
A DETAILS ON EXPERIMENTAL DATASETS

The Heated Flow dataset comes from the simulation of a 2D flow
generated by a heated cylinder using the Boussinesq approximation [33,
47]. We convert one time instance of the flow into a scalar field using
the magnitude of the velocity vector. The dataset is available via the
Computer Graphics Laboratory [1].

The E3SMWind dataset is a 2D scalar field processed using a
HiResMIP-v1.0 (1950-Control) dataset [14] from the Energy Exascale
Earth System Model (E3SM) [29] project [2]. We use the magnitude of
UBOT and VBOT parameters as scalar fields, which correspond to the
lowest model level zonal and meridional wind, respectively.

The Viscous Fingers dataset is a snapshot of a simulation run cap-
turing the viscous fingers, that is, areas of high concentration during
diffusion. During the simulation, a cylinder is filled with water with
an unlimited supply of salt at the top of the cylinder. The simulation
captures the diffusion of the salt as higher density salt solution sinks
down in the cylinder. This dataset originates from the IEEE Scientific
Visualization Contest 2016 [5].

The Tornado dataset is a 3D synthetic model of a tornado created by
Roger Crawfis [21]. The flow is scaled to a larger domain and sampled
onto a regular grid. It is also available via [1].

The Tangaroa dataset contains one instance from the simulation
of an incompressible 3D flow around a CAD model of the Research
Vessel Tangaroa [48]. We use the magnitude of the velocity vector as
the 3D scalar field.

The Isabel dataset originates from the IEEE Scientific Visualization
Contest 2004 [4]. It is a simulation of a hurricane from the National
Center for Atmospheric Research in the United States. We use the wind
speed field and truncate 500⇥500⇥90 from the original 500⇥500⇥
100 volume to avoid “no data” values on land.

The NYX dataset in Appendix D is a post analysis cosmological
simulation dataset composed of 3D arrays in space [11]. It is based
on the Lawrence Berkeley National Laboratory (LBNL) compressible
cosmological hydrodynamics simulation code Nyx [8] that solves equa-
tions of compressible hydrodynamics flows in an expanding universe.
We use dark matter density as the scalar field with the original 5123 vol-
ume, together with truncated 1283 and 2563 volumes for a performance
analysis.

B EVALUATION METRICS

We review several metrics used for evaluating the compression results.
Number of false cases. Our method can eliminate all false cases
in the decompressed data. We report the number of false cases in
the decompressed data when comparing TopoSZ with off-the-shelf
topology-agnostic lossy compressors.
Data compression ratio. The data compression ratio is defined to be
the ratio between the uncompressed size and compressed size of the
input data.
PSNR. Let f and f 0 denote the original and the decompressed scalar
fields. The Peak Signal to Noise Ratio (PSNR) is defined as

PSNR = 20⇥ log10
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where || · || denotes the L2-norm.
Bottleneck and Wasserstein distances. We use two topology-based
metrics to evaluate how much topology is preserved between f and f 0.
Let D and D0 denote 0-dimensional persistence diagrams of f and f 0,
respectively. Let ⌘ denote a bijection ⌘ : D ! D0. The bottleneck
distance between D and D0 is defined as [20]
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The q-Wasserstein distance [24, page 183] is
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We set q = 2 and quantify the topological differences between f and
f 0 using

dB(f, f
0) = W1(D,D0), (6)

dW (f, f 0) = W2(D,D0). (7)

C COMPRESSION ACROSS PERSISTENCE THRESHOLDS

We test various lossy compressors with the Viscous Fingers dataset
across multiple persistence thresholds, in addition to the results shown
in Fig. 10. As shown in Fig. 15, we reran the experiments in Sec. 5.1
with persistence threshold " = 0.02 (A-C), " = 0.06 (D-F), and
" = 0.18 (G-I). We obtain the same observations from Sec. 5.1. First,
TopoSZ outperforms all the error-bounded compressors on preserving
topology. Second, TopoSZ has a slightly worse rate distortion in terms
of PSNR, compared to SZ3 and ZFP.

We could use any persistence threshold with TopoSZ. In practice,
we recommend setting ⇠ > ", since a smaller global error bound ⇠
typically leads to smaller topological regions that need fine-grained
controls. This would lead to less iterations and a higher compression
ratio.

TopoSZ produces results with low compression ratios when we set
⇠ = 0.1 and " = 0.02, as pointed by an arrow in Fig. 15 (B). TopoSZ
performs similarly at ⇠ = 0.1 and " = 0.06, see an arrow in Fig. 15
(E). This phenomenon happens because a larger global error bound ⇠ is
more lenient toward false cases, whose persistence are larger than " and
less than ⇠. These false cases require finer control thus more iterations,
whereas more interactions decrease the compression ratio.
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Fig. 15: Test lossy compressors with the Viscous Fingers dataset across
three persistence thresholds. From left to right: the number of false
cases w.r.t. global error bound; the PSNR; and the number of false
cases w.r.t. bit rate (i.e., average bits per compressed data sample).
Lossy compressors include TopoSZ, SZ3, ZFP, FPZIP, and TTHRESH.
Persistence threshold " = 0.02 (A-C), " = 0.06 (D-F), and " = 0.18
(G-I). All figures use the same color encoding in (I).
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Fig. 16: Lower (A) and upper (B) bounds of TopoSZ in the initialization step for the dataset in Fig. 4. (C) shows the decompressed scalar field
after initialization. (D-E): Parts of the updated lower (D) and upper (E) bounds to eliminate false positive case r2. (D) and (E) are zoomed-in
views of the yellow boxes in (A) and (B), respectively. (F-G): Parts of updated lower (F) and upper (G) bounds to eliminate the false positive case
r1. (F) and (G) are zoomed-in views of pink boxes in (A) and (B), respectively. (H) shows the decompressed scalar field after the 1st iteration.

D ADDITIONAL EXPERIMENTS

We perform additional experiments with the NYX dataset. We use the
NYX dataset with the original (5123) and two truncated volumes (1283
and 2563), respectively, as shown in Fig. 17(A-C). We investigate the
relationship between the compression quality, the run time, and the
size of data. Each truncated volume is a subset of the original volume
with high feature density; see critical points in Fig. 17(D-F). Table 5
provides run time and compression quality (PSNR and compression
ratio) of TopoSZ with a persistence threshold " = 0.01 and a global
error bound ⇠ = 0.005. We observe that the larger volume needs
more iterations to eliminate all false cases, and more run time for each
iteration and the initialization. The PSNR does not change much with
the increasing data size, whereas the compression ratio increases with
the data size under a uniform parameter setting.
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Fig. 17: 3D visualization of the NYX dataset with two truncated vol-
umes (A) 1283 and (B) 2563, and the original volume (C) 5123. (D) is
(A) overlaid with critical points. (E) and (F) are the zoomed-in views
of the orange boxes in (B) and (C), respectively, overlaid with critical
points.

E A WORST-CASE ANALYSIS OF TOPOSZ
Given the nature of the expanding k-layers (see Sec. 4.1.2), it may
be possible (in a worst-case scenario) that k expands to the entire
dataset, forcing lossless encoding of a significant fraction of the data.

Table 5: Run time and performance analysis of TopoSZ using the NYX
dataset with varying dimensions. Dim., #CP, and RO represent the
dimension (the size of each volume), the number of critical points, and
the compression ratio, respectively. Other notations follow the Table 1.
All times are in seconds.

Dim. Initialization Iteration
#CP PSNR RO

CT UBLB CSZ-1.4 CT UBLB CSZ-1.4 #

1283 27.64 2.59 0.20 - - - 0 400 76.54 16.7
2563 144.89 24.02 1.19 90.25 40.27 1.13 3 444 71.8 63.9
5123 2425.99 200.31 11.18 826.16 806.74 10.24 5 2,474 72.6 78.8

Theoretically, TopoSZ does not formally guarantee that such a worst-
case scenario would not occur. However, we can study when iterations
and the expansion of k-layer neighborhoods are needed, using the
example dataset from Fig. 4. To force TopoSZ to run multiple iterations,
we set the persistence threshold " and the global error bound ⇠ to be
relatively high, that is, " = 0.1 and ⇠ = 0.2, respectively.

Fig. 16 (A) and (B) visualize the lower and upper bounds during the
initialization step. Fig. 16 (C) shows that there are two false positive
cases, marked as critical points r1 and r2 after the initialization. r2
is located within a topological region (i.e., a contour-tree-induced
segment) that is bounded by the curve b2 in Fig. 16 (C). False cases such
as r2 are easy to eliminate and usually disappear when we give finer-
grained bounds for their corresponding regions. Indeed, r2 disappears
after the 1st iteration, when we update the lower and upper bounds
within regions Fig. 16 (D) and (E), which are zoomed views of the
regions bounded by yellow boxes in Fig. 16 (A) and (B), respectively.

False cases located at the boundary of topological regions are harder
to eliminate. They are usually the reason behind multiple iterations.
Such false cases occur because each topological region has its own
lower and upper bounds and, therefore, its own “local” compression and
decompression process. When two decompressed topological regions
are “glued” with each other, some false cases may occur on their shared
boundary. These false cases are harder to eliminate because a new
iteration might create a new, but smaller, topological region and false
cases may occur on the its boundary.

For example, r1 in Fig. 16 (C) is on the boundary of a topological
region bounded by the curve b1. In order to eliminate r1, TopoSZ runs
the 1st iteration with an updated lower and upper bounds (Fig. 16 (F)
and (G)). However, a new critical point r3 in Fig. 16 (H) appears on
this new boundary (bounded by the curve b3) after the 1st iteration.

In practice, the good news is that false cases that appear on the
boundary of topological regions are usually located in tiny regions
of the domain and correspond to tiny branches of the contour tree.
Therefore, we only need to update the lower and upper bounds of a



tiny region in the domain to eliminate them. We also observe that
in practice, these cases may disappear and appear pixel by pixel (or
voxel by voxel) during iterations, if we use a 1-layer neighborhood
expansion. Therefore, we use expanding k-layer neighborhood to
reduce the number of iterations while sacrificing some compression
ratio. Since these false cases occur in tiny regions of the domain, they
are easy to eliminate with a small number of iterations. For example,
in the experiment of Fig. 16, all false cases are eliminated in the 2nd
iteration. Across all our experiments, we never encountered the worst-
case scenario.

Finally, since the performance of TopoSZ (in terms of topology
preservation) improves during iterations (see Sec. 5.2), we may ter-
minate the compression process after a fixed number of iterations or
arriving at a fixed number of false cases, to tolerate the rare worst-case
scenario.

For example, when we run TopoSZ with the NYX dataset, the num-
ber of false cases after initialization is around 400, which decreases to 4
after 8 iterations. In this case, if TopoSZ is terminated after 8 iterations,
almost all topological information is preserved with less compression
time and a larger compression ratio, compared with removing all false
cases.

F POINTWISE ERROR CONTROL OF TOPOQZ AND TOPOSZ
Fig. 18 demonstrates the evolution of the maximum pointwise error
between the original and the decompressed data, averaged over all
datasets in Table 2, for an increasing persistence threshold with differ-
ent global error bounds ⇠. Fig. 18 (left) indicates that TopoSZ has a
strict control on pointwise error, whereas TopoQZ does not, as shown
in Fig. 18 (right). Therefore, to the best of our knowledge, TopoSZ is
the first lossy compressor that combines pointwise error control and
topological guarantee during compression.

Fig. 18: The average maximum pointwise difference between the origi-
nal and the decompressed data using TopoSZ (left) and TopoQZ (right).


