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Word vector embeddings have been shown to contain and amplify biases in the data they are extracted from. Consequently, many

techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this paper, we utilize interactive

visualization to increase the interpretability and accessibility of a collection of state-of-the-art debiasing techniques. To aid this, we

present the Visualization of Embedding Representations for deBiasing (“VERB") system, an open-source web-based visualization tool

that helps users gain a technical understanding and visual intuition of the inner workings of debiasing techniques, with a focus on their

geometric properties. In particular, VERB offers easy-to-follow examples that explore the effects of these debiasing techniques on the

geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying geometry,

VERB decomposes each technique into interpretable sequences of primitive transformations and highlights their effect on the word

vectors using dimensionality reduction and interactive visual exploration. VERB is designed to target natural language processing (NLP)

practitioners who are designing decision-making systems on top of word embeddings, and also researchers working with the fairness and

ethics of machine learning systems in NLP. It can also serve as a visual medium for education, which helps an NLP novice understand

and mitigate biases in word embeddings.
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1 INTRODUCTION

Complicated and massive data sets are becoming more and more commonly represented as vectorized embeddings. They

are part of a de facto model for words in word vector embeddings such as Word2Vec [51] and GloVe [54], and are becoming

commonplace for other data types such as graphs, spatial regions, and financial data. These vectorized embeddings

(referred to as representations) directly capture the similarity between objects. Additional structures arise implicitly from

these representations, such as linear subspaces that capture concepts (e.g., gender, occupation, and nationality) among

word vectors. Moreover, these representations permit easy integration into machine learning (ML) tasks.

A downside of these representations is that their high-dimensional nature obscures easy interpretation, at least not

without much additional effort. Although these representations do not have explicit agendas, they can nevertheless encode

biases through data imbalance and other hidden factors. We must emphasize that biases are multifaceted. In this paper,

biases (in the context of word representations) refer to stereotypical associations between words or groups of words

that may cause representational harm (i.e., the subordination of a certain social group along the lines of identity). A

common example is the propensity of male-leaning words associating more strongly with professions seen higher in

the social ladder than female-leaning words. This propensity may have negative repercussions for ML systems using

these representations. When bias is manifested in the associations of a stereotypical nature that are expressed in word

representations, it is often necessary to modify these representations to mitigate such a bias [5, 16] to support fair ML.

Modification of vectorized representations is also useful in normalization and alignment tasks.

Visualization tools for these high-dimensional word vector representations exist, and are overviewed in Sect. 2.

However, many of the previous approaches are passive and only allow a user to inspect, but not modify the representations.

Furthermore, they do not provide a visual interface that helps a user verify the effects of a bias mitigation mechanism.

In contrast, the tool we present – VERB (Visualization of Embedding Representations for deBiasing) – is active, and it

allows a user to modify the embedding while visually exploring it. Once a modification is visually verified, the results can

be exported for downstream tasks.

In particular, VERB allows for easy understanding and use of methods to debias word vector embeddings. Specifically,

VERB enables users to apply a collection of post-processing debiasing techniques [5, 14, 16, 59] to static non-contextual

word embeddings from methods such Word2Vec [51] and GloVe [54], which enables interpretation and comparison of the

various methods. For instance, a user can easily observe the difference between the original Hard Debiasing approach [5]

or the newer and simpler Linear Projection method [16] using VERB.

Another often overlooked aspect is the comparison of how concept subspaces are found. Indeed, there are several

methods based on PCA, or derived from clustering or classification. In fact, by inspecting the surprising differences

between these approaches, we devise a new interactive approach toward subspace identification that outperforms all prior

methods. VERB allows users to insert a human-in-the-loop of this process to dynamically improve the result, and verify it

is doing what is intended.

Finally, we note that VERB is applicable beyond word vector embeddings. Any vectorized representation can easily

be loaded, inspected, actively modified, and outputted. We demonstrate this with a use-case of analyzing merchant
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Fig. 1. With VERB, users can explore the high-dimensional word representations interactively before, during, and after
applying bias mitigation techniques. (A) Embedding View highlights a subset of word embeddings using dimensionality
reduction and visualizes the step-by-step transformations of their embeddings across various debiasing techniques. (B)
Control Panel enables users to configure each debiasing technique and provides controls to iterate through each step
of the transformation. (C) Explanation Panel gives a step-by-step description of the transformation. In this example, in
the Embedding View, word representations are reoriented with the concept direction (Gender) along the x-axis. They are
then transformed by a debiasing technique called the Linear Projection that removes this concept. These transformed
representations are visualized again in (D) after a new dimensionality reduction, where there is no longer a well-defined
gender concept direction, and hence the stereotypical associations are mitigated.

association from a global payment company, which provides new insights that are nebulous or hidden before the use of

VERB.

Contributions. To summarize our contributions:

• VERB enables NLP and ML researchers to visually analyze the biases in trained static non-contextual word

embeddings through a new modular and geometry-preserving approach.

• VERB provides a no-code, accessible pipeline that allows users to apply various post-processing debiasing methods

and visually inspect the effect of the debiasing process on the word embeddings.

• VERB has helped spur the development of a new, iterative subspace identification method.

• VERB dually functions as a pedagogical tool that allows educators and fairness/ethics researchers to present biases

in a visually interactive form. In particular, it has served as a visual medium for educating attendees at ML and

data mining venues (AAAI and KDD), and high school students via an Engineering Summer Camp and a Discover

Engineering exhibit.

• VERB is open-source, available at https://github.com/tdavislab/verb.

An overview of the VERB interface is shown in Fig. 1.

Trigger Warning: This paper contains examples of biases and stereotypes seen in society and in language
representations. These examples may be potentially triggering and offensive. The inclusion of these examples is
meant to bring light to and mitigate these biases, and it is not an endorsement.
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2 RELATED WORK

2.1 Visual Analytics for ML Interpretability

Visual analytics for ML models. With the recent success of machine learning (ML), a growing number of visual analytics

works have been proposed for the interpretation of ML models [3, 10, 36, 41, 55, 61, 77, 80]. Based on the analysis

focus, these works can roughly be categorized into three groups. The first group concentrates on the input data of ML

models to better understand the data distribution [9, 78] or to better select the high-dimensional data features [32, 48].

The second group focuses on the intermediate data representations from ML models to interpret how the data has been

transformed internally. For example, most white-box interpretation solutions for deep learning models [57, 58, 66, 73]

visualize the activations of different neurons from hidden layers, to reveal what have been captured/memorized by the

neural networks. The third group targets the output from ML models to evaluate and compare different models. For

example, ModelTracker [2] and Squares [60] use glyphs to encode the prediction probability of ML models and empower

ML designers with instance-level data inspections and analysis. MLCube [30] allows users to compare ML models’

performances (accuracies) over subsets defined using feature conditions. Facets [25] provides visualizations that aid

in understanding ML datasets via individual feature exploration and subdivision of large data sets. To better disclose

ML models’ performance evolution, multiple visual designs for temporal confusion matrix have also been proposed,

e.g., [28, 43].

Our work fits well with this third group, where we focus on analyzing and comparing the outputs from multiple

debiasing techniques for word representations.

Finally, some existing work analyzes the visual analytics systems themselves, since biases may be introduced through

the design decisions on interfaces and default parameters, e.g., [69, 70]. We, however, do not study this type of bias in this

paper.

Visualization for NLP. Visualization has been employed for various NLP tasks such as topic modeling and sentiment

analysis. For topic modeling, Chuang et al. [11] introduced Termite to visually assess topic model quality. Smith et al. [64]

presented Hiérarchie that interactively visualizes large, hierarchical topic models. Liu et al. [44] created visual exploration

to help users understand hierarchical topic evolution in text streams. For sentiment analysis, Smith et al. [63] further

presented a so-called relationship enriched visualization that helps users explore topic models via corrections among

words and topics. Wang et al. [71] introduced SentiView to analyze and visualize public sentiments of social media texts

and their evolution. Liu et al. [42] used optimization to design StoryFlow, a storyline visualization system that illustrates

the dynamic relations among entities in a given story. Liu et al. [39] introduced NLIZE, a visual analytic system that

enables perturbation-driven exploration [38] of a natural language inference model, where a user can perturb a model’s

input, attention, and prediction.

Instead of focusing on abstract concepts such as topics and sentiments, our work aims to understand fine-level details

presented in word embeddings, in particular, how the word embeddings are changed geometrically by various debiasing

techniques. Word embeddings are considered as a type of word representation that allows words with similar meaning to

have similar representations. Specifically, a word vector is a high-dimensional real-valued vector where semantically

similar words have similar vectors. Several works in the literature are most relevant to ours in terms of visually exploring

the space of word embeddings, see [26] for a survey of using visualization for interpreting word embeddings. Liu et

al. [37] studied the pair-wise analogy relationships of word embeddings and proposed a new projection method to better

preserve the analogy relationships in the projection space. Rathore et al. [57] visualized and investigated a graph-based

summary of a collection of word embeddings obtained from the BERT (Bidirectional Encoder Representations from
Manuscript submitted to ACM
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Transformers) family of models [17]. Our tool is similar to [37], in that it enables the interrogation and interpretation via

projected views of embeddings, but goes beyond in guiding the modification of the embeddings.

Visualizing embeddings or latent spaces. Word embeddings are a type of point cloud data for which generic high-

dimensional visualization techniques may be applicable (see [40] for a survey). Since word embeddings are typically

obtained via neural networks, techniques developed for visualizing latent spaces or hidden representations of neural

networks are also relevant.

To visualize high-dimensional embeddings, dimensionality reduction algorithms (e.g., PCA, t-SNE [68], and UMAP [49,

50]) are commonly used in their analysis and visualization. Openly available toolkits such as scikit-learn [53] implements a

number of such algorithms. Two analytical tasks are often focused upon. The first one is to interpret the semantics encoded

in embeddings (e.g., [37]). For example, Smilkov et al. [62] developed Embedding Projector as part of the TensorFlow

framework [1], enabling users to conveniently interact with embedding data and their local neighbors to quantitatively

evaluate the embeddings. Rauber et al. [58] employed t-SNE projections to visualize the hidden representations of deep

neural networks across neural layers, to reveal how data instances of the same class progressively form clusters. Multiple

visualization efforts aimed to disentangle the latent space of deep generative models by relating the latent dimensions

with human-understandable visual concepts [45, 46, 74]. The second analytical task is to compare embeddings generated

from different algorithms. For example, embeddingVis [35] focuses on graph embeddings and uses multiple juxtaposed

t-SNE views to compare different embedding methods. The same data instances are linked across all t-SNE views for

explicit tracking. Heimerl et al. [27] proposed a set of metrics to measure the relationships (embedding correspondences)

between two embeddings in a coordinated multiview system called embComp. Ghosh et al. [22] introduced a toolkit

– VisExPreS – to disclose and compare the preserved global and local structures from the embeddings for novice data

analysts. Kim et al. introduced InterAxis [31], which allows a user to interactively steer the scatterplot axes as linear

combinations of data attributes.

Our work covers both analytical tasks. For semantic interpretation, we focus on the biases encoded in word embeddings

and provide interactive applications that remove the biases through subspace transformations. For embedding comparison,

we allow any embedding to be analyzed before and after dynamic modification, and to compare how different debiasing

techniques affect its underlying geometry.

Our work also intersects with visualization for ML fairness (e.g., [7, 33]). It is specifically focusing on bias mitigation

techniques in word embeddings. The What-If tool [24] combines data exploration with counterfactual (what if) explana-

tions [33] and fairness modifications. FairVis [7] is used to audit pretrained models for biases against known vulnerable

groups in the context of a recidivism prediction system.

The DebIE [20] platform, which offers a web interface for measuring and mitigating bias in word embeddings, and the

WordBias [21] system which allows exploration of intersectional biases in static word embeddings are most relevant to our

work. Both DebIE and VERB (which first appeared contemporaneously) illustrate bias in word representations, support the

selection of certain debiasing algorithms, and utilize a collection of bias measures for evaluation. Compared with DebIE,

the key additional contribution of VERB is that it provides a visualization interface that supports interactive exploration

of the debiasing process and the affected embeddings. This interface in VERB highlights a common abstraction of these

debiasing methods into a series of interchangeable components, and discloses the intermediate sequence of geometric

transformations. While DebIE presents the end result of a debiasing algorithm, the step-by-step decomposition of the

underlying process shown in VERB, we believe, is essential to make the identification and addressing of bias more

accessible, to educate users of the debiasing techniques, and to allow practitioners to visually verify the effect of the
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debiasing process. WordBias, on the other hand, focuses on visualizing bias in static word embeddings along multiple

concept directions simultaneously, using a histogram of bias scores and a parallel coordinate plot of different types of bias.

It allows users to add their own bias direction to enable exploration of intersectional biases. However, WordBias does

not have the functionality to apply bias mitigation techniques, and thus lacks capabilities for modifying the embeddings

to reduce the the identified biases. VERB closes the gap by visualizing geometric transformations of the embeddings

to mitigate these biases, but limits the number of simultaneous biases that can be visualized. It would be interesting to

integrate intersectional biases from WordBias to enhance VERB in the future.

VERB integrates different aspects of debiasing in word representations with several debiasing techniques, encompassing

(a) bias subspace determination, (b) generalizable [14] bias mitigation strategies, and (c) bias measurement. It helps

highlight and compare the different combinations of subspace identification and bias mitigation strategies that work best

for a given embedding and a particular type of bias. VERB can also be utilized by users without previous knowledge or

intuitions about potential biases to find issues within an incoming prediction model.

2.2 Bias in Word Representations

The Euclidean nature of embedded word representations makes them easy to integrate into a variety of NLP tasks and

applications [52]. Furthermore, the similarity between the word representations is encoded in a way that respects their

complex interactions and often takes the nuance out of modeling and formalizing those notions. However, embedded

representations also come with challenges. Their distributed nature means that the original features in the text are no longer

bound to specific dimensions. Therefore, their easy-to-interpret properties become obfuscated. A more troubling aspect is

that these representations encode and potentially hide biases. Caliskan et al. [8] first revealed that these representations

encode common stereotypes, where male identifiers are more associated with careers and female identifiers are more

associated with families. In social studies of texts, as illustrated in Fig. 1, adjectives such as “rational” and “dependable”

are often used to describe male leaders whereas “temperamental” and “excitable” are often used to describe female

leaders. Such associations can be potentially harmful if these representations are used in tasks such as resume sorting,

where female candidates can unwittingly be given lower rankings because of this hidden gender bias. Additionally, many

such societal biases about different population attributes such as gender, race, nationality, ethnicity, age, and so on can be

encoded [5, 8, 16] and unknowingly propagated downstream into tasks in NLP, resulting in harm [4, 13, 56, 67].

In order to mitigate such harm in diverse applications in which word representations are used, different debiasing

strategies are being actively developed, the most common of which are based on postprocessing of the embedding

spaces [5, 14, 16]. These methods are popular for their cost-effective approach and can be invoked on-demand depending

on learning task at hand and extended to contextual embeddings [13]. We discuss these methods that we use in VERB in

more detail in Sect. 4.

3 DESIGN CHALLENGES AND REQUIREMENTS

Our goal is to build an interactive visualization tool that increases the interpretability and accessibility of a set of

state-of-the-art debiasing techniques. Specifically, we aim to help users better understand biases in word representations,

and how various bias mitigation techniques work from a geometric perspective. By studying prior work, obtaining input

from collaborating NLP and ML experts, we identify three design challenges (C1-C3) associated with developing our

tool.
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Prior to our work, existing debiasing pipelines had applied bias mitigation techniques and had assessed the outcomes

via anecdotal evidence or numerical evaluations. The geometric transformation applied to word embeddings remained

opaque to a user. Our tools aims to provide transparency to users in three key ways.

C1: Identifying and visually disclosing biases. Word vector representations are high-dimensional encodings of words

that are not easily interpretable. Visualizing these representations and the biases encoded within them is nontrivial. Novices,

and even some experts, need to be shown that biases indeed exist. Although helpful, simply applying dimensionality

reduction techniques without careful considerations of viewing angles or distortions may not easily or faithfully reveal the

existence or the direction of biases. As a result, users may easily miss or misinterpret biases in their data.

C2: Intuitively demonstrating the debiasing process and visually verifying the effect of debiasing. A primary

rationale for building our tool is to provide easier access to a collection of common debiasing implementations and reduce

the barrier of entry for applying these techniques. The target audience of our tool is AI and ML experts who design and

implement a data analysis pipeline. At the same time, the tool should also be suitable as a pedagogical tool for explaining

the main concepts to non-experts with little NLP background to encourage them to explore these bias issues in more

depth. Most prior work presents only the end-to-end results, without disclosing any intermediate details or interpreting

the debiasing procedures.

C3: Establishing a common ground that bridges debiasing with visualization and enables human-in-the-loop
modifications of embeddings. As we have reviewed in Sect. 2, there are a number of outstanding visualization techniques,

impressive visual analytics frameworks, and prevalents debiasing algorithms. However, most of these works are conducted

in their respective fields in isolation. There are missed opportunities in building a general pipeline that connects

these research outcomes, where users perform human-in-the-loop investigations and modifications of high-dimensional

embeddings. In particular, users can use visualization to modify and diagnose the word representations before and after

debiasing, and reuse the visual analytic results for downstream tasks.

VERB has been developed in close collaboration with ML experts who study biases in embeddings. Among them, two

experts have coauthored this work, and they are also the inventors of multiple debiasing algorithms [12, 14, 16] that are

part of the backend of VERB (Sect. 4). Based on our interactions with ML experts, attendee feedback collected from an

initial version used at two AI conference tutorials (AAAI and KDD), and literature reviews, we distill the above design

challenges to the following design requirements (R1-R3) that guide VERB’s development:

R1: Demonstrating the existence of biases through a visual interface that preserves geometric intuitions and
known linear structures. Dimensionality reduction algorithms are good candidates for addressing C1; however, our tool

will need to ensure the biases are not distorted in the process. As will be elaborated on in Sect. 4, the debiasing algorithms

are inherently geometric and rely on linear subspaces. Hence, we require that our visualizations are also geometric in

nature and preserve and highlight the linear structures of the biases utilized in the debiasing algorithms. Yet, they should

not hide the nuanced, partially interchangeable, and noisy nature of these approaches.

R2: Providing a modular decomposition that allows users to comprehend and explore the commonalities and
distinctions between common debiasing methods. To address C2, our tool will explain how to use debiasing approaches,

the subtle but meaningful differences between them, what their constraints and limitations are, and the benefits they can

deliver. We will decompose the well-encapsulated debiasing process into key components and visualize the intermediate

representations of the embeddings for better interpretation. Specifically, as explained in Sect. 4, each debiasing approach

is decomposed into three modular components: (1) subspace identification, (2) embedding modification, and (3) bias
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evaluation. Such a decomposition allows for a general and interchangeable set of techniques. These three components

should be individually demonstrated, and users should be able to choose how to combine them.

For the first component, the identified subspaces can and should help ground the correct reference frame to comprehend

the modifications to the underlying representations. For the second component, the intermediate transformations and

transitions between them should use smooth transitions so users can preserve their mental map in a continuous fashion,

while observing these already complicated transformations. For the third component, intrinsic and extrinsic evaluation

measures help users determine how effective the bias removal has been.

R3: Integrating with data analysis pipelines. Our tool will allow users to visually verify the effect of debiasing as part

of a larger data analysis pipeline. The debiasing methods’ output is also a word embedding, and users might want to

perform downstream evaluations and tasks. Users may also want to use additional tools to perform visual analytics on the

transformed embeddings. The tool may be used as a standalone analysis tool or integrated into a larger analysis pipeline.

When used as part of a larger analysis, the tool should be used to visually verify the effectiveness of the chosen debiasing

mechanism and seed words in transforming a representative set of evaluation words. Moreover, the tool should have the

ability to export the debiased embedding in an easily parsable and commonly used format to be used in the later parts of

the pipeline.

VERB system overview. Adhering to these design requirements, we next describe the design and implementation of the

VERB system. The VERB backend is composed of multiple debiasing methods. These methods, and how to evaluate them,

are described in Sect. 4. We demonstrate the usefulness of VERB by showing snapshots of intermediated embeddings

to explain how these methods work. The VERB frontend is detailed in Sect. 5. Its interface consists of a Control Panel

that enables the configuration of a particular debiasing algorithm, an Embedding View that highlights a subset of word

embeddings and visualizes their step-by-step transformations across various debiasing techniques, and an Explanation

Panel that gives a step-by-step description of the transformation, as illustrated in Fig. 1.

4 VERB BACKEND: DEBIASING EMBEDDED REPRESENTATIONS

In this section, we give an overview of four debiasing methods for embedded representations (e.g., [51]), which form the

backend of VERB. These methods are becoming essential elements of many pipelines to process and understand texts

and other types of complex data (e.g., merchant embeddings in Sect. 6). In particular, we leverage snapshots from VERB

to provide an intuitive explanation of the main components of these methods.

In developing VERB, we identify that all of this class of mechanisms can be decoupled into a three-step process. The

first is to identify a linear concept subspace among the vectorized representations that capture the direction of bias (e.g.,

the concept of gender or nationality). The second is to use this subspace to transform the representations in a simple and

controlled way. The last is to evaluate the transformed representations.

This decoupling process provides several important advantages for VERB in addressing our design requirements.

First, by identifying the linear subspaces, it orients the embedding view to show the more relevant, and only modified

components, in accordance with ⟨R1⟩. This way, users can verify how changes are happening with respect to concepts

and not worry that other unseen dimensions are being distorted. Second, it allows the explanation of the debiasing process

to be presented in simpler and easier to digest components. Third, it allows VERB to be modular, and allows users to

mix-and-match these components and find effective ways to pair them for the task at hand, addressing ⟨R2⟩.
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4.1 Step 1: Subspace Identification

In embedded representations, the specific dimensions occupied by features are unknown. In this section, we discuss four

methods in the literature used to determine the subspace that is the span of a specific concept (e.g., gender). Some of

these methods (PCA and PCA-paired) naturally generalize to identify multiple directions, but it is quite rare to use more

than one direction to represent a concept. To keep subspace identification modular and simple, VERB currently identifies

1-dimensional subspaces, as described below. The identified direction is independent from any subsequent visualization

or debiasing mechanism.

A    PCA

C    two-means

B   paired-PCA

D   classification normal

Fig. 2. Concrete examples of subspace identification methods using VERB. (A-D): PCA, paired-PCA, 2-means, and
classification normal. (A): green points are seed words. (B-D): green points represent male gendered words, orange points
represent female gendered words. The black line segment that starts from the origin represents the gender subspace
direction.

PCA. This is a general and simple approach to determine a subspace. It requires one set of word vectors, referred to as

the seed words, from which it computes the top principal component – which is the best 1-dimensional subspace that

minimizes the sum of squared distances from all word vectors. This resulting unit vector represents the subspace direction.

Using VERB, we illustrate the PCA method in Fig. 2A using a set of gendered seed words:“man, woman, brother, sister,

he, she”. The red arrow above the black line shows the direction of the gender subspace obtained via PCA.

Paired-PCA. Another variant based on PCA was proposed by Bolukbasi et al. [5]. It requires a list of paired words as the

seeds; each pair has one word vector from different groups. For example, for the gender concept shown in Fig. 2B, we

use “man-woman, he-she, brother-sister” as seeds for subspace identification. The paired-PCA method then reports the

concept subspace as the first principle component of the difference vectors between each paired vectors. Because these

vectors are the result of differences, we do not need to “center” them (remove their mean) first as when PCA is used on

word vectors.
Manuscript submitted to ACM



10 Rathore et al.

2-Means method. The 2-means method [16], for any two sets of words as seed sets, returns the normalized difference

vector of their respective averages. So for groups of words F = { fi } and M = {mi }, it computes f = 1
|F |

∑
i fi

and m = 1
|M |

∑
imi as the mean of each set. Then the direction is calculated as v = f −m

∥f −m ∥
. This method has the

advantage that it does not require paired words or an equal number of words in the two seed sets. We give an example

of applying the 2-means method to two sets of seed words in Fig. 2C, where F = {“woman′′, “sister ′′, “she ′′} and

M = {“man′′, “brother ′′, “he ′′}. The computed gender direction (black line segment) originates from the origin in the

visualization.

Classification normal. For two groups of seed words that can be classified using a linear support vector machine

(SVM), the direction perpendicular to the classification boundary represents the direction of the difference between

the two sets. Again, this requires only two sets F and M , but they do not need to be paired or of equal size. As

illustrated in Fig. 2D, the dotted line represents the classification boundary between F = {“woman′′, “sister ′′, “she ′′} and

M = {“man′′, “brother ′′, “he ′′}, and the red arrow is its normal direction. The black segment emanating from the origin

again indicates the gender direction. Ravfogel et al. [59] used this direction iteratively to remove bias in word vectors by

projections.

4.2 Step 2: Bias Mitigation

There are several methods to modify the embedding structure in ways that mitigate the encoded bias. Although there are

more complicated optimization-based ones designed for specific tasks in gender bias in text [82], we describe a subset

of four debiasing methods that are quite simple to actuate (although nuances of them may be intricate), and they rely

specifically on the concept subspaces identified earlier. Again, VERB serves as the perfect visual medium to explain these

debiasing methods. For the descriptions below, a point in the space of high-dimensional embedded representations is

denoted as x ∈ Rd (e.g. for d = 50 or d = 300). A concept subspace is labeled v and is restricted to be a unit vector in Rd .

Linear Projection (LP). This approach [16] removes the component of concept subspace for each data point x . This

procedure can be applied individually to each data point x , where the component along v is ⟨v,x⟩v, where ⟨v,x⟩ is the

Euclidean dot product. The LP method then removes the component along v for every point x ∈ Rd as x ′ = x − ⟨v,x⟩v .

Using VERB, we give a simple example by applying two-means and LP debiasing in mitigating the gender bias

in occupational words. The two seed sets are M={“man”, “he”} and F={“woman”, “she”}. The evaluation set is E =

{“receptionist”, “nurse”, “scientist”, “mathematician”}. As illustrated in Fig. 3, VERB decomposes the LP method into an

interpretable sequence of transformations. In Step 0, both seed sets and evaluation set are viewed using a perspective from

PCA, where the gender direction is identified using two-means. In Step 1, the viewing perspective/angle is reoriented so

the gender direction is aligned with the x-axis, where we see clearly that “receptionist” and “nurse” are shown to be closer

to the female direction whereas “banker” and “engineer” are closer to the male direction. The reorientation does not

change any data, it simply changes the 2-dimensional subspace that is visualized. The VERB interface smoothly animates

this by interpolating the viewing angles. In Step 2, for every word in the embedding, LP removes its component along the

gender direction in Rd , where all words are shown to be aligned along the vertical axis. The underlying data is modified

in this step. In Step 3, the transformed (debiased) points are reoriented again using the perspective from PCA, where there

is no clear gender association among the occupational words. This last PCA view is different from the original PCA view

since the data was modified in Step 2.

Hard Debiasing (HD). An earlier approach (the first one proposed) by Bolukbasi et al. [5], known as Hard Debiasing,

uses a similar mechanism, and is designed specifically for gender bias. It also requires an additional wordlist called the
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Fig. 3. A simple example using two-means to identify a gender subspace and Linear Projection to mitigate the gender bias
in word embeddings.

equalize set, which is used to preserve some of the information about that concept. We summarize this mechanism next.

The words that are used to define v are considered definitionally gendered and not modified. The exception is another

provided set of pairs of words (e.g., “boy-girl”, “man-woman”, “dad-mom”, “brother-sister”). These word pairs are

equalized; that is, they are first projected as in Linear Projection, but then each pair is extended along the direction v, so
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Fig. 4. An example using two-means and HD to mitigate the gender bias.

the words are equally far apart as they were before the operation. The remaining words are then projected as in Linear

Projection.

In our example with VERB, we again use M={“he, man”} and F ={“she, woman”} and two-means to define a gender

direction v, Q= {“boy-girl”,“sister-brother”} as the equalize set, and E= {“engineer”, “lawyer”, “receptionist”, “nurse” }

again as the evaluation set. As illustrated in Fig. 4, Step 1 is obtained after a reorientation of the gender direction along

the x-axis. Step 2 is removing the component of each point along the gender direction with the exception of M and F
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(“she, woman” and “he, man”). Step 3 tries to preserve some information regarding gender using the equalize set E thus

extending the words in Q (“brother,” “sister,” “boy,” “girl”) along the gender direction so they become equally far apart.

Step 4 reorients the modified words using PCA from a viewing perspective with the most variance.

Bolukasi et al. [5] described other methods, and later works by Wang et al. [75] also provided slight variants, or

rediscovered these approaches. One concern about Hard Debiasing is that it may leave residual bias [23]. The authors of

that critique helped develop the next approach as an alternative.

Fig. 5. An example using classifier normal and INLP to mitigate the gender bias over two rounds.

Manuscript submitted to ACM



14 Rathore et al.

Iterative Nullspace Projection (INLP). INLP [59] starts with a pair of large word lists (e.g., sets of male and female

words). It suggests to select the top 0.5% of the extreme words along either directions of the he-she vector, denoted as sets

M and F , respectively. It then builds a linear classifier that best separates M and F , and linearly projects all words along

the classifier normal (denoted as v1). However, a classifier with accuracy better than random may still be built on M and F

after the projection. Let v2 denote the classifier normal. INLP then applies linear projection to all words again along v2.

This continues for some large number of iterations or when no better classifier can be found. Afterwards, the words that

may encode bias, even by association (the sets M and F ), cannot be linearly separated with accuracy better than random

chance.

An example run of INLP using VERB is shown in Fig. 5 using two sets of definitionally gendered words M = {“man,

he, him, his, guy, boy, grandpa, uncle, brother, son, nephew, mr”} and F = {“woman, she, her, hers, gal, girl, grandma,

aunt, sister, daughter, niece”}. A perfect separator/classifier can be found initially (shown in Step 1), and then linear

projection along the classifier normal is shown in Step 2. The next classifier normal (shown in Step 4) is not a perfect

separator. Yet, after its next application, and a PCA reorientation as shown in Step 6, no sufficiently good classifier can be

found, and the procedure stops.

Orthogonal Subspace Correction and Rectification (OSCaR). A critique of the above techniques, especially INLP, is

that they are destroying information that we might want to preserve. For example, we may want to know that “grandpa” is

referring to a male grandparent. The OSCaR algorithm [14] seeks a more controlled approach. It requires two specific

concept subspaces, for instance, one representing gender v1 and another representing occupations v2. OSCaR does not

“project away” the gender subspace, but rather attempts to disassociate them by making those subspaces orthogonal.

In addition to orthogonalizing those subspaces, which can be done by rotating v2 to v ′
2 so ⟨v1,v ′

2⟩ = 0, it also rotates

all other data points by a lesser amount. Points close to v1 do not rotate much, whereas points close to v2 rotate about

as much as v2. Whereas OSCaR does not remove any possible way to find any association between data aligned with

either of these subspaces, it does make the concepts as a whole orthogonal. In the bias evaluation approaches described

in Sect. 4.3, OSCaR is demonstrated to reduce bias in an amount similar to other debiasing approaches. Moreover, it

retains the information along each of the original subspaces v1 and v2.

With VERB, Fig. 6 shows the four steps of OSCaR. The first subspace v1 representing gender is defined with words

“he,” “his,” “him,” “she,” “her,” “hers,” “man,” and “woman.” The second subspace v2 representing occupations is defined

with words “engineer,” “scientist,” “lawyer,” “banker,” “nurse,” “homemaker,” “maid,” and “receptionist.” In the PCA

view (Step 0), one can observe that the two subspaces are correlated, and the typical gender stereotypes of the occupation

are present in the word representation, e.g., “maid” in the female direction and “engineer” in the male direction. The

reoriented view in Step 1 aligns the Gender direction (v1) along the x-axis. It shows the span of v1 and v2, which is the

2-dimensional subspace where OSCaR modifies the data. It is also the subspace with the largest angle between these two

subspaces. In Step 2, the data is modified so that the gender and occupation subspaces become orthogonal. The evaluation

set words “grandma,” “grandpa,” and “programmer” (along with all other words) can be seen to move along with these

words. Note how “programmer” is still near the other technical-oriented careers, and how “grandpa-grandma” retains the

inherently male-female relationship. Finally, in Step 3, another PCA view is shown on the modified data, and now the

subspaces can be seen to retain the orthogonal nature, and the gender connotation in the occupations has been rectified, so

there is no apparent stereotypical correlation.
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Fig. 6. An example using PCA and OSCaR to rectify gender bias in relation to occupations.

4.3 Step 3: Bias Evaluation

There are several intrinsic [8, 16] and extrinsic [13, 82] measures to determine how much bias is contained by word

embeddings. When bias is removed [5, 13, 14], these measures help determine how effective the bias removal has been.

In general, it may not be possible to completely remove bias in these measures due to the nature of the measurement or its

influence from other data and training choices. We next describe some common and representative bias measurement

methods.
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4.3.1 WEAT. The Word Embedding Association Test (WEAT) [8] is an analogue to the Implicit Association Test

(IAT) from psychology. It checks for human-like bias associated with words in word embeddings. For example, it

finds career-oriented words (e.g., “executive”, “career”) are more associated with statistically male names (e.g., “Tom”,

“Peter”) and male-gendered words (e.g., “man”, “boy”), whereas family-oriented words (e.g., “family”, “home”) are more

associated with statistically female names (e.g., “Mary”, “Kate”) and female-gendered words (e.g., “women”, “girl”).

WEAT considers four sets of words: two target word sets X and Y (e.g., representing male and female genders) and

two sets of attribute words A and B (e.g., representing stereotypical male or female professions). First, for each target

word w ∈ X ∪ Y , it computes how much the word is associated with set A, and not associated with set B as

s(w,A,B) =
1
|A|

∑
a∈A

cos(a,w) −
1
|B |

∑
b ∈B

cos(b,w),

where cos(a,w) is the cosine similarity between vector a and w . Then it averages s(w,A,B) across all w ∈ X , minus the

average of all w ∈ Y as

s(X ,Y ,A,B) =
1
|X |

∑
x ∈X

s(x ,A,B) −
1
|Y |

∑
y∈Y

s(y,A,B).

Finally, the WEAT test statistic is s(X ,Y ,A,B) normalized by the standard deviation of s(w,A,B) for all w ∈ X ∪ Y , so

typical values should not be too far from [−1, 1], and a value closer to 0 indicates less implicit (and biased) association.

VERB allows users to compute WEAT before and after debiasing. The default word sets (which can be modified) in

VERB use the following [8, 16] configuration:

• Male words as X = {male, man, boy, brother, he, him, his, son}

• Female words as Y = {female, woman, girl, sister, she, her, hers, daughter}

• Stereotypically male occupations A = {doctor, engineer, lawyer, mathematician, banker}

• Stereotypically female occupations B = {homemaker, receptionist, dancer, maid, nurse}

4.3.2 Embedding Coherence Test. The Embedding Coherence Test (ECT) [16] measures if groups of words have

stereotypical associations. Instead of evaluating the exact word similarities (e.g., male and female words with occupation

words), it first aggregates the male and female words into their means, described asm = 1
|X |

∑
x ∈X x and f = 1

|Y |

∑
y∈Y y.

Then, it evaluates the order of similarity from m and from f to a different set A ∪ B, such as occupation words (“doctor”,

“nurse”, etc.). Next, it sorts the values cos(m,w) for each w ∈ A ∪ B and the values cos(f ,w). The similarity of these

sorted lists is measured with the Spearman Coefficient, which ranges between 1 (when the ordering is exactly the same,

so the least bias) and -1 (where the ordering is exactly opposite, thus the most biased). Therefore, larger values of ECT

indicates less bias.

4.3.3 NLI Based Tests. Since word representations are used downstream in different tasks and applications in NLP, it

is important to measure the effect biased associations have on the decisions made in these tasks. An example is natural

language inference (NLI). Dev et al. [13] used NLI to provide a clear signal on the encoded bias. The task is, given a

pair of sentences to predict if the second one is entailed, is contradicted, or is neutral to the first sentence. The sentence

pairs constructed as all neutral and any deviation from a neutral prediction is bias. These are constructed from simple

template sentences where the VERB, object, and subject are chosen from word lists, and in total over a million sentences

are considered. For each one, the subject (e.g., an occupation like “doctor”) is paired with another sentence where the

subject is replaced by either “man” or by “woman.” If the occupation has no gender bias, it will result in a neutral

Manuscript submitted to ACM



VERB: Visualizing and Interpreting Bias Mitigation Techniques Geometrically for Word Representations 17

inference prediction, but if bias is encoded, it will result in higher probability of entailment or contradiction. The higher

the percentage of sentences predicted as neutral, the better the prediction (i.e., the lower the amount of bias).

Currently, VERB supports WEAT-based evaluation in its visual interface due to its simplicity in computation. We use

all three measures to evaluate a new, VERB-inspired subspace identification method in Sect. 6.3.2.

5 VERB FRONTEND: USER INTERFACE

With VERB, users can explore and interpret four types of debiasing techniques (see Sect. 4.2) through three coordinated

views.

The Embedding View (Fig. 1A) highlights a subset of word vectors using dimensionality reduction and visualizes

the transformations of their embeddings across various debiasing techniques. It decomposes a chosen technique into

a sequence of interpretable operations and visualizes their associated transformations via a step-by-step animation, in

accordance with ⟨R2⟩. It also provides additional capabilities to interact with individual word vectors. In particular,

users can select a word in the Embedding View, and VERB will display its nearest neighbors in the high-dimensional

embedding space, before and after debiasing. Users can hover over a word and there is a popup to display quantitative

association of the word vector with the bias subspace/direction (using dot product between the word vector and the

susbspace direction) before and after debiasing.

The Control Panel (Fig. 1B) enables users to configure each debiasing technique by specifying the algorithm (LP,

HD, INLP, or OSCaR), subspace technique (PCA, paired-PCA, 2-means, or classification normal), concept labels (e.g.,

gender, occupation), seed sets (for defining concept directions), evaluation set, and equalize set, etc. The evaluation

set does not influence the debiasing methods; rather, it allows users to observe how the methods affect any chosen

words contributing to ⟨R3⟩. Similarly, modifying the seed sets allows users to see how robust the concept subspaces and

debiasing mechanisms are to those choices – an essential property to ensure robustness in a larger data analysis pipeline.

The Control Panel also provides controls to navigate through the steps of the chosen technique and to toggle various

aspects of the visualization such as data labels, subspace direction, and evaluation points, enabling users to construct

mental models of the process’s minutiae as emphasized in ⟨R2⟩. Users can also choose from a list of predefined examples

(detailed in Sect. 6). The Control Panel also provides users the ability to export the debiased embeddings, addressing

⟨R3⟩.

The Explanation Panel (Fig. 1C) gives a step-by-step description of the transformation. VERB also enables users to

download the modified word embedding after applying a particular debiasing technique. Thus, VERB not only provides

an educational guide for understanding a debiasing technique, but also allows users to apply and visually verify these

modifications before moving to any downstream analysis.

These capabilities make VERB not just a visualization tool but also a component of data science pipelines that involve

distributed representations, to address ⟨R3⟩. Due to fundamental differences in the number and types of inputs necessary

for the various debiasing methods, it is hard to allow direct comparison inside the interface, and we defer this task to

downstream components of the users’ analysis pipeline. Users can also compute and compare standardized WEAT scores

for the initial and debiased embedding right inside the interface, enabling them to perform a preliminary assessment of

debiasing under the current set of chosen parameters. We note that optimizing for WEAT and other quantitative measures

directly on the data used to define concepts could lead to overfitting. These measures need to be tuned for the concepts of

interest, and that, in general, many of these scores are designed only for binary biases. Since significant caution should be

used in interpreting the quantitative scores, beyond the standard gender-focused measure we provide within VERB, we

advocate a deeper quantitative analysis be performed by experts downstream.
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In the example shown in Fig. 1, VERB helps reveal the association in the word embedding with the gender concept that

contributes to its gender bias. Specifically, before debiasing (Fig. 1A), along the gender direction (a black line segment

starting from the origin), the adjectives “strong,” “important,” “arrogant," and “rational” are more closely associated with

the male words “he” and “him", whereas the words “temperamental,” “gossip,” “excitable,” and “beautiful” are more

closely associated with the female words “she” and “her”. VERB then animates the step-by-step transformation of the

word embedding using LP for debiasing and two-means for subspace identification. After debiasing (Fig. 1D), there is no

longer a gender direction, and the above adjectives do not show a clear gender bias.

Transforming embedding views. A central functionality of VERB is that it allows users to experiment with and visualize

the effects associated with a chosen debiasing mechanism. Specifically, the tool updates the Embedding View when an

algorithm modifies the underlying representation step-by-step, addressing ⟨R1⟩. We have experimented with multiple

embedding views corresponding to major steps of the process, but have found that it required larger effort from users to

track changes across multiple views. Having smooth transitions between steps helps users focus on the differences over

steps instead of the word positions themselves. As we demonstrate in Sect. 6, VERB can be applied to not only word

vector embeddings that arise from NLP, but also other embedded representations. Whereas the data is represented as 50

or often higher dimensional vectors, VERB provides views of the data objects in a 2-dimensional interface as points.

Whereas our (default) underlying embedding has 100K points (others could have much more), we do not attempt to

visualize all points. Instead, the Control Panel allows users to select a representative subset (i.e., the evaluation set) to

visualize.

After choosing a debiasing mechanism and a subspace identification technique in the Control Panel, each debiasing

process always starts with a 2-dimensional scatterplot, obtained using the best 2-dimensional subspace as determined

by PCA on the user-provided data points. We choose PCA for the projections since it is a linear projection method

that is widely used and understood. Any projection to a low-dimensional space by nature is losing information; without

knowledge of the concept direction, the PCA projection loses the least information among linear projections. Debiasing

being an inherently geometric operation, nonlinear projections such as t-SNE or UMAP might introduce distortions not

present in the data, which goes against the design requirement ⟨R1⟩. Previous studies, such as InterAxis [31], have also

proposed methods to visualize high-dimensional datasets in a 2-dimensional scatterplot using a user-centric approach for

feature selection and weighing. For our purposes of analyzing word representations, where individual features (1) do not

have physical grounding (the representations are distributed) and (2) interact in complex ways, InterAxis is not a suitable

choice.

For the PCA projection, the origin is always shown in the center of the Embedding View. Since the data points are

often interpreted as vectors, the cosine metric is the most commonly used metric (which measures angles with respect to

the origin as a base point). This initial PCA view (marked as “Step 0” in the Embedding View) itself is not especially

meaningful, but it is useful as an alternative starting point, and helps highlight the meaningfulness of the other views.

In “Step 1” of the transformation, VERB changes the viewing perspective of the initial embedded view (Fig. 1A). In

particular, the concept subspace v is always rotated so it is aligned with the x-axis. The y-axis is chosen as the highest

variance direction among the remaining points (via PCA). This choice of x-axis is essential for two reasons from ⟨R1⟩.

First, the left-right direction provides a faithful account of how far each representative point is along this concept subspace.

Two related terms (e.g., “temperamental”, “rational”) can be compared, and their relation along this concept subspace (e.g.,

Gender) is not distorted, which may be the case if that subspace was not parallel with the viewing plane. Second, when a

projection operation (internal to three of the debiasing mechanisms) is applied that effectively removes the component
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along this concept subspace, then one can clearly see the representative data points moving onto a lower dimensional

subspace combined into and represented by the y-axis.

The OSCaR mechanism requires the definition of two subspaces v1 and v2. In this case, the initial embedding view is

the span of these two subspaces. In OSCaR, all of the operations happen only in this subspace, while all components

outside this 2-dimensional subspace (e.g., coming out of, or into the screen) are not modified. As with all techniques,

OSCaR allows users to explicitly see the action happening without any visual side effects that obscure these operations.

For the INLP operation, which iteratively applies linear projection after finding the new best classsifier, VERB shows

each of these steps. After each new normal direction is found for a subspace, it updates the viewing perspective to make

that subspace along the x-axis as before, so that residual concept can be viewed, and its projection can be dynamically

visualized.

Finally, with the new (debiased) embedded representations, VERB provides a final view of the data from the 2-

dimensional PCA perspective. This is important to show the final and best possible view of the representations, especially

when a projection mechanism is used, otherwise, all of the data may have been compressed into a single 1-dimensional

subspace (the y-axis) within the earlier perspective.

Implementation. The front-end of VERB is implemented using the HTML/CSS/JavaScript stack and D3.js. We use an

automatic label placement algorithm [72] that uses simulated annealing to minimize overlaps between text labels in the

Embedding View. Its back-end is developed using Python and Flask. VERB comes pre-loaded with a 50-dimensional

GloVe embeddings of the 100K most frequent words taken from the Wikipedia 2014 + Gigaword corpus [54]. It also

provides a larger downloadable GLoVe embedding (300-dimensional with the 100K most frequent words) from the

Common Crawl corpus (https://commoncrawl.org/).

Scalability. The backend of VERB is designed with scalability in mind and has been tested to apply debiasing techniques

to 300K word embeddings. The default setting applies debiasing techniques to a set of 100K GLoVe embeddings. These

debiased embeddings can be downloaded by users using the "Export as CSV" feature in the tool. The frontend can display

up to 10K words simultaneously, however, at the expense of increased visual clutter. The recommended usage of VERB

is to perform visual exploration and analysis with dozens of words which most clearly define a concept (perhaps fewer in

a pedagogical setting), and export the full debiased word embeddings for downstream analysis.

6 USE CASES

We evaluate the efficacy of VERB through multiple case studies, conducted with the targeted users of this tool. The studies

have been carried out through guided explorations in three steps. First, we explain the high-level design goals/rationales

of the system, along with necessary background of the debiasing algorithms. The users can then freely interact with the

system to explore different embedding data and debiasing algorithms. The users work through their own explorations and

there is no collaboration between users in this process. Finally, we collect feedback from the users through open-ended

interviews and think-aloud discussions.

Studied Cases. This section presents the four case studies that we designed to showcase the capability of VERB and

help users get familiar with the tool. First, we will show how VERB can be used to quickly and easily identify new

forms of bias in word vector embeddings. Second, we will demonstrate the power of VERB in teaching and contrasting

methods to identify concept subspaces and use them to attenuate bias in word vector embeddings. Third, we will highlight

how VERB identifies concept subspaces as a critical yet under-explored element of debiasing. Inspired by this, we will

show how to optimize subspace identification, leading to an improved iterative method which quantitatively improves the

Manuscript submitted to ACM

https://commoncrawl.org/


20 Rathore et al.

debiasing results. Finally, we will showcase VERB’s generality by exploring a different type of embedded representation,

one that captures merchant embeddings associated with a large payment company.

Embedding Datasets. Two embedding datasets are involved in the studies. The word vector embeddings use the

pretrained GloVe embeddings trained on the Wikipedia 2014 + Gigaword 5 corpus [54]. The merchant vectors are trained

on financial transaction data (see [18], [79] for details).

Users and Their Background. Four groups of users have participated in our studies. The first group includes three

workshop attendees (W1∼W3) from the AAAI conference and five (W4∼W8) from the KDD conference (where we

presented tutorials of the system). The second group consists of two graduate students (S1∼S2), majoring in computer

science. Their research focuses on studying ML and NLP techniques, where exploring embedding data is an important

part of their daily work. The third group includes two researchers (T1∼T2) of an industrial research lab who work with

the merchant embedding data everyday. The fourth group consists of 20+ researchers and Ph.D. students with varying

backgrounds on data bias and model fairness analysis. The first three groups are considered experts, while the final group

consists of a mixture of experts and non-experts. Different groups of users have their respective focuses of use cases based

on their interest and familiarity with the explored datasets. Specifically, group 1 (W1∼W8) and group 2 (S1∼S2) explored

the word embedding cases. Group 3 (T1∼T2) explored all four cases but focused on the merchant embeddings, as it is their

domain problem and they are very familiar with the dataset. The participants in group 4 were guided to explore all four

cases. However, most of them focused on the cases with the word embedding dataset, as the dataset is easier for them to

understand. The feedback from all users are presented later in Sect. 7.

6.1 Identifying New Types of Biases

VERB allows users to load any word vector embeddings or embedded representations (e.g., GloVe embeddings and

merchant embeddings). Users can select any subset of words or identifiers (e.g., evaluation set) to quickly illustrate

potential correlations. We demonstrate how VERB can be used to identify new types of biases such as the royalty bias or

nationality bias.

As an example in Fig. 7, using VERB, one can easily observe that word embeddings capture a clear royalty subspace

and resulting bias. For instance, using two-means with seed words “king, queen” (for royal words) and “man, woman”

(for common words), a clear royalty subspace becomes quickly apparent. If users also visualize some adjectives as the

evaluation set, “obnoxious, considerate, plain, fancy, attentive, important, majestic”, as in Fig. 7, they can see a potential

bias arising in the captured connotation. Words “obnoxious” and “plain” are more associated with the common direction,

while “majestic” is more in the royalty direction.

Note that the y-axis is chosen to show the most variance, and that variation along that direction is not correlated with

royalty. Whereas the x-axis is selected to reflect the learned royalty component, and the further left along this coordinate

the more common, the further right is more associated with royalty.

Moreover, after removing the royalty concept subspace with Linear Projection (LP), users can observe that the gender

concept remains, as shown in Fig. 7 (Right). After another PCA-based reorientation, the words “man” and “king” are to

the right, and words “woman” and “queen” to the left. Also, there is still residual gender associations after debiasing.

Stereotypical male, chauvinistic traits “important” and “obnoxious” are more on the male side, whereas the stereotypical

female subservient traits “considerate” and “attentive” are more associated with the female side.

Another example is shown in Fig. 8 where words encode an axis from North American countries to Middle Eastern

countries. The positive vs. negative words are used in an evaluation set, showing that “right” and “good” are more
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Fig. 7. Left: royalty bias as observed in adjectives, e.g., “majestic” for “queen” and “ king” vs. “obnoxious” for “women” and
“man”. Right: the embeddings show residual gender associations after removing the royalty subspace using LP.

Fig. 8. Left: Nationality bias between North American countries “america”, “canada” vs. Middle East countries “iran”, “iraq”
as observed in positive (“good”, “right”) vs. negative (“wrong”, “evil”) words. Right: the removal of this association after
applying LP.

associated with North America, whereas “wrong” and “evil” are more associated with the Middle East. Applying LP

removes this association.
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6.2 Explaining Debiasing Methods

VERB was used as part of two recent tutorials at AAAI and KDD. It was also presented as a demo at NeurIPS. In this

context, VERB is designed for NLP practitioners who are designing decision-making systems with word embeddings,

and also researchers working with the fairness and ethics of ML systems in NLP. It also serves as a visual medium

for education, which helps NLP novices to understand and mitigate biases in word embeddings; recently it has been

incorporated into a Discover Engineering exhibit slated to represent a new data science major to about 7000 high school

students annually in and around Utah.

To explain debiasing methods to these targeted audience, a description of the debiasing methods alone makes it hard for

an interested user to decide which one to use, how to use it, and what the limitations are. During this tutorial, participants

could easily download VERB, and immediately start interacting with the pre-loaded word vectors embeddings, or creating

new examples. They could not only clearly observe the biases and structures presented in these embedded representations,

but also compare and contrast their effectiveness and side effects.

Whereas VERB provides utility to run a variety of identification of concept subspaces, and then uses them within

debiasing approaches, we highlight a few examples where it is particularly effective in distinguishing variation in the

debiasing methods and improving users’ understanding of them. In particular, AllenNLP used screenshots from VERB in

a preprint of this paper to give an overview of bias mitigation and bias direction methods (see https://guide.allennlp.org/

fairness#3).

Comparing Hard Debiasing vs. Linear Projection. Bolukbasi et al. [5] introduced the idea of using the Linear

Projection (LP) step for debiasing, but wrapped it in a more complex Hard Debiasing (HD) mechanism in an attempt to

preserve the structure among definitionally gendered words. This mechanism requires extra word lists and includes a set

of paired words, which are equalized. To demonstrate the difference, we use VERB to run HD and LP in Fig. 4 and Fig. 3,

respectively, using the same seed sets to define the subspace and evaluation set. HD requires an extra equalize set, and as

a result an extra step in the process to equalize those pairs. Hence, it also requires the concept must be the result of some

binary notion, thus disallowing concepts like nationality. On the other hand, LP simply projects all words to a subspace

that is one dimension lower, including the seed set. Whereas these methods are distinct, it may not be clear all the ways

they differ without VERB.

Understanding OSCaR. OSCaR [14] is a newer approach to debiasing, and does not rely on projection to remove a

subspace. Instead, its operation focuses on a graded rotation (where a different rotation matrix is applied to each point)

that, whereas subdifferentiable, requires a complicated case statement to define precisely. With VERB, users are able to,

for the first time, dynamically visualize this process under a number of situations. Fig. 6 show snapshots of the process on

an example. Particularly in Step 1, users are presented the specific perspective needed to understand the graded rotation,

and then it is animated between Steps 1 and 2. Furthermore, users can see how afterwards, both the concepts remain in

tact, but they have had their correlation removed.

One observation that quickly became apparent with VERB, but not before, is that OSCaR works more closely to

one’s intuition (of orthogonalizing subspaces) when the subspaces are defined using PCA (compared to other subspace

identification methods). While two-means may do a better job of explicitly capturing the concept subspace for the

relationship between two sets (e.g., definitionally male and female words), they do not as explicitly capture a single

subspace for the concept as does PCA. Visually, using PCA with OSCaR allows users to easily see the subspace for each

concept, where the one for gender can be seen as much less noisy than one for occupations, and how these two subspaces

are orthogonal after the operation.
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Residual bias. A well-known critique of Hard Debiasing [23] is that it leaves residual bias in the embedding, even after

the debiasing operation. Whereas such an observation is illustrated mostly quantitatively or abstractly in [23], with VERB,

users can easily see the potentially concerning effect. For example, when trying to remove gender bias associated with

occupations, HD projects occupation words off the gender-defining subspace. However, for instance, as seen in Fig. 9, the

traditional and stereotypical female occupations (e.g., “receptionist” and “homemaker”) are still very close to one another,

as are stereotypical male professions (e.g., “lawyer” and “engineer”). Such an observation illustrates the concern, since if

one knows a homemaker is traditionally female and an engineer is not, then one may infer that so is receptionist, and a

lawyer is also not.

Fig. 9. VERB visualizes residual bias after applying Hard Debiasing.

6.3 Interactive Concept Identification

In building VERB, we realize that it provides a new abstraction for understanding existing debiasing methods and creating

new ones. In particular, VERB uses a two-step process, subspace identification and embedding transformation, for a

debiasing process. Instead of transforming a word vector embedding with a predefined concept subspace, we study how

to (a) determine an “optimal” concept subspace and (b) apply transformation w.r.t. such a subspace.

As described in Sect. 4, there are several distinct methods to identify concept subspaces (PCA, paired-PCA, two-

means, classifier normal). Although these methods are often associated with specific debiasing methods, they are mostly

interchangeable. Despite their distinctiveness, the choice of subspace identification method is often ignored or neglected.

VERB allows users to easily experiment with these methods, explore their differences and their sensitivity to seed words,

and improve the overall effectiveness. Then, going beyond existing mechanisms, VERB provides a novel, optimized

concept identification method, improving upon prior methods in quantifiable bias mitigation.

6.3.1 New Iterative Method of Subspace Identification. With VERB, we propose a new method of determining

a subspace (described by a direction) that captures a specific feature in an embedded representation. Our new method
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iteratively improves the subspace direction by optimizing a function. It uses golden-section search (GSS) internally, which

given a unimodal function, finds an extremum (minimum or maximum) of the function within a specified interval. It

operates by successively narrowing the range of function values within the interval without using the gradient of the

function. We use WEAT [8] as the underlying function. That is, given a stereotypical subspace direction v, the value S(v)

provides the difference in WEAT score after applying LP for subspace v. The smaller the value, the better v captures the

bias subspace.

Overfitting, testing, and training data. Before we describe our new subspace identification method, it is important to

discuss overfitting, testing data, and training data. According to its formulation, if WEAT is evaluated on sets of words A,

B, X , and Y , then it may be unfair to train a subspace on the same words it is evaluated on. Otherwise, the trained subspace

may not generalize to the vast majority of words not in these sets, i.e., overfitting. For example, if we use definitionally

gendered words (e.g., “man, woman, boy, girl”) in A and B and stereotypical occupation words (e.g, “engineer” and

“receptionist”) in X and Y , then we should consider defining the subspace using words not in those sets. In particular,

we use statistically gendered names (i.e., words like “Jack” for male M and “Susan” for female F ), to define a subspace

without using any words that appear in the standard evaluation sets (A and B) of definitionally gendered words.

New iterative subspace identification. The algorithmic procedure starts with the two-means approach to identifying

an initial concept subspace using seed sets M to get mean m and set F to get mean f . Initially let v =m − f represent

the gender direction. Then, we iteratively improve the WEAT score S(v) by choosing updated points m in the convex

combination of M and f in the convex combination of F . In each iteration, we fix either m or f and update the other.

When f is fixed, we cannot use gradient descent to updatem, since we do not have access to a gradient of the function

S . Rather, we consider movingm toward any point x ∈ M , by settingm to its new locationmx (α) = (1 − α)m + αx for

α ∈ [0, 1]. The parameter α represents the fraction toward x fromm. We consider each x ∈ M in a fixed permutation, and

determine how best to movem toward x , using GSS to optimize S(mx (α)) as a function of α . We update m to mx (α), and

then consider the next x ′ ∈ M in the permutation, and update mx (α) to mx ′(α ′) for the best α ′. After completing this

permutation, we fix the new location of m, and optimize f . These can be alternately optimized. We found that two rounds

of optimizingm and f are sufficient.

Whereas the above procedure is automated, VERB is essential in selecting the words used in M and F so we can see

how they are correlated with those in A and B, respectively. It serves to improve seed word selection, a critical step in a

debiasing process.

6.3.2 Evaluation of Subspace Identification Methods. We evaluate the effectiveness of our new subspace identi-

fication method by computing the WEAT [8] and ECT [16] scores using their respective standard datasets, before and

after debiasing with Linear Projection. During the evaluation, we alter the word lists X , Y to be stereotypical adjectives

so that the evaluation of WEAT is not the same as the one optimized (which used statistically gendered names, and

stereotypically gendered occupations to train), that is, we set A = {“strong,” “intelligent,” “brave,” “important”} and B =

{“pretty,” “beautiful,” “shy,” “homely”}. In ECT, the aggregated male and female words compare the ranks of distances

to a list of occupations. For the classification normal, we debias using Linear Projection exactly once. Recall that a

desirable ECT is closer to 1, whereas a desirable WEAT is closer to 0. In addition to our new Iterative Subspace method,

we compute the concept direction v using PCA, 2-means, and classification normal, respectively. These are compared

against the Baseline of no debiasing. Paired-PCA is not applicable since the input words M and F (statistically gendered

names) are not paired. Table 1 shows that for ECT, Iterative Subspace achieves the largest score (nearly the optimal

value of 1). Note, if we had trained on A,B instead of M, F , then 2-means (which gets the second best score) would
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Table 1. Bias Subspace Selection in Word Embeddings.

Method ECT WEAT (adj) NLI Test
Baseline 0.773 1.587 0.297
PCA 0.905 1.17 0.346
2-means 0.912 1.102 0.379
Classification (1 step) 0.872 0.951 0.383
Iterative Subspace 0.966 0.902 0.386

get the optimal value of 1. For WEAT, the iterative method (0.902) and the classification normal approach (0.951) both

show big improvements over 2-means (1.1) and PCA (1.17). For the more extensive NLI Test [13], we use a large list of

gender-occupation bias measuring sentence pairs and record the fraction of sentences classified neutral, a score called Net

Neutral [13]. The higher the value (closer to 1), the less the bias (see Sect. 4.3.3; the ideal values for ECT, WEAT and

NLI test are 1, 0 and 1, respectively). In this test, we see a similar improvement with the two methods. Iterative subspace

identification does the best under all three measures.

6.4 VERB for Merchant data

Extensive amounts of transaction data are available to financial organizations. To utilize such data for applications such as

recommendation or fraud detection, it is important to understand the characteristics associated with each unique merchant

present in the data. Although much information can be obtained by either calculating summary statistics associated with

each merchant (e.g., average price for each transaction) or obtaining them directly from the merchant (e.g., merchant

categories), a general profile containing additional information can be distilled from the data by creating distributed

representations using word embedding algorithms [18, 76, 79]. Such a profile is not based on text associated with these

merchants, but rather the sequences in which merchants were visited by customers.

The embedding dataset presented in this section is generated from real-world transactions from a global payment

company. It captures payment activities between 70 million merchants and 260 million customers from December 1, 2017

to June 30, 2019 in the United States. The merchant embedding is generated by Word2vec [18, 26], where each merchant

is treated as a word and each customer as a document.

With rich information in the merchant embedding, it can be generally applied to many downstream tasks [18, 81].

Here we focus on a subset of the merchant embedding, referred to as the restaurant embedding, which is extremely

important for recommendation system. By visualizing the merchant embedding dataset through VERB (Fig. 10), we find

that the distribution of embeddings are significantly dominated by each restaurants’ geographical location over other

information such as cuisine type. In other words, geographical location captured by the embedding would interfere with

the recommendation system, as a user’s “taste” is usually more associated with other information such as cuisine type. It

is essential to tease out the undesired subspaces within the embedding space that represents irrelevant information for

better recommendation performance.

In Fig. 10 (left), green points are restaurants from the Bay area (BAY), orange points are restaurants from the Los

Angeles area (LA), and purple points are the evaluation restaurants. From the visualization, all the LA restaurants are

clustered together in the left part of the figure and all the BAY restaurants are clustered in the right part. By using Linear

Projection to remove the location subspace and by providing a small number of restaurants in each location as seed sets,

similar restaurants are now clustered together, see Fig. 10 (right). For both training dataset and evaluation dataset, we can

clearly see seven cuisine types here: Chinese, Ramen, Korean BBQ, Dennys, Donuts, Pizza, Burger/Hotdogs. Therefore,
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VERB allows for an easy understanding of restaurant information in the merchant embedding and allows users to modify

the embedding to adapt to various downstream tasks, as desired for ⟨R3⟩.

Fig. 10. Removing location information from a restaurant embedding using a Linear Projection debiasing technique. From
left to right, visualizing restaurant embedding before and after Linear Projection.

7 USER FEEDBACK

We collected both qualitative and quantitative feedback on VERB from the four groups of users with varying backgrounds

(described in Sect. 6). The qualitative feedback was conducted through think-aloud discussions with the first three groups

of expert users who have thoroughly explored our system. Sect. 6 has described the exploration details and we summarize

their feedback in Sect. 7.1. The quantitative feedback was collected through Likert scale questionnaires targeting on the

last group of users with varying backgrounds. The analysis result from the questionnaires is reported in Sect. 7.2.

The purpose of reporting the relatively subjective feedback (compared to the more objective case studies in Sec. 6) is

to better understand the usability of our system. The feedback from users with varying backgrounds also exposes the

usability limitations of our current system, which is useful for its further improvements.

7.1 Qualitative Feedback

The qualitative feedback was collected from the first three groups of users after they had comprehensively explored VERB

independently on different vector embedding datasets. Specifically, we first introduced VERB to them and explained the

functions of different visual components. The users were then given sufficient time (several hours forW1∼W8 during the

workshop, and a couple of days for S1∼S2 and T1∼T2). Lastly, feedback was collected from them either in written form

and/or through virtual meetings.

In general, all domain users provided positive feedback on VERB in clearly revealing the bias hidden inside embedding

data, and intuitively comparing different debiasing algorithms. For example,W1∼W3 responded to our feedback questions

by valuing the easy accessibility of VERB, and the ease-of-installation was rated between “extremely-easy” and “easy”.
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Four of five KDD workshop attendees responded that VERB had changed their views on biases in word representations.

As a key takeaway from the KDD tutorial using VERB,W4 commented that they did not know the bias mitigation could

be made “that accessible” before the tutorial.W5 was made aware that different types of bias mitigation techniques were

available, and they could choose the one that was appropriate for their goals.W6 asked for VERB to allow for supplying

their own word embeddings. VERB indeed allows this, as demonstrated in Sect. 6.4. Additional comments included:

(a) to use VERB to study biases associated with wealth; (b) to discuss what is lost in the visualization by projecting a

50-dimensional embedding to 2 dimensions; and (c) to investigate further how well the techniques extend to situations

where there are (explicitly or not) multiple free variables. Based on a comment from W7, we want to emphasize that

gender is not binary, and treating gender as a binary variable in some NLP tasks including debiasing is a simplification

(c.f. [15]).

Both S1 and S2 expressed awareness of and worry about the biases in their embedding data. They reaffirmed the

importance of the debiasing problem and appreciated the interactivity provided by VERB in easily disclosing the hidden

biases. Additionally, we also had thorough discussions with them about other design choices in presenting the clustering

results with different dimensionality reduction algorithms. T1 commented that VERB concretized the bias mitigation

process in her mind through smooth animations and it demonstrated the process in a more intuitive manner, which

significantly helped her understand the merchant embedding data. Compared to the traditional way of manually comparing

the embeddings before and after debiasing, VERB is more convenient, interactive, and user-friendly.

There were also several suggested improvements provided by the users. First, S2 discussed the importance of debiasing

in language translation tasks to prevent the propagation of bias from one language to the other. He suggested concurrently

analyzing multiple sets of embeddings in the same projection space to investigate and relate the biases from individual

sets. Adding contexts for biases was another interesting comment, as the biases from one language may not be biases in

the other. Second, S1∼S2, as well as the workshop attendees, were impressed by VERB integrating so many debiasing

algorithms. However, certain technique (e.g., Hard Debiasing) was not very familiar to them. S1 recommended adding

short video clips, or links to some algorithm explanations to briefly explain different debiasing techniques. Lastly,

some direct side-by-side comparisons for different debiasing algorithms were also recommended by the users (without

considering the space usage). The feedback provided promising further directions for us to explore.

7.2 Quantitative Feedback

Apart from the qualitative feedback collected through guided exploration and think-aloud discussions in Sect. 7.1, we

also wanted to solicit users’ quantitative opinions on the usability of VERB. While there were a number of visualization

evaluation approaches [19], according to the visualization literature [29, 34], Likert-scale questionnaires [65] are often

the ideal choices to collect users’ subjective opinions, especially when evaluating the user experience on a visualization

tool. The collective behaviors of individual responses to the questionnaires would constitute quantitative feedback from

the users.

In detail, we conducted multiple VERB exploration sessions with the last group of users, i.e., 20+ research scientists

and Ph.D. students from a research institute. The users participated the sessions voluntarily and the sessions were carried

out in a setting similar to that described in Sect. 7.1, i.e., we explained different debiasing algorithms and how VERB

works, and provided detailed instructions on its usage. The participants were asked to explore the system for a sufficient

amount of time and fill out a survey with Likert scale questions (attached in the supplementary material).

From the 20+ participants, 20 valid responses were collected. A summary of the participants’ background and responses

is shown in Fig. 11. Most of the participants had ML and NLP backgrounds and half of the participants self-identified
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as “knowledgeable” in bias and model fairness analysis (Fig. 11, left). The Likert scale questions solicited the users’

agreement level on the following questions:

• Q1: VERB is superior to existing solutions that I used before in easily identifying biases in embedding data (Bias

Identification).

• Q2: The debiasing process presented by VERB is intuitive and helps me understand and compare different

debiasing algorithms (Bias Understanding and Comparison).

• Q3: I feel engaged in the bias exploration process and am confident in verifying the quality of the debiased

embeddings (Bias Exploration, Verification).

• Q4: VERB is easily accessible, and the interactions are user-friendly (Accessibility and Usability).

These questions are designed to reflect certain aspects of the user experience that we care about the most, covering the

usability, user-engagement, and accessibility of VERB. However, these preliminary questions may inevitably provide

users with hints about our expected responses and more thoughts and iterations are needed to further refine them in the

future. For example, users’ confidence level in verifying the quality of debiased embedding (Q3) may involve multiple

factors, e.g., their knowledge in this area, their familiarity with the dataset, and the performance of the system. Bearing

these limitations in mind, we still would like to obtain some initial impressions on how users feel about VERB and reflect

the users’ engagement level over the explorations. When conducting the study, we tried our best to mitigate the biases of

the questionnaires by asking users to voluntarily participate in the exploration sessions and encouraging them to answer

the questions more objectively. The result from this preliminary user study is very encouraging. The known limitations of

the current study would lead to improved user studies in the future, such as carefully-designed questions to minimize

influence by expectations, and comprehensive metrics to more directly and objectively reflect the system performance.

From the survey, we found that the users agreed with our stated claim that VERB can help to identify, understand, and

compare biases in word embeddings (Fig. 11, right); there was no disagreement. They also provided positive comments

on the intuitive user interactions and exploration processes. There were some constructive suggestions. As the users had

varying levels of knowledge on debiasing algorithms, some users suggested the inclusion of more explanations or links to

external resources of the algorithms. This was consistent with our findings from Sect. 7.1, and we will integrate these

suggestions into the next version of VERB.
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Fig. 11. Users’ background and responses to our questions during the quantitative evaluation.
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8 DISCUSSION AND CONCLUSIONS

This paper presents VERB, a new tool for visualizing, interacting with, and teaching embedded representations of data.

It is especially useful at allowing users to interact and observe the effects of debiasing word vector embeddings – an

essential component of most NLP tasks, and critical for ensuring fairness.

VERB has been deployed as a central element of recent tutorials at AAAI and KDD, aiding the research in understanding

embeddings within both academia and industry. It was also presented as a NeurIPS demo. The tool has been a part of

several seminar talks directed toward various audiences ranging from students to senior data scientists, e.g., the Utah Data

Science Seminar and the Visualization Seminar. VERB has been utilized in a female-focused summer camp, the Hi-GEAR

(Girls Engineering Abilities Realized) summer camp 2021, which exposes high-schoolers (currently in 9th-12th grade) to

a variety of engineering and computer science careers with hands-on experiential learning and collaborative team projects.

Most recently, VERB has been integrated into a "Discover Engineering" program that was presented to around 7,000 high

school students interested in engineering in and around Utah, as an entry way into a new data science major.

VERB is distinct from previous visualization tools for high-dimensional vectorized data in that it is used to modify

and improve the vectors, before they are used in downstream tasks, not just explore or inspect them. As demonstrated

in Sect. 6, the VERB visual tool is useful in other ways. It allows us to find new types of bias. It identifies the importance

of subspace determination in addition to the debiasing mechanisms – leading to an improved method. Furthermore, it has

been demonstrated to extend to other domains such as merchant data from financial transactions. Due to its generality and

modularity, it is possible to apply VERB to other domains that utilize vectorized data representations.

A key challenge VERB addresses is how to show high-dimensional embedded representions informatively when only

a 2-dimensional view is visually available. It relies on displaying this vectorized data as projected views, via linear

projections. This linearity is essential since the debiasing and modification relies on identification and movement of data

along linear subspaces. Nonlinear methods such as t-SNE or ISOMAP would distort these linear objects. Moreover, these

identified concept subspaces are essential to defining these views. These identified subspaces define the x- and possibly

y-axis of the view, where users can clearly see the amount of contribution individual words have along that subspace,

without concerning the possible distortions introduced by a skewed projection.

Our proposed system has limitations in its current iteration, a few of which are identified below. First, VERB has

been evaluated through feedback from guided explorations and interviews with domain experts. In the future, we will

consider statistical user studies focusing on various use cases to identify and improve upon limitations of the tool. Second,

due to fundamental differences of the debiasing algorithms, VERB does not allow a simultaneous (side-by-side) visual

comparison of multiple debiasing algorithms’ outputs, although it does report the single most common WEAT score for

each algorithm before and after debiasing. Instead, VERB allows users to export the embeddings for their own analysis

pipelines. Due to the diversity of potential analysis one might want to perform, it would be hard to incorporate all potential

downstream analysis into VERB. Third, the seed sets for the debiasing methods have to be manually entered. It may be

helpful to provide suggestions for expanded seed sets to users based on their presently entered words. It is, however, prone

to introducing additional bias and will warrant careful design of such a feature. Fourth, it would be useful to help users

evaluate parameter choices semiautomatically through the VERB system for cases when the use of a particular debiasing

algorithm and subspace identification is unclear, which is left for future work. VERB relies on the human-in-the-loop to

identify biases for exploration. Automatic identification of (unknown) biases is nontrivial and remains elusive for the

current system. Finally, whereas the majority of existing methods assume bias to be binary for simplicity, bias can be
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multifaceted in nature. Adapting our system to handle multiple facets of bias as more sophisticated debiasing methods are

introduced would be another future direction.

By revisiting our design requirements (R1-R3), the lessons learned during the design and evaluation process of VERB

may offer valuable insights that can inform the design of future tools for ML interpretability. The first lesson is based

on the principle of “seeing is believing". Users need to be shown that various biases indeed exist through a hands-on

experience in order to appreciate the efforts behind bias mitigation algorithms. Following the visualization pipeline for

high-dimensional data [40], the second lesson is to use intuitive operations during visual mapping. Our visualization relies

on displaying the data via linear projections to preserve users’ geometric intuitions. The third lesson is to decompose a

well-encapsulated process into modular, simple components for individual demonstration and better interpretation. The

final lesson is to create a tool that is modular and easily generalizable. VERB can be used to explore any high-dimensional

data embeddings beyond those that arise from NLP tasks, as shown in Sect. 6.4 for financial data. Furthermore, it may be

extended to support languages beyond English or even multilingual models, as long as embedding files are provided and

seed sets are modified accordingly.

With the rise of contextualized word embeddings, it remains useful to study non-contextual embeddings using

tools such as VERB. Some applications still use non-contextual word embeddings (over contextual ones) for their

simplicity, interpretability, and efficiency. Many domains (such as analyzing merchants) use embeddings as a primary

data representation, and have yet to identify meaningful ways to extend to contextual embeddings. Many of the debiasing

techniques for contextual embeddings are direct extensions of those incorporated into VERB. It is even more difficult to

visualize and interpret contextual embeddings as compared to non-contextual ones. Therefore as an education tool, even for

understanding how to work with contextual embeddings, VERB on non-contextual embeddings is still important to build

geometric intuitions. Furthermore, the first layer of any contextualized encoders such as BERT [17] and RoBERTa [47],

as well as the last layer of a decoder such as GPT-2/3 [6] or the output of models in the T5 family, are essentially token or

word-piece embedding matrices. VERB could provide an interactive way to investigate biases in these layers. Therefore,

the design of VERB, and the lessons learned from its design and evaluation, can be extended to the the now commonly

used contextualized embeddings such as BERT, RoBERTa, and their derivatives. The full exploration of this is left for

future work.

Overall, VERB is a simple and easy-to-use interface for understanding and acting on a wide variety of vectorized

representations. It provides a powerful way to demystify, interact with, and apply debiasing to these representations,

toward interpretable and fair ML systems that operate on these representations.
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