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Figure 1: The visual interface in exploring sensor network coverage with location uncertainty: (a) control panel, (b) viewing panel, (c)
interaction panel and (d) color panel. In the interaction panel, the coverage of a randomly generated sensor network is visualized by
the union of disk-like sensor regions overlaid with a Rips complex representation.

ABSTRACT

We present an interactive visualization system for exploring the
coverage in sensor networks with uncertain sensor locations. We
consider a simple case of uncertainty where the location of each
sensor is confined to a discrete number of points sampled uniformly
at random from a region with a fixed radius. Employing techniques
from topological data analysis, we model and visualize network
coverage by quantifying the uncertainty defined on its simplicial
complex representations. We demonstrate the capabilities and ef-
fectiveness of our tool via the exploration of randomly distributed
sensor networks.
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1 INTRODUCTION

Sensor networks are becoming increasingly prevalent in the mod-
ern computing environment. A sensor network consists of a
number of physical devices called sensor nodes, spatially dis-
tributed within a geographic region of interest, equipped with sens-
ing/monitoring/recording capabilities within a certain sensor region.
Sensor networks and their data have many applications including
environmental sensing, video surveillance, motion detection, and
spectrum monitoring.

Motivation. Our work is motivated by the problem of wireless
spectrum monitoring, which is gaining momentum in the research
community due to the increased availability of software defined
radios (SDRs) that allow a malicious user to transmit and receive
data on unauthorized spectra. Such unauthorized usage can be
as simple as utilizing mobile phone networks without paying the
service provider or as serious as using an SDR to distribute malware
to legitimate users without their knowledge. The consequences of
malware spread in this manner can be damaging to the point of
causing complete network outages [20]. Violators can even cause
network disruptions by using SDRs to simply send out a jamming
signal. Though cell phone jammers are illegal to purchase in the
United States, users may be able to use SDRs to mimic this behavior



through app-based tools. Presently, the only means for detecting
spectrum violators is through reporting and manual investigation
of the underlying data, which is expensive, time-consuming and
ineffective.

Recently, there has been a great deal of interest in leveraging
crowd-sourcing of mobile phones as a kind of ad-hoc sensor network
to provide robust, dynamic, and, most importantly, rapid detection of
spectrum violators [1, 11, 19]. While promising, a key challenge to
the study of such sensor network data is the coverage problem. For
concreteness, given a collection of nodes in a fixed, planar Euclidean
domain performing some monitoring tasks, where each node has
a radially symmetric (i.e. disk-like) sensor region, we would like
to understand the extent of coverage by these sensor regions. That
is, does the union of sensor regions cover the entire domain? In
particular, if the sensor data has location uncertainty, what is the
probability of coverage within a query region? In the context of
spectrum violator detection, for a fixed spectra, we ask the following
question: does the entire domain or any queried subdomain permit a
spectrum violator to go undetected, and with what probability given
sensor location uncertainty?

Our work is inspired by the study of static (i.e. sensors are sta-
tionary), blanket coverage (i.e. determine if the entire domain is cov-
ered) problem of sensor networks using topological techniques [10].
When sensor locations are known deterministically, the work of de
Silva and Ghrist [10] gives a homological criterion for certifying
global coverage as a novel application of ideas in topological data
analysis. Such a problem becomes more challenging with location
uncertainty in the data, which can arise in many scenarios, such as
poor equipment quality, limited sensing capabilities, obstructions in
the sensing environment, and periodic location estimations. In the
case of crowd-sourcing using mobile phone networks, continually
updating a sensor’s location through GPS may not be practical as it
increases power consumption; in addition, phone users may not want
to have their location monitored constantly or reported exactly due
to privacy concerns. Therefore, we may only have access to inter-
mittent or perturbed data on a phone’s location, leading to a higher
degree of uncertainty. Such uncertainty can further complicate the
detection and localization of spectrum violators. Alternatively, we
may be in a coordinate-free setting, where we are made aware of
the pairwise distances between the nodes, but the locations of the
sensors are unknown (e.g. due to the preservation of privacy); in this
case, we still would like to certify global coverage using topological
data analysis.

Contribution. In this paper, we aim to provide a framework to
model and visualize the network coverage problem with a simple
case of location uncertainty in the setting of indecisive points [17].
Our main contribution is as follows:

• We model sensor network coverage with location uncertainty
by quantifying the uncertainty associated with its simplicial
complex representations.

• We introduce an interactive visualization framework that sup-
ports the exploration and manipulation of the sensor network
data.

We also discuss the educational potential of our tool to help students
better understand homological criteria that originate from topologi-
cal data analysis in certifying sensor network coverage.

In addition, we have deployed our visualization tool under ac-
tive development (http://www.sci.utah.edu/˜tsodergren/
prob_net_vis_working/) and made our code available under an
open source license (https://github.com/jalohse/sensor_
network_topology). We also provide a supplemental video to
demonstrate the interactive capabilities of our tool.

2 RELATED WORK

We review the most relevant work on two important topics, namely,
the modeling and visualization of sensor network coverage, assum-
ing either deterministic or probabilistic sensor locations. For surveys
on sensor networks in general, see [3]. For surveys on uncertainty
visualization, see [5, 15, 27, 29, 32].

Deterministic models of coverage using geometric methods.
Classic geometric approaches for the coverage problem typically
employ the Delaunay triangulations and require knowledge or mea-
surement of node coordinates; see [13, 23, 25, 35].

Deterministic models of coverage using topological methods. In
their seminal work on sensor networks, de Silva and Ghrist [9,10,31]
consider the determination of coverage with minimal sensing ca-
pabilities without coordinate information. They demonstrate that,
given a minimal set of assumptions, one can compute coverage
over a compact domain through the use of simplicial complexes and
persistent homology [12]. Their model, while based on unknown
node location, nevertheless assumes those locations are determin-
istic. Cavanna et al. [8] recently generalized the assumptions on
the boundaries to make the results applicable to general domains.
Gamble et al. [14] extend this concept further to consider a time-
varying network. They utilize zigzag persistent homology [7] (a
variation of persistent homology) to identify holes in the coverage
area. Adams and Carlsson [2] use a similar approach to determine if
evasion paths exist within a time-varying sensor network, that is, if
a moving intruder can avoid detection in a time-varying setting.

Probabilistic models of coverage. There is currently a limited, but
growing body of work dealing with coverage issues in probabilistic
sensor networks. Bhattacharya et al. [4] apply persistent homology
to dynamic (i.e. moving) sensors in an uncertain environment for
planning trajectories, where each location in the domain is assigned
a probability of occupancy. Assuming prior knowledge on the ge-
ometry of the domain and a uniform random distribution of nodes,
one can infer probability of coverage under a certain node density
(e.g. [21, 24]).

Instead, in this paper, we draw inspirations from the indecisive
model for uncertain data [17]. In this model, each sensor node has
an independent and typically distinct probability distribution of its
possible locations. These distributions could be continuous, but in
this paper we focus on the case when they are discrete, described by
a finite number of possible locations, for instance modeling various
recent GPS readings. We restrict that all possible locations, called
indecisive points are within a fixed shape of bounded size.

Visualizing sensor networks. There is a number of packages for
visualizing sensor networks, see [28] for a survey. SpyGlass [6] is
a primarily communication-driven tool designed to actively mon-
itor network health and communication links. Other similar inter-
faces include MOTE-VIEW [33], Octopus [18] and TinyViz (for
TOSSIM [22], a sensor network simulator). The limitation of all
of these tools is that they produce mainly static displays of existing
network layouts and, therefore, do not support network planning,
especially in uncertain environments.

Visualizing networks with uncertainty. In the field of graph draw-
ing, Wang et al. [34] discuss the difficulties in dealing with ambi-
guities in graph layouts, and propose to identify misleading areas
(created from edge bundling) to enable designers to make informed
graph layout choices. Schulz et al. [30] combine edge bundling,
splatting and a convex hull representation to represent probability
distributions of possible node locations.

Both of these works rely heavily on enriching features of force-
directed layouts. On the contrary, our visualization design focuses
on quantifying uncertainty associated with sensor network coverage
using simplicial complexes.

http://www.sci.utah.edu/~tsodergren/prob_net_vis_working/
http://www.sci.utah.edu/~tsodergren/prob_net_vis_working/
https://github.com/jalohse/sensor_network_topology
https://github.com/jalohse/sensor_network_topology


3 TECHNICAL BACKGROUND

We review the topological concepts most relevant to the study of sen-
sor network coverage; in particular, Čech complexes, Vietoris-Rips
(a.k.a. Rips) complexes and homology. We define concepts in the
setting of R2, while most definitions generalize to high dimensions.

We focus on an idealized sensor network model introduced in [9].
Given a collection of sensor nodes in a two-dimensional domain
D ⊂R2, we study the coverage properties of the union of (disk-like)
sensor regions centered at each node. In the original setting [9], each
node is coordinate-free and assumes no localization or orientation
capabilities; that is, the verification of coverage is constrained by us-
ing only communication connectivity information among the nodes.
In the context of our paper, we de-emphasize the coordinate-free
aspects of the sensor network as our primary objective is to intro-
duce an interactive visualization framework to better understand
topological approaches in studying network coverage problem with
uncertainty.

Abstract simplicial complex. Given a set of points in R2, the
smallest convex hull which contains k + 1 vertices {v0, ..,vk} is
called a k-simplex [16]. 0-, 1- and 2-simplices correspond to vertices,
edges and triangles. A face is a sub-simplex of the k-simplex with
vertex set as nonempty subset of {v0, ..,vk}. A simplicial complex
K is a collection of simplices such that every face of a simplex of K
is in K, and the intersection of any two simplices of K is a face of
each of them [26]. An abstract simplicial complex is a collection S
of finite nonempty sets, such that if A is an element in S, so is every
nonempty subset of A [26]. Any abstract simplicial complex on a
(finite) set of points has a geometric realization in some Rd .

Homology. Given a simplicial complex K, roughly speaking, the
0-, 1- and 2-dimensional homology of K, denoted as H0(K), H1(K)
and H2(K) respectively, correspond to the components, tunnels and
voids of K. A multi-scale notion of homology is referred to as the
persistent homology [12], which deals with homological properties
of nested families of topological spaces.

Čech complexes. Given a collection U = {Ui}n
i=1 of (disk-like)

sensor regions of radius r centered at each sensor node (U is re-
ferred to as a cover), the Čech complex of U , C(U ), is the abstract
simplicial complex whose k-simplices correspond to nonempty in-
tersections of k+1 distinct elements of U [9].

According to the Čech Theorem [16], if the cover U is good
(that is, the cover sets and all finite nonempty intersections of cover
sets are contractible), then the Čech complex captures the topology
of the cover. In other words, the coverage properties of the cover
can be captured by the properties of the Čech complex. However,
computing the Čech complex is highly nontrivial, as it requires
computing higher-order set intersections; therefore we make use of
a related concept, referred to as the Rips complex.

Rips complexes. Given a set of points in R2 and a fixed radius
r > 0, the Rips complex, Rr, is the abstract simplicial complex
whose k-simplicies correspond to k+1-tuples of points which are
pairwise within distance r of each other. The distance r is therefore
considered as a scale parameter.

Certifying coverage with Čech and Rips complexes. de Silva
and Ghrist [9] certify sensor network coverage by considering the
2-dimensional relative homology involving Rips complexes formed
by sensor nodes and Rips complexes formed by nodes on the bound-
ary (see [9] for technical details). They further extend the cover-
age criterion to domains of arbitrary dimensions using persistent
homology [10]. In a nutshell, based on our understanding of the
characteristics associated with Rips and Čech complexes, we could
verify coverage either from direct computation of Čech complexes
(may not be practical in high dimensions or with a large number of

sensors), or from structural inference based on mappings between
various Rips complexes (as approximations of Čech complexes)
across different scales.

4 PROBLEM SETUP

We consider a simple model of location uncertainty referred to as
the indecisive data model following the indecisive points introduced
in [17]. Suppose we have a sensor network with n nodes in a
fixed, planar, Euclidean domain; and each node has a disk-like
sensor region with a coverage radius of rc. Each node is associated
with a finite set of k possible locations (with equal probability 1/k,
independent of other nodes). Additional, these possible locations
are constrained within a disk of radius ε (≤ rc), referred to as the
disk of uncertainty. The center of the disk of uncertainty is referred
to as the anchor location.

Formally, given a set of sensor nodes P = {p1, p2, ..., pn}; each
node pi has k possible locations, pi ∈ {p1

i , p2
i , ..., pk

i }. An instance
of the sensor network with n nodes is one possible realization of the
network where the location of each sensor is sampled among its k
possible locations; there are kn possible instances for a network with
location uncertainty. An example of a simple network with n = 4
and k = 8 is shown in Figure 2.

Figure 2: An example of a sensor network with uncertain sensor
locations under the indecisive data model, for n= 4 and k= 8. Potential
sensor locations (in red) for each sensor is confined within a disk of
uncertainty with radius ε.

5 MODELING UNCERTAINTY

As described in Section 3, a convenient way to represent sensor
network coverage comes from the notion of Čech complex. Given
a sensor network with a set of nodes with coverage radius rc, we
can first construct its corresponding Čech complex, which captures
the complete network coverage information. That is, an edge ex-
ists between two nodes pi and p j if their respective sensor region
overlaps, that is, if d(pi, p j)≤ 2rc. A triangle (referred to as a face)
exists among three nodes if their corresponding sensor regions share
a common intersection; in other words, there exists a minimum
enclosing ball of radius ≤ rc that encloses all three nodes. In the
case of a Rips complex, a face (triangle) exists among three nodes if
their pairwise sensor regions overlap. For example, in Figure 3, the
face p2 p3 p4 exists for the Rips but not for the Čech complex. We
quantify uncertainty in coverage by assigning probability measures
to edges and faces in the Čech and Rips complex, respectively.

Edge probabilities for Čech complexes. The probability of an
edge appearing between any pair of nodes (pi, p j) across all in-
stances can be computed by the ratio between the number of actual



Figure 3: For a sensor network instance drawn from Figure 2 contain-
ing sensors located at {p1, p2, p3, p4} (blue points), its corresponding
Čech complex contains 1 face (i.e. triangle p1 p2 p3) and 5 edges
(p1 p2, p1 p3, p2 p3, p2 p4, p3 p4). The union of disks centered at p2, p3
and p4 does not provide local coverage, therefore no face exists
among these three points.

edge appearances and the number of possible ones. Under the inde-
cisive data model, for each of the

(n
2
)

possible node pairs, there are
k2 possible combinations.

We can improve the computational efficiency based on domain
decomposition (similar to the idea behind the KD tree). This is
illustrated in Figure 4. We decompose the domain into square blocks
of width 2(rc + ε) and only consider node pairs within adjacent
blocks.

Figure 4: An illustration of domain decomposition. Each block has a
width equal to the maximum possible coverage diameter. One only
needs to consider node pairs within the same and adjacent blocks.
For example, we only need to compare nodes in the red block with
nodes in the red and blue blocks.

Combining with domain decomposition, we could further reduce
the number of node pairs under consideration by looking at nodes
whose distance to an anchor point fall within so-called annulus of
uncertainty, defined between two disks of radius rc− ε and rc + ε ,
see Figure 5. If a node falls inside the inner ring of this annulus, it
means that all possible node pairs (with respect to the anchor point)
will be connected and the edge probability is 1. Conversely, if a
node falls outside the outer ring of this annulus, it means that none
of the possible node pairs will be connected and the edge probability
is 0. For a node that falls in between, on should consider all possible
node pair combinations to compute a probability.

Edge and face probabilities for Rips complexes. Recall that the
Rips complex could be used as an approximation to the Čech com-
plex in terms of certifying coverage. Given a set of nodes in a sensor

p2

p1

p3

✏

rc � ✏

rc + ✏

rc

Figure 5: An illustration of the annulus of uncertainty (lighter shaded
outer ring) surrounding a set of indecisive points (red) for one sensor
node. For any point (e.g. p1) within a radius of rc− ε of the anchor
point, the coverage is guaranteed, since it must be within rc of all
indecisive points. For points in the annulus, shown as the lightest
shade of blue (e.g., p2 and p3), one should consider the distance to
all indecisive node locations to compute a probability of coverage. For
this example, p2 is covered with probability 7/8 since 7 of 8 indecisive
points are within distance rc, while p3 is covered with probability 0
since no indecisive points are within a distance of rc.

network, we also model uncertainty associated with edges and faces
in its corresponding Rips complex. Since the Čech and Rips complex
share the same set of edges (therefore the same edge probabilities),
we only need to infer face probabilities within the Rips complex
from the edge probabilities.

For the three boundary edges of a given potential face pi p j pk: if
all edge probabilities are 1, then so is the face probability; if any
edge probability is 0, then so is the face probability; if at least two
of the edge probabilities are 1, then the face probability equals the
probability of the third edge; otherwise, we have to iterate through
all possible edges among the three nodes, where the face probability
is the number of actual face appearances divided by all possible
instances.

Face probabilities for Čech complexes. To compute face probabil-
ities for Čech complexes, we rely on the iterative procedure similar
to the one used for Rips complexes; that is, the face probability
among three fixed sensor nodes is the number of actual face ap-
pearances in the Čech complex divided by the number of possible
faces.

6 VISUALIZATION DESIGN

Our visual interface contains four panels (Figure 1): control panel
(a), viewing panel (b), interaction panel (c) and color panel (d).

Control panel. The control panel contains adjustable configuration
parameters, including the number of sensors n (default n = 30),
the number of potential locations per sensor k (default k = 8), the
coverage radius rc and the radius of uncertainty ε (default ε = 10,
max 50).

Users can generate n uniformly random distributed sensors in the
domain of the interaction panel (via the random data button, Fig-
ure 6(a)). Users have the ability to load existing datasets (e.g. gener-
ated by simulations) in CSV format containing x and y coordinates
of sensor nodes (via the import data button, Figure 6(b)), or in JSON
format encoding both coordinates and configuration parameters (via
the open button). The existing network configuration within the
interaction panel can be saved in JSON format as well (default as
data.json via the save button).

The coverage radius rc and the radius of uncertainty ε can be
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Figure 6: Various visualization capabilities with our tool. (a) A randomly generated sensor network with default configurations. (b) A user-specified
data set loaded with CSV format. (c) Adjusting radius of coverage from (b) to the current configuration. (d) Displaying all possible edges. (e)
Rips complex for the configuration in (c). (f) Čech complex for the configuration in (c). (g)-(h) Hovering over an edge and a face respectively will
highlight relevant elements in the complex and display the corresponding probabilities.

adjusted using a slider or specified in a text box (Figure 6(c)). Unless
specified in a pre-loaded JSON file, the maximum value for rc is
initialized as half of the largest distance between sensors along the x-
axis. This maximum value can also be updated (via the max button).
Once the number of potential locations per sensor k is specified, the
configuration is updated by generating k random locations within
the disk of uncertainty via the update button.

Viewing panel. Via the viewing panel, users can switch between
Čech or Rips complex of the current network configuration (default
to Rips complex), see Figure 6(e)-(f) for Rips and Čech complex

respectively.
Various layers of information can be super-imposed onto each

other within the interactive panel via various checkboxes. The
nodes box determines whether a sensor is shown with its radius of
uncertainty. Checking the potential nodes box displays the randomly
generated potential locations for each node. The node coverage box
enables the visualization of coverage region per node centered at the
anchor point (in shades of purple); the inner circle of such a coverage
area designates the node coverage radius rc, while the outer circle
represents the coverage radius plus the radius of uncertainty rc + ε .
Edges and faces in the simplicial complex are shown via the edges



and faces box respectively. Users also have the ability to view all
possible edges via the potential edges box, that is, all edges that exist
between potential locations within the coverage radii (Figure 6(d)).

Color panel. The color panel is used to visualize edge and face
probabilities and is rather self-explanatory. Seven and five color
maps with color discretization are available for visualizing face and
edge probabilities respectively.

Interaction panel. Within the interaction panel, users have the
ability to move, delete, and add nodes. Moving an existing node can
be accomplished by mouse clicking, dragging and releasing. Adding
a node is done via the add node button in the control panel. When a
node is selected via mouse clicking, it can be deleted with the delete
key. When a node is selected, the nodes and its adjacent edges and
faces are highlighted in shades of red; while its neighboring nodes
are highlighted in blue. Deselecting a node is done with the esc key.

When a user’s mouse hovers over a particular simplex (an edge or
a face), the simplex and its vertices are highlighted in red. Hovering
over a face or an edge also shows a small tooltip that displays its cor-
responding face or edge probability, see Figure 6(g)-(h) for different
visualization capabilities. We further use Figure 7 to demonstrate
the differences in face probabilities based on either Čech or Rips
complex for the same sensor network. Finally, the interaction panel
supports zooming operations, as illustrated in Figure 8.

7 AN EXAMPLE WORKFLOW

We demonstrate an example workflow with our tool using a pre-
defined sensor network configuration (e.g. n = 30, k = 8, rc = 29,
ε = 3). We discuss several instances of analyzing a given sensor
network in order to illustrate the usability of our tool. Suppose we
would like to utilize a mobile phone network via crowd-sourcing to
detect malicious users on campus that transmit and receive data on
unauthorized spectra. The initial network configuration highlighting
sensor (i.e. mobile phone) locations with uncertainty is illustrated in
Figure 9.

First, with a fixed network configuration, we would like to de-
termine whether we have coverage for the entire domain (e.g. the
campus) or for a particular subdomain (e.g. areas surrounding the ad-
ministrative building). The spectra coverage criteria can be quickly
evaluated via its Čech complex representation in Figure 10(a), where
there are clearly two uncovered areas in the interior together with
area along the campus boundary. These uncovered areas are the vul-
nerable regions in the domain where a malicious spectrum violator
can hide.

Second, we may wish to modify an existing sensor network con-
figuration with minimal equipment overhead to achieve coverage.
To start, we may move existing sensors around to establish a “fence”
along the campus boundary, see Figure 10(b) where we use an in-
tuitive approach by moving nodes closest to the boundary without
disturbing its interior coverage configuration. Then we adjust (or in
some cases, add) a few interior nodes to increase coverage proba-
bility or to achieve (almost) global coverage in Figure 10(c). With
such coverage, almost no spectrum violator can escape detection.

Finally, we could sparsify the sensor network by removing re-
dundant sensors from dense regions without affecting the domain
coverage. We could even sparsify further if we tolerate lower proba-
bility of coverage in certain subdomains, see Figure 10(d). This way
we could reduce energy and equipment cost in crowd-sourcing that
achieve the same effective coverage.

8 EDUCATION

Our visualization interface has the potential to be used as an ed-
ucational tool to explore topological approaches in modeling the
network coverage problem. We discuss several aspects here in study-
ing the blanket coverage problems with computational topology.

Figure 7: Highlighting the differences among face probabilities for the
Čech (middle, face probability: 0.016) and Rips complex (bottom, face
probability: 0.023) respectively.

We consider the case where sensor nodes lie within a planar
Euclidean domain. The problem of blanket coverage is concerned
with the following problem [31]: Does the union of the sensor
regions cover a given domain?

Homotopy type. First, by exploring the Čech complex represen-
tation of the network configuration, one could have a good under-
standing of how the Čech complex of a cover by convex sets (here,
disk-like sensor regions) can capture the homotopy type of the cover
itself, see Figure 11.

Optimal factorization of the Rips complex. Second, by exploring
relations between Čech and Rips complexes, one could study the
optimal factorization of the Rips complex (Theorem 2.5, [10]). That
is, the nesting of a Čech complex between a pair of Rips complexes
of varying radii. Formally, the Čech and the Rips complex of a set of



Figure 8: A zoomed out (top) configuration and a zoomed in (bottom)
configuration.

Figure 9: An initial network configuration for the spectra violator
detection.

sensors in R2 gives the following chain of inclusions for r/r′ ≥
√

4
3 :

Rr′ ⊂Cr ⊂ Rr.

Topological coverage criterion. Third, with further development of
the tool, one could potentially use our tool to explore various domain
assumptions of the Topological Coverage Criterion (TCC) [8, 10].
One can explore various network configurations where homological
criterion holds (or does not hold) and study the cause of failure cases
via their Rips complexes. One could also explore sparsification
schemes that simplifies a redundant cover using appropriate choice
of generators [10]. If our tool could be extended to include polygonal
boundaries instead of just rectangular ones, one could explore further
the various boundary configurations within TCC [8].

9 DISCUSSIONS

We introduce an interactive framework that models and visualizes
sensor networks with location uncertainty. We assign probabilis-
tic measures to simplicial complexes that capture or approximate
network coverage. Our visualization interface explores topological
approaches in certifying global and local network coverage. It also
enables the manipulations of parameters to better understand the
robustness of coverage among various network configurations.

Scalability. We do not emphasize here the computational issues.
However our current implementation suggests room for improve-
ment in terms of scalability. The current iterative procedure in mod-
eling and visualizing uncertainty could handle roughly hundreds of
nodes. Realistically-sized networks, for example, wireless sensor
networks, may consist of thousands, tens of thousands or millions of

devices. For instance, over 90% of US adults have cell phones, and if
most of them (through carrier auto-enrollment) are in a network that
could be used for spectra violator detection, that is well over 100 mil-
lion devices. Modeling and visualizing any larger networks require
drastically different approaches, including potentially distributed
computation, node sparsification and structural summarization.

Extensions. An immediate extension to the current platform is to
better represent, compute and visualize complexes capturing the
various boundary conditions. The long term objective is to em-
ploy the probabilistic notions on simplicial complexes for advanced,
topology-based analysis of sensor networks in the time-varying set-
tings.
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