteau for parallel coordi-
nates and diagnostics (similar to Scagnostics [WAG05]), is
a set of screen space measures for identifying distance pat-
terns among pairs of axes in PCPs. The metrics include line
crossings, crossing angles, convergence, and over-plotting.
For each of the metrics, the system provides ranked views for
pairs of axes, allowing the user to guide exploration and vi-
sualization. Pixnostic [SSK06] is an image space based qual-
ity metric for ranking interestingness for pixel based (Sec-
tion 4.3) visualization such as Pixel Bar Chars [KHL∗01].

6 User Interaction

As illustrated in Figure 2, interaction is integrated
with each of the processing steps. An alternative sub-
categorization for each of the processing steps based on the

amount of user interaction is shown in Table 1. In this cat-
egorization, each step is further divided into computation-
centric approaches, interactive exploration, and model ma-
nipulation. In both of the recent surveys [MPG∗14,TJHH14]
on the user interaction in visualization applications, the level
of integration between the computation and visualization
(indicate user interaction) is used for classifying the meth-
ods. In many ways, their classifications are aligned with our
proposed approach, with the distinction that our discussion is
directly connected to the information visualization pipeline.

6.1 Computation-Centric Approaches
Computation-centric approaches require only limited

user input such as setting initial parameters. These
methods center around algorithms designed for well-
defined computational problems such as dimension re-
duction [RS00, MRC02, KC03, WM04], subspace analy-
sis [CFZ99, TMF∗12, FBT∗10, AWD12], regression anal-
ysis [BPFG11, BPFG11], quality metric based rank-
ing [WAG05, TAE∗09], etc. Computation-centric ap-
proaches exist at each of the processing steps, but are most
concentrated in the data transformation step.

6.2 Interactive Exploration
Interactive methods navigate, query, and filter the exist-

ing model interactively for more effective visual communi-
cation. In this section, we focus only on representative meth-
ods where the interactive exploration mechanism is their key
contribution.

In the data transformation step, the interactive explo-
ration scheme allows users to guide progressive dimen-
sion reduction, where a partial result is presented upon re-
quest [WM04]. In works by Turkay et al. [TFH11,TLLH12]
and Yuan et al. [YRWG13], a subset of dimensions is inter-
actively selected and explored in dimension space.

In the visual mapping step, there are large number of
methods focused on interactive exploration and querying
the high-dimensional dataset. Such methods play an impor-
tant role in the knowledge Discovery in Databases (KDD)
process, where the term visual data mining [KK96, Kei02,
DOL03] is used to describe these applications. Interac-
tive filtering, zooming, distortion, linking and brushing, or
a combination of them have been adopted to include the
user as part of the exploring and querying process. Po-
laris [STH02] is a visual query and analysis system de-
signed for relational databases. This system is later de-
veloped into the well-known commercial product Tableau.
Stolte et al. introduce an approach for zooming along one
or more dimensions for multi-scale exploration by travers-
ing a graph [STH03]. In this system, relational queries can
be defined by visual specifications allowing fast incremen-
tal development and intuitive understanding of the data.
Hao et al. have introduced the Intelligent Visual Analyt-
ics Queries [HDK∗07]. Their approach utilizes correlation
and similarity measurements for mining data relationships.
We believe new research directions could stem from visual
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Data Transformation Visual Mapping View Transformation
Computation-Centric dimension reduc-

tion [WM04], subspace
finding [TMF∗12], regres-
sion analysis

automatic parallel co-
ordinate axis reorder-
ing [PWR04], scatterplot
ranking [WAG05]

quality metrics in image
space [JC08], continu-
ous visual representa-
tion [BW08]

Interactive Exploration interactive, progres-
sive dimension reduc-
tion [WM04], dimension
space exploration [TFH11]

visual querying and fil-
tering [SVW10], animated
transition [SLBC03]

interactive magic lens ef-
fects [HTE11], illuminated
3D scatterplot [SW09]

Model Manipulation user-guided embedding
manipulation [LWBP14],
control point based projec-
tion [JPC∗11]

distance function learning
[BLBC12, Gle13], visual
to parameter interaction
[HBM∗13]

PCP transfer func-
tion [JLJC05], inverse
projection extrapola-
tion [PdSABD∗12]

Table 1: The transformation pipelines intertwine with user interaction. The subcategorizing is based on the different levels of
user involvement.

data mining and visual queries. The Select and Slice Ta-
ble [SVW10] allows users to study the relationships between
data subsets and the semantic zone (user-defined areas of in-
terest). The semantic zones are arranged along one axis of
the table, while the data subsets are arranged along the other
axis. In addition, the method enables the combination and
manipulation of the semantic zones for further exploration.
More recent works [GLG∗13, GGL∗14] by Gratzl et al. in-
troduce some very interesting interactive methods for rank-
ings multi-attributes and explore subsets of tabular datasets.

Both of the works of Poco et al. [PEP∗11b] and Sanft-
mann and Weiskopf [SW12] present methods for navigat-
ing a 3D projection. However, their approaches are quite
different. The method introduced by Poco et al. [PEP∗11b]
focuses on enhancing the visual encoding and exploration
usability of a 3D projection calculated by the Least-Square
Projection [PNML08] algorithm. On the other hand, Sanft-
mann and Weiskopf [SW12] present an interpolation scheme
for generating 3D rigid body rotations between a pair of 3D
axis-aligned scatterplots that share a common axis.

In the view transformation step, interactivity is inherent in
both the magic lens based methods [HTE11,LA94], and illu-
minated 3D scatterplots [SW09] (discussed in Section 5.1).

6.3 Model Manipulation
Model manipulation techniques represent a class of meth-

ods that integrate user manipulation as part of the algorithm,
and update the underlying model to reflect the user input to
obtain new insights.

Take the distance function learning work [BLBC12],
for example. The initial embedding is created using a
default distance measure. Through interaction, the initial
point layout is modified based on the expert user’s domain
knowledge. The system then adjusts the underlying dis-
tance model to reflect the user input. Hu et al. present a
method [HBM∗13] for improving the translation of user in-
teraction to algorithm input (visual to parameter interaction)

for distance learning scenarios. The explainers [Gle13] are
projection functions created from a set of user-defined anno-
tations.

The control point based projection methods [DST04,
PNML08,PEP∗11a,JPC∗11,PSN10] update the overall pro-
jection result based on user manipulation of the control
points. In the iLAMP method [PdSABD∗12], inverse pro-
jection extrapolation is used for generating synthetic mul-
tidimensional data out of existing projections for param-
eter space exploration. In the Local Clustering Operation
work [GXWY10], the visual structure is modified in PCPs
through user-guided deformation operators. Finally, Liu et
al. [LWBP14] allow for direct manipulation of the dimen-
sion reduction embedding to resolve structural ambiguities.
The interactively updated distortion measure is used for
feedback during manipulation.

7 Connections with Related Fields

We investigate the connections between recent advances
in high-dimensional data visualization and related fields in
the hope of inspiring new research directions.

7.1 Multivariate Volume Visualization
Multivariate volume visualization and high-dimensional

visualization are often studied under different contexts: the
former is normally considered as scientific visualization re-
search [BH07,KH13], while the latter is mostly studied from
the perspective of information visualization and visual ana-
lytics. In addition, they focus on different kinds of data and
attempt to accomplish distinct goals.

Despite the differences, recent advances in both areas
have shown that they share a number of fundamental tech-
niques and principles. Standard high-dimensional data visu-
alization techniques, such as PCPs, scatterplots, and dimen-
sion reduction, have found their way into the multivariate
volume visualization literature. For example, the scattering
points in parallel coordinates work [YGX∗09] is adopted
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by [GXY12] as a design space for multivariate volume trans-
fer functions. In the work of Liu et al. [LWT∗14a], dynamic
projection and subspace analysis are utilized for exploring
the high-dimensional parameter space of volumetric data.
We believe useful and interesting techniques may be devel-
oped by sharing ideas and discovering new connections be-
tween these two fields.

7.2 Machine Learning
Machine learning algorithms under many situations have

been treated as “black box” approaches, and the param-
eter tuning process can be tedious and unpredictable. To
resolve such a challenge, several visualization approaches
have been introduced to aid the understanding of the various
machine learning algorithms. Tzeng et al. present a visual-
ization system that helps users design neural networks more
efficiently [TM05]. The works of Teoh and Ma [TM03] and
van den Elzen and van Wijk [vdEvW11] investigate visual-
ization methods for interactively constructing and analyzing
decision trees. Visualization has also been used to aid model
validation [Rd00, MW10]. Numerous challenges for under-
standing machine learning algorithms coincide with high-
dimensional visualization. We believe high-dimensional vi-
sualization will play an important role in designing, tuning,
and validating machine learning algorithms.

8 Reflections and Future Directions

One of our primary objectives in presenting this survey is
to provide actionable guidance for data practitioners to nav-
igate through a modular view of the recent advances. To do
so, we provide a categorization of recent works along an en-
riched information visualization pipeline. We reflect on the
chosen categories and subcategories (as described briefly in
Section 2) and describe on a high level how they provide
actionable guidance. To allow the creation of new visualiza-
tions along the pipeline, one should think beyond data tasks
to be performed in any single stage, and focus on under-
standing how results from one stage could be utilized most
effectively in the remaining stages. We argue that the sub-
categories discussed during each pipeline stage correspond
to sets of actionable items or toolsets that the data practi-
tioner could choose from and rely upon. The combinations
of techniques they chose to apply are largely data-driven
and application-dependent. Nevertheless, the techniques sur-
veyed following our categorization aim to provide a modular
view during the design process.

We now discuss the challenges addressed by the tech-
niques surveyed in the paper, and those that remain to be
tackled. Our discussion is partially inspired by Donoho’s
AMS lecture [Don00] where he discusses the curses
and blessings of dimensionality when it comes to high-
dimensional data analysis.

Data analysis, falls under the data transformation stage
within our categorization. Some of the surveyed, standard
data analysis tasks are widely applicable for studying var-

ious aspects of high-dimensional data: dimension reduc-
tion for feature selection and extraction; clustering for ex-
ploratory data mining and classification; regression for rela-
tionship inference and prediction. However, we identify sev-
eral different directions in which we expect to see further
progress, namely: robust analysis and data de-noising; multi-
scale analysis; data skeletonization; and high-dimensional
approximations. First, more advanced regression techniques
could be developed that are robust to noise and outliers,
in particular, a new class of regression techniques inspired
by geometric and topological intuititions (e.g., [GBPW10]).
Second, topological data analysis has built-in capabilities in
separating features from noise at multi-scales; such a multi-
scale notion is expected to be transferrable to a larger class of
analysis techniques. Third, developing frameworks to extract
as well as to simplify “skeletons” from high-dimensional
data can be extremely useful for visual data abstraction
and exploration (e.g., [SMC07]). Finally, as pointed out by
Donoho [Don00], perhaps there exists new notions of high-
dimensional approximation theory, where we make different
regularity assumptions and obtain a very different picture in
approximating high-dimensional functions. Approximating
the Morse-Smale complex in high dimension is considered
such an example.

During visual mapping, our surveyed techniques convert
the analysis result into visual structures with various vi-
sual encodings. Development of new analysis results, for ex-
ample, new approximations of high-dimensional structures,
would inevitably lead to new visual metaphors (e.g., in the
case of topological landscape [HW10, DBW∗12]). Under
visual mapping and view transformation, we also see var-
ious methods aimed at summarizing trends in data, such
as glyph representations, edge bundling in PCPs, splatting
as presented in splatterplots [MG13] and PCP-based splat-
ters [ZCQ∗09], and hierarchical approaches. These could be
further enhanced with new data skeletonization techniques.

Finally, we identify a few opportunities for future visual-
ization research and discuss them in detail.

Subspace Clustering. Finding interesting projections
(views) has been an active and important research area for vi-
sualizing high-dimensional data. The motivation behind the
various view selection schemes can be traced back to much
earlier work such as projection pursuit [FT74].

Along a similar line of research, scatterplot ranking meth-
ods [SS04a, WAG06, TAE∗09] are introduced to automati-
cally identify the interesting scatterplots. However, a scat-
terplot matrix captures only limited bivariate relationships.
Subspace selection methods [CFZ99, BPR∗04], originally
developed in the data mining community, have recently been
adapted for high-dimensional data visualization [FBT∗10,
TMF∗12] to capture more complicated multivariate struc-
tures. Despite the added flexibility, the search is still lim-
ited to axis-aligned subspaces. Recent advances in machine
learning, such as subspace clustering (e.g., [Vid11]), assume
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the high-dimensional dataset can be represented by a mix-
ture of low-dimensional linear subspaces with mixed dimen-
sions. Such methods produce non-axis-aligned subspaces,
which work well for datasets where different dimensions are
closely related. In addition, instead of capturing a single lin-
ear subspace, they can approximate non-linear structures by
fitting together multiple linear subspaces.

We believe exploring various (non-axis-aligned) subspace
clustering methods will lead to new developments in high-
dimensional view selection techniques (e.g., some of the re-
cent work by the authors [LWT∗14a, LWT∗14b]).

Model Manipulation. We have seen an emerging user
interaction paradigm, referred to as model manipula-
tion [BLBC12,PdSABD∗12,Gle13,HBM∗13] in this survey.
What differentiates the model manipulation interaction from
other types of interaction is the change of the underlying data
model to reflect user intention. These model manipulation
based methods allow users to easily transfer their domain
knowledge into the exploratory analysis process, allowing
for effective analysis and visualization. However, since such
interactive manipulations give users an enormous amount of
freedom, one of the main challenges in model manipulation
is to understand whether or not the manipulation faithfully
conveys the user intention. Rigorous validation between the
user intended operations and manipulation outcomes is es-
sential for evaluating the effectiveness and usability of these
methods.

Uncertainty Quantification. Along with the large-scale and
high dimensionality of the data, information pertaining to
uncertainty is becoming increasingly available and impor-
tant. The addition of uncertainty information within visual-
izations has been deemed a top research problem in scien-
tific visualization [Joh04], due to the greater availability of
this information from simulation and quantification, and the
importance of understanding data quality, confidence, and
error issues when interpreting scientific results. Some recent
works in high-dimensional data visualization have focused
on analyzing the uncertainty stemming from the input data or
with respect to the accuracy of a fitted model (see Section 3.4
and [ZSWR06]). We believe the extensions and generaliza-
tions of existing uncertainty visualization capabilities (e.g.,
[DKLP02, PWB∗09, SZD∗10]) to high-dimensional data is
one of the important future directions.

Another interesting aspect of uncertainty quantification
is based on uncertainty-aware visual analytics discussed
by Correa et al. [CCM09], and further explored by Liu et
al. [LWBP14] and Schreck et al. [SvLB10], where the un-
certainty (e.g., bias and distortions) arises from the Data
transformation step. The work by Correa et al. [CCM09]
measures the uncertainty introduced by three common
Data transformation techniques; and the works of Liu et
al. [LWBP14] and Schreck et al. [SvLB10] quantifies the
amount of distortion for projection techniques. While these
methods apply to the uncertainty stemming from the Data

transformation step, more work can be done to define mea-
sures of uncertainty associated with the two latter processing
steps in the visualization pipeline, namely Visual mapping
and View transformation.

Topological Data Analysis and Visualization. Another
important and interesting recent advance is the introduc-
tion of TDA to visualization (e.g., [GBPW10, WSPVJ11,
DCK∗12]). TDA provides an interesting alternative for cap-
turing the structure in high-dimensional data. Since topolog-
ical structures are typically scale-invariant, designing mean-
ingful and effective visual encodings that capture their inher-
ent properties is essential for future development. Approx-
imation algorithms exist for computing topological struc-
tures in high dimensions; therefore, it is important to strike
a balance between speed and accuracy, and to convey ap-
propriately the approximation error in the visualization.
Some initial work has been done to provide bounds or es-
timations on the accuracy of these approximated models
(e.g., [GBPW10, CL11, TFO09]).

Other Directions. Finally, as discussed in Section 7, fields
such as multivariate volume visualization and machine
learning share a number of common research problems
with high-dimensional data visualization. Finding connec-
tions and sharing ideas among these related topics will likely
not only yield interesting future research directions, but also
help resolve many challenges in high-dimensional data visu-
alization.
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