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Fig. 1: Our approach in using persistent homology to untangle force-directed layouts has two main functionalities. First, as
demonstrated via the HIC 1K NET dataset, we use persistent homology to formulate an initial graph layout (column 1) that improves
both the convergence rate of the graph layout and the final layout quality. Second, our approach comes with interactive capabilities,
as illustrated in Fig. 2. We use the local continuity meta criterion (QLCMC) for layout evaluation (larger is better). In terms of
convergence, our approach (column 2, rows 2 and 3) shows the formation of major graph structures as early as 5 iterations, whereas
the standard approach (column 4, row 1) takes 25+ iterations. In terms of final layout quality, the QLCMC scores for the final layout
(column 5) show that our approach significantly exceeds the standard one. Three static layout methods, neato, fdp, and sfdp, are also
included for comparison (column 6), with only sfdp (column 6, row 3) showing a comparable QLCMC score.

Abstract—Force-directed layouts belong to a popular class of methods used to position nodes in a node-link diagram. However, they
typically lack direct consideration of global structures, which can result in visual clutter and the overlap of unrelated structures. In
this paper, we use the principles of persistent homology to untangle force-directed layouts thus mitigating these issues. First, we
devise a new method to use 0-dimensional persistent homology to efficiently generate an initial graph layout. The approach results in
faster convergence and better quality graph layouts. Second, we provide a new definition and an efficient algorithm for 1-dimensional
persistent homology features (i.e., tunnels/cycles) on graphs. We provide users the ability to interact with the 1-dimensional features by
highlighting them and adding cycle-emphasizing forces to the layout. Finally, we evaluate our approach with 32 synthetic and real-world
graphs by computing various metrics, e.g., co-ranking, edge crossing, etc., to demonstrate the efficacy of our proposed method.

Index Terms—Force-directed layout, persistent homology, graph clustering, graph cycles

1 INTRODUCTION

Force-directed layouts remain one of the most popular methods for
drawing graphs. Their popularity stems from several desirable quali-
ties: generally, they are simple to implement, they are fast for small
graphs, they produce aesthetically pleasing layouts, and their iterative
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algorithms make progressive visualization and interaction natural. Nev-
ertheless, force-directed layouts also suffer from numerous limitations,
including poor initialization and over-constraint, leading to poor local
minima and limited robustness to noise.

This paper addresses two of these limitations by utilizing and high-
lighting important topological features of the graph. First, force-
directed layouts are strongly influenced by the initial layout of graph
nodes, which is often generated randomly. After the initialization, suc-
cessive application of the forces among nodes causes the layout to settle
in a locally minimal energy state, which hopefully shows the graph’s
topological structure. Unfortunately, the random initial layout does
not consider the global topology, which potentially slows convergence
and can lead to unrelated structures overlapping in the visualization.
Second, since force-directed layouts are over-constrained systems, even
without the overlap of unrelated structures, certain topological features
have their shape distorted, tangled, or hidden by noise (i.e., low weight
edges) making it difficult to visually identify topological features.
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Fig. 2: Our second untangling functionality is to interactively untangle
persistent homology cycle features. Each cycle is represented by a
bar in the barcode (left), which is used to highlight cycles by mouse
over (middle) and apply an elliptical force by click (right). In this
example, the elliptical forces are used to regularize deformed cycles
(a, top and bottom), untangle twisted cycles (b, top), and disentangle a
cycle covered by unrelated structures (b, bottom). The QLCMC scores
show that the elliptical forces also improve the overall graph layout.

We address these limitations by using techniques from persistent
homology to provide better initialization and support interactive ex-
ploration of the graph topology. We are not the first to consider the
use of persistent homology in force-directed layouts. In their work,
Suh et al. [63] used 0-dimensional persistent homology features (i.e.,
components) to enable new forms of interaction with a force-directed
layout. Importantly, their work did not address the problem of initial
graph layouts. Furthermore, their work did not consider 1-dimension
persistent homology features, i.e., tunnels/cycles, which are an im-
portant topological features frequently present in graphs. Our work
advances theirs by: (1) utilizing persistent homology as a framework
for efficiently generating good quality initial graph layouts (see Fig. 1);
(2) extending the algorithm for extracting topological features from
graphs to efficiently extract 1-dimensional features; and (3) providing
new interactions with the 1-dimensional persistent homology features
of the graph (see Fig. 2).

A natural question at this point would be, why persistent homology
in this context? First, it has a strong mathematical foundation, making
the technique technically sound and robust to noise [76]. Second,
persistent homology computation, being slow for general point cloud
data [53], can be made very efficient within the context we present.
Finally, instead of considering only the node-link topology, persistent
homology allows for a natural way of evaluating the interaction of
the node-link topology with a function (i.e., a weight) defined per
link. These advantages make it a valuable companion to existing graph
analysis and drawing tools.

2 PRIOR WORK

Graph visualization as a research area has received significant attention.
Tamassia [65] provided a broad overview of the state of the art. Graphs
are often represented as node-link diagrams, adjacency matrices, or
hybrid representations. Ghoniem et al. [32] showed that matrix-based
representations are generally better than node-link diagrams for node
counts greater than 20, but node-link diagrams outperform for specific
tasks (e.g., pathfinding) and are aesthetically pleasing. Archambault
et al. [4] assessed how graph representations affected readability and
showed that only clustering could be efficiently performed on larger
graphs. A separate study by Saket et al. [60] concluded that node-
link diagrams are superior for topology and network-related analysis
compared to adjacency matrices.

2.1 Node-Link Diagrams
Node-link diagrams represent the data with nodes for entities and links
for their pairwise relations. There are multiple general-purpose layout
methods to position nodes with frequently used ones including force-
directed, constraint-based, layered, algebraic, and multiscale layouts.

Force-Directed Layouts. Force-directed (or force-based) layouts

consider graphs as mechanical systems and apply forces to the nodes.
In general, repulsive forces, similar to those of electrically charged
particles, exist between all the vertices, and attractive forces, similar to
spring-like forces, exist between connected vertices or between neigh-
bors. The Eades model [24] was the first to apply spring forces on the
initial layout to achieve a minimal energy position. Later, Fruchterman
and Reingold [28] modified the Eades model to achieve a system that
distributes the vertices evenly, and has uniform edge lengths and sym-
metry. Kamada and Kawai [45] developed another variant on Eades’
work. Instead of just applying attractive forces between neighboring
vertices, they applied the concept of ideal distance, which is propor-
tional to the length of the shortest path. Although computational costs
are high for this method, speed-ups have been achieved using heuris-
tics [27] and the GPU [33]. Meidiana et al. [50] presented a sublinear
time model that pairs a radial tree drawing of a breadth first spanning
tree with random sampling of repulsive forces. While their approach
has technical similarities with our initial layout approach, there are
important implementation differences and theoretical guarantees that
come from our use of 0-dimensional persistent homology.

Constraint-Based Layouts. Constraint-based layouts are a more so-
phisticated version of force-directed layouts. Dwyer et al. [23] archived
a high-quality, topology-preserving visualization by implementing a
constraint-based layout for a detailed view and a force-directed layout
for the overview. Archambault et al. [3] proposed the TopoLayout
algorithm that dynamically adapts the graph layout method based upon
the topology detected within subgraphs.

Layered Layouts. Layered layouts, in general, are used for directed
graph layouts. Sugiyama et al. [62] used a 4-phase approach to layout
graphs: (1) removing cycles, (2) assigning nodes to layers, (3) reducing
edge crossings, and (4) assigning coordinates to nodes. Bachmaier
et al. [6] proposed to visualize directed cyclic graphs by skipping the
cycle removal step.

Algebraic Methods. Koren et al. [46] developed the Algebraic
Multigrid Method (ACE) algorithm that minimizes quadratic energy.
Harel and Koren introduced High-Dimensional Embedding (HDE) [41]
that projects a high-dimensional representation of a graph with PCA.

Multiscale Layouts. Multiscale layouts start with a coarse layout
and refine it in phases. Hachul and Jünger [37] proposed Fast Multipole
Multilevel Method (FM3), a force-directed method that incorporates a
multiscale approach in a system to calculate repulsive forces in rapidly
evolving potential fields. By comparing various algorithms, Hachul
and Jünger [38] showed that multiscale methods, including FM3, ACE,
and HDE, were significantly faster than regular force-directed layouts.
They also found that FM3 produced the best quality graphs in the group.

Node Congestion. Node co-location is a challenging problem, par-
ticularly in multiscale layouts [68]. Space-filling curves have been used
to avoid node co-location [51]. However, the approach works only
for datasets with clear clustering, and for dense graphs, the visualiza-
tions are not of good quality or aesthetically pleasing. Gansner and
North [31] proposed to improve the force-directed layout by moving
the overlapping nodes within cells of a constructed Voronoi diagram.
By selecting good starting positions for nodes, Gajer et al. [30] devel-
oped a multiscale approach that improved computation time and better
preserved the graph’s structure. Adai et al. [2] introduced the Large
Graph Layout (LGL) algorithm, which uses a minimum spanning tree
to guide the force-directed iterative layout to visualize large protein
map networks. However, they did not consider datasets with different
characteristics. Dunne and Shneiderman [22] proposed to use motifs
for node and edge bundling. Their technique replaced common graph
patterns of nodes and links with intuitive glyphs. They showed that the
approach required less screen space and effort, while preserving the
underlying relations. However, the glyphs required additional learning
from users, and charts with many large glyphs added clutter to the
display and increased the possibility of overlap.

Edge Congestion. Node-link diagrams frequently suffer from edge
crossings. Carpendale et al. [12] proposed displacing edges running
through the area of interest. However, certain questions were left unan-
swered (e.g., the amount of edge displacement to use). For graphs
without hierarchy, Holten and Van Wijk proposed a self-organizing
bundling method, where edges act as flexible springs attracting each



other [42]. ASK-Graph [1] addresses the issues for highly dense graphs
with node counts approaching 200k. Bach et al. [5] proposed to use con-
fluent drawings (CDs) for edge bundling based on network connectivity,
which showed some promising results. Nevertheless, CDs worked only
for sparse graphs where node counts were less than 20 and the edge
density was less than 50. Such an approach also showed low participant
confidence, indicating that CDs require significant learning and may be
misleading. Zinsmaier et al. [74] proposed a level-of-detail technique
that performs density-based nodes aggregation and edge accumulation.

Interaction. Research into interactive visualization has been done
to assist with efficient data explorations. Commonly used interaction
techniques for graphs include panning and zooming [67] and fisheye
views [29, 61, 69] that focus on areas of interest.

2.2 Persistent Homology
Persistent homology studies the topological features of data that persist
across multiple scales. Weinberger gave a brief explanation in his work
titled “What is ... persistent homology?” [72], while Harer and Edels-
brunner [25] detailed the concept and history of persistent homology.
Persistent homology has shown great promise to assist in the analysis of
complex graphs due to the types of features it extracts and its ability to
differentiate signal from noise [18,43,54,55,71]. For example, Rieck et
al. [58] used persistent homology to track the evolution of clique com-
munities across different edge weight thresholds. Persistent homology
has also led to notable results in the study of brain networks [13,48,49]
and social networks [7,40,43]. Although persistent homology has been
used mainly for analysis tasks within these prior methods, it has not
been used to improve the visualization of graphs.

Recently, Suh et al. [63] used 0-dimensional persistent homology
features to create a persistence barcode visualization, which was then
used to manipulate a force-directed graph layout. Their framework
was limited to extracting 0-dimensional topological features and uti-
lizing those features for interactive manipulation of the graph. Our
work extends and complements the work of Suh et al. by utilizing the
0-dimensional features to preprocess the initial layout of graphs, thus
improving the rate of convergence and quality of layouts, and by pro-
viding an algorithm to efficiently extract, interactively highlight, and
manipulate the graph layout with 1-dimensional topological features of
a graph.

3 METHODS

We first describe how the persistent homology information is extracted
from an input graph (Sect. 3.1). We then describe the use of this
information for building fast initial graph layouts (Sect. 3.2) and for
highlighting important structures in the visualization (Sect. 3.3).

The input is an undirected graph G = (V,E) equipped with an edge
weight w : E→ R. w can be any real function that quantifies the edge
importance. Recall the Jaccard index between a pair of sets A and B
is defined to be J(A,B) = |A∩B|

|A∪B| . In this paper, if w is not known a
priori, w(e) for an edge e is assigned the Jaccard index between the
1-neighborhood of its nodes, as was also done in [63].

3.1 Persistent Homology of a Graph
We describe a novel approach to extract persistent homology features
from a graph, leaving the discussions of the general theory to prior
works (e.g., [25]). Previous approaches (e.g., [40]) have relied upon
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Fig. 4: (a) Illustrating an Edge filtration. (b) The filtration begins with
seven components (denoted by color), one per node, and no cycles.
(c-h) As the filtration continues, the H0 components and H1 cycles are
extracted at each step. (j) When cycles form, they are extracted, shown
in red. (k) By the end, one component and two cycles remain. (i) The
resulting features are represented in a barcode visualization.

mapping a graph to a metric space, computing a Vietoris-Rips complex,
and extracting its 0-dimensional and 1-dimensional persistent homology
as topological features. However, these approaches may be costly,
O
(
(|V |+ |E|)3) in the worse case, making them impractical on larger

graphs. Furthermore, persistent homology identifies a class of cycles
and while identifying the existence of such a class is well defined,
determining which nodes specifically contribute to the cycle in the
context of graphs is ambiguous [17]. In the following section, we
provide an alternate strategy that resolves both of these issues.

Homology deals with the topological features of a space. In particu-
lar, given a space X, we are interested in extracting the 0-dimensional,
H0(X), and 1-dimensional, H1(X), homology groups of X, which are
the connected components and tunnels/cycles of the space, respectively.

To identify the homology of a graph, we begin by describing the
Edge complex of a graph. Given a threshold t, for each edge ei in
G with a weight wi, the Edge complex is Edge(t) = {ei | wi ≥ t}. In
other words, the Edge complex is the set of all edges whose weight is
greater than or equal to the given threshold. For example, Fig. 3b shows
Edge(4) and Edge(2) of the graph, in Fig. 3a and 3c, respectively.

From an Edge complex, its connected components (H0) and cycles
(H1) can be efficiently extracted by a process that will be discussed
in the forthcoming sections. However, extracting the homology of the
graph from a single Edge complex may fail to capture homology visible
at different thresholds (e.g., see Fig. 3) and, therefore, requires careful
selection of the threshold t.

Instead of selecting a single threshold t, we extract H0 and H1 fea-
tures of the graph across all thresholds using a multiscale notion of
homology, called persistent homology. Persistent homology is cal-
culated by extracting a sequence of Edge complexes, referred to as
a filtration. We consider a finite sequence of decreasing thresholds,
∞ = t0 ≥ t1 ≥ ·· · ≥ tm = 0. A sequence of Edge complexes, known as
an Edge filtration, is calculated and connected by inclusions,

Edge(t0)→ Edge(t1)→ ··· → Edge(tm).

In other words, the Edge complexes are subsets of one another,
Edge(ti) ⊆ Edge(ti+1) for 0 ≤ i ≤ m− 1. The Edge filtration can



also be described as the upper-star filtration of the graph. H0 and H1
features are tracked across the various Edge complexes in the filtration,

H(Edge(t0))→ H(Edge(t1))→ ··· → H(Edge(tm)).

In the example filtration in Fig. 4, as the threshold decreases, H0
component features merge. The merging of two H0 features causes
one feature to disappear in what is known as a death event while the
other feature continues to live. Consider the merging of the green and
purple components in Fig. 4g. In Fig. 4h, the green component has
died while the purple continues to live. In contrast, as the threshold
decreases, new H1 cycle features appear in what are known as birth
events. Note the creation of cycles at Edge(2) and Edge(1) in Fig. 4j
and 4k, respectively. The birth and death events represent critical values
that define the importance of a feature.

3.1.1 Efficient Identification of H0 Connected Components
To calculate H0 features of a graph, Suh et al. [63] calculated the
minimum spanning tree of a metric space representation of the graph by
transforming edge weights into distances, e.g., d(A,B) = 1/wAB (i.e.,
larger weights having smaller distances), which is inefficient on larger
graphs, taking O(|V |2 log |V |).

Our choice of the Edge filtration is a very specific one designed
to capture features and increase efficiency. Using the Edge filtration,
the H0 information for the graph can be obtained by calculating the
maximal spanning tree of the graph, which is the spanning tree with
edge weights greater than or equal to every other possible spanning
tree. In calculating the maximal spanning tree of the graph, as edges
are added to the tree, each edge ei represents an H0 death event at
wi (i.e., merging of two connected components). We calculate the
maximal spanning tree using Kruskal’s algorithm [47], selecting the
largest weight edge instead of the smallest. The algorithm has a worst-
case time complexity of O(|E| log |E|). For non-negative weights, the
resulting maximal spanning tree captures exactly the same structure
as the prior minimal spanning tree of the metric space approach, only
more efficiently. In addition, our maximal spanning tree approach
captures meaningful features for negative and zero weight edges.

3.1.2 Efficient Identification of H1 Cycles
In general persistent homology calculations, both detecting the exis-
tence of H1 features and extracting a representative cycle are com-
putationally expensive, roughly O(|V |3) [17]. The use of the Edge
filtration enables both detecting and extracting the H1 features much
more efficiently within the limited context of graphs. To do this, we
begin with an interesting observation in Theorem 1.

Theorem 1. Given any spanning tree S of a connected graph G, in-
serting any additional graph edge into S creates a cycle.

Proof. Since S is a tree, it is acyclic, and any two nodes have a unique
simple path between them. Therefore, if an edge is added between any
two nodes in S, those nodes will now have two non-overlapping paths
between them. Concatenating the edges of the two paths will create
closed trail, i.e., a cycle, between them.

As it turns out, this property enables efficient extraction of H1 fea-
tures with the Edge filtration. As the maximal spanning tree is calcu-
lated, an edge ei that would be excluded from the spanning tree signifies
the existence of an H1 cycle feature with a birth at wi

1.
To extract the H1 cycle paths themselves, the unweighted short-

est path is calculated between the endpoints of each edge, ei, in
the associated Edge complex, Edge(wi). The shortest path is com-
puted using Dijkstra’s algorithm with worst-case time complexity
O((|V |+ |E|) log |V |). In practice, paths are short and generally fast
to compute. Nevertheless, the shortest path needs to be calculated
for every H1 cycle. Therefore, in practice, we defer calculating the
complete cycle paths until the visualization needs the information. To
further reduce the number of H1 features considered, cycles of length
three are considered to be trivial and discarded2.

1Since 2-simplices (i.e., triangles) are not used, we do not track cycle death.
2These are found by comparing the 1-neighborhood of the edge nodes.

While this approach will extract all H1 features of the Edge complex,
it will not extract all cycles of the graph. Our H1 features are a specific
type of cycle, where no chord within the cycle has a weight greater than
or equal to the weight of all edges of the cycle. This type of cycle has a
strong theoretical basis that is useful for many analysis tasks, but it may
not be relevant for all such tasks. As we will show in our evaluation
(see Sect. 5.2), these cycles are useful for many graphs. Nevertheless,
adapting our approach to extracting other representative cycle types
would further extend the utility of the approach.

3.2 Using H0 Features to Untangle Initial Graph Layouts
Recent works (e.g., [19, 63]) have demonstrated the value of using
H0 information in generating high-quality layouts of graphs and high-
dimensional data, respectively. In contrast, we focus on quickly produc-
ing a good-quality layout that reflects the most important structures of
the graph, as defined by persistent homology. We then utilize a D3.js’s
force-directed layout capabilities [11] to optimize the final layout.

Our algorithm works by laying out the graph using the maximal
spanning tree. Inspired by early works on tidy tree drawing [57, 64,
73], our approach has two main steps, with a focus on simplicity
and efficiency. First, we generate an abstract layout of the maximal
spanning tree that determines the distribution of space to nodes and
subtrees of the graph. Then, we embed the tree into the drawing canvas
using either a layered or radial scheme.

3.2.1 Abstract Layout
The first phase of the algorithm forms an abstract layout of the tree.
The algorithm begins by selecting a node at random to serve as the root
of the tree3. The children of the selected root are then laid out hierar-
chically. The algorithm recursively processes subtrees, subdividing the
available space until all nodes have been visited. The available space is
divided between children at each level based on the number of nodes in
their respective subtrees. For example, in Fig. 5b, the orange node is
selected as the root. The leftmost subtree is allocated more space since
it contains more nodes.

3.2.2 Graph Embedding
In the second part of the algorithm, the abstract layout is used to embed
nodes into the drawing canvas using either a layered or radial layout.

Layered Layout. The first version of our layout algorithm maps
the abstract layout directly to the available drawing canvas in a layered
tree visualization. Specifically, the horizontal space on the canvas is
mapped to the width of the tree in the abstract layout, and the vertical
space is mapped to the height of the tree in the abstract layout. For
example, in Fig. 5c, the abstract layout from Fig. 5b is mapped to the
available drawing canvas.

3We tested several other strategies, e.g., finding the most central node or the
node with the most children. However, improvements were minimal, sometimes
with a high additional cost over a randomly chosen node.

(a) Graph with max-
imal spanning tree
edges in dark grey

(b) Abstract layout calculates
node depth and distributes hor-
izontal space by subtree sizes

(c) Layered Layout

(d) Radial Layout

Fig. 5: An illustration of the initial layout schemes. The input graph (a)
first has an abstract layout formed in (b) and is then mapped into a
layered layout (c) or a radial layout (d). After the initial layout, any
force-directed layout can be used.
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Fig. 6: Illustration of the elliptical force applied to an H1 feature.
(a) A cycle (dark gray) is selected in the barcode. (b) The two nodes
in the cycle with the greatest euclidean distance in the visualization
identify the major axis of the ellipse, whereas the minor axis diameter
is calculated by a user-specified aspect ratio. (c) The nodes on the cycle
are parameterized (i.e., ordered) and their target locations on the ellipse
are identified. (d) Forces are applied to the nodes on the cycle to move
them toward their target locations.

Radial Layout. The second version adopts a radial layout for the
tree. The width of the abstract tree is mapped to an angle in the unit
circle, and each layer of the tree occupies an increasing radius. For
example, in Fig. 5d, the abstract layout from Fig. 5b is mapped to polar
coordinates in the drawing canvas.

For either layered or radial layout, after the initial layout is formu-
lated, a standard force-directed layout is applied to the entire graph.

3.3 Interactive Untangling with Persistent Homology
3.3.1 Visualization of Persistent Homology Features
We visualize the H0 and H1 persistent homology using a visualization
based upon a persistence barcode (see Fig. 2), a standard tool of per-
sistent homology. For this visualization, a barcode is associated with
a set of H0 or H1 features. For each barcode, a bar represents a single
topological feature. Its length is proportional to the death or birth time
of the associated H0 or H1 features, respectively.

3.3.2 Interacting with H0 Components
Similar to the H0 interactions in [63], when H0 bars are selected in the
barcode, a strong attractive force is created (i.e., a spring-like force)
between the nodes of the associated edge from the spanning tree. Our
selection offers a filtering slider (see demo4) to select multiple features
simultaneously.

3.3.3 Interacting with H1 Cycles
For interacting with H1 cycles, we offer two modalities. The first is
a highlighting modality. As the user’s mouse goes over the bar for a
given cycle, that cycle is extracted and highlighted in the graph. Fig. 2
shows two examples, each highlighting two cycles.

The second modality, triggered when a user clicks a feature in the
barcode, uses information about the cycle to add a new elliptical force
to the cycle nodes in the force-directed layout. The approach (see Fig. 6
for an illustration) first takes the nodes of the cycle and identifies the
two nodes with the largest Euclidean distance from one another in the
visualization. Those nodes serve as the major axis of the ellipse and
determine the diameter of the major axis. The minor axis diameter is
determined by a user-selectable aspect ratio. Once the elliptical shape
is calculated, the cycle nodes are parameterized, i.e., ordered around the
ellipse, to select a target location. The ordering step is quite important,
as it enables powerful modifications, e.g., untangling cycles. Finally,
a strong force is added to attract the nodes to their target locations.
However, due to the over-constraint of force-directed layouts, this new
force does not guarantee nodes will end up on the ellipse. Fig. 2 shows
examples of imposing the elliptical shape on the cycles and examples
of the forces untangling cycles in the graph.

4 EVALUATION

To demonstrate the efficacy of our approach, we provide a two-phase
evaluation. In Sect. 5.1, we first evaluate our graph initialization ap-
proach using H0 persistent homology in terms of layout quality and rate

4Demo at https://usfdatavisualization.github.io/

UntangleFDL/ .

of convergence. Second, in Sect. 5.2, we evaluate the layout quality of
using H1 persistent homology to modify the forces of a force-directed
layout. For all comparisons, we primarily compare to the state-of-the-
practice force-directed layout provided by D3.js [11], which uses a
random initialization. Furthermore, in Sect. 5.1.4, we compare to static
graph visualizations, including the neato [45], fdp [24], and sfpd [44]
algorithms coming from Graphviz [26].

4.1 Implementation

We have implemented our approach in JavaScript and D3.js v5 us-
ing the base implementation of D3.js force-directed layout with all
standard settings. To initialize the layout, our code provides xy-
coordinates to all nodes before the D3.js force-directed layout sim-
ulation takes control of the data. Modifications to the graph forces
are done by adding new forces to the D3.js layout simulation. All
experiments use the default D3.js stopping criteria for computation. A
demo version of our approach is at https://usfdatavisualization.
github.io/UntangleFDL/, and our source code is available at https:
//github.com/USFDataVisualization/UntangleFDL/.

4.2 Datasets

We have tested 32 datasets that include a mix of synthetic and real-world
datasets, acquired from sources including the Network Repository [59],
NetworkX [39], BioSNAP [75], and the UF Sparse Matrix Collec-
tion [15]. The graphs are evenly divided into 16 dense and 16 sparse
graphs, based upon their average node eccentricity (ECC)5. A summary
of graphs found in the paper can be seen in Table 1 and Table 2. Fur-
ther, as a practical matter, interactivity of graph visualizations begins to
degrade at ∼ 1000 nodes in D3.js. Therefore, we differentiate larger
graphs as those where |N| > 1000. Graphs not in the paper can be
found in a comprehensive table of results included in our supplemental
materials and in our demo.

All graphs are colored using the D3.js plasma color map
(0 1) of their normalized node valence. The only exception
is the MAP OF SCIENCE dataset (see Fig. 9e), which is colored using a
categorical color map.

4.3 Evaluation Metrics

Layout algorithms are often optimized considering aesthetic criteria.
Purchase [56] worked on various aesthetic criteria of importance and
priority and showed that minimizing the number of edge crossings
serves as critical aesthetic quality. Beck et al. [9] defined several aes-
thetic criteria that ease designing, comparing, and evaluating different
dynamic visualizations, including general aesthetic criteria, dynamic
aesthetic criteria, and aesthetic scalability criteria. We use several
criteria, including time (T∗), convergence (C∗), and layout quality (Q∗).

Our main goal is to measure whether global structures overlap with
one another. To identify those overlaps, the primary measure we con-
sider is that of co-ranking. Co-ranking compares the k-neighborhoods
of a high-dimensional space, in our case defined by the unweighted
shortest path distance in the graph, with a low-dimensional embedding,
the Euclidean distance between nodes on the image. We use several
meta-criteria on the co-ranking.

Local Continuity Meta Criterion (QLCMC/CLCMC) measures the
ranked order overlap of k-neighborhoods for a range [1,k] and av-
erages them [14]. To ease comparisons, we fix k = 20. QLCMC is
normalized such that QLCMC ∈ [−1,1], where larger is better and neg-
ative values imply opposite ordering. We also utilize the convergence
CLCMC, which is the iteration number when QLCMC is within 0.01 of
the final value (after 300 iterations of force calculations).

Trustworthiness (Qtrust ) and Continuity (Qcont ) co-ranking meta
criteria [66], whose conclusions parallel LCMC, are also provided.

We next consider three measures of performance that quantify the
processing time.

5Eccentricity is the maximum shortest path distance from a given node.

https://usfdatavisualization.github.io/UntangleFDL/
https://usfdatavisualization.github.io/UntangleFDL/
https://usfdatavisualization.github.io/UntangleFDL/
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https://github.com/USFDataVisualization/UntangleFDL/
https://github.com/USFDataVisualization/UntangleFDL/


Table 1: Table of dense datasets. See Sect. 4.3 for details about metrics. Our discussion focuses on LCMC metrics (in blue). In these cells, bold
indicates a smaller time for TLCMC, a lower iteration count to convergence for CLCMC, or a value 0.005 larger for QLCMC.

Dataset |V | |E| Avg Layout TIT TAIT TLCMC CLCMC QLCMC Qtrust Qconv QEC QCA QMAR Source Description
ECC

AVES SPARROW SOCIAL 31 211 3.5 Random 13.5 ms 10.9 ms 1.19 s 108 0.350 0.885 0.880 0.764 0.757 0.081 Network Nodes represents individual free range birds, and
edges are a proximity-based association index.Layered 14.1 ms 11.3 ms 796 ms 69 0.416 0.928 0.926 0.792 0.766 0.140 Repository

BARBASI-ALBERT (50,40) 50 400 2.0 Random 18.7 ms 10.8 ms 1.53 s 140 0.145 0.657 0.677 0.546 0.714 0.077 NetworkX A graph that satisifies Barbasi-Albert preferential
attachment model [8].Radial 17.8 ms 11.8 ms 29.6 ms 1 0.186 0.691 0.702 0.575 0.725 0.029

BIO-CELEGANS 453 2025 5.2 Random 110 ms 47.1 ms 3.08 s 63 0.219 0.867 0.761 0.919 0.719 0.196 Network A metabolic network where substrates are nodes
and edges are metabolic reactions between them.Layered 102 ms 47.3 ms 1.09 s 21 0.229 0.867 0.776 0.915 0.720 0.181 Repository

BN-MOUSE-VISUAL-CORTEX-2 193 214 6.4 Random 16.6 ms 14.0 ms 282 ms 19 0.409 0.958 0.960 0.997 0.746 0.931 Network Mouse brain network where nodes are locations and
edges are unweighted fiber tracks between them.Layered 17.2 ms 14.2 ms 201 ms 13 0.425 0.967 0.963 0.999 0.837 0.930 Repository

CHORDAL CYCLE (90) 90 180 5.0 Random 11.9 ms 13.5 ms 1.19 s 87 0.335 0.897 0.818 0.938 0.738 0.467 NetworkX Graph where all cylces contain a chord.
Radial 14.6 ms 13.6 ms 1.02 s 74 0.362 0.905 0.840 0.940 0.735 0.477

DAVIS SOUTHERN WOMEN 32 89 3.7 Random 6.3 ms 14.8 ms 1.53 s 103 0.382 0.921 0.903 0.880 0.736 0.244 NetworkX A graph of observered attendance at 14 social
events by 18 southern women in 1930’s.Radial 7.3 ms 14.5 ms 528 ms 36 0.371 0.917 0.903 0.879 0.749 0.180

DOLPHIN SOCIAL 62 159 6.5 Random 10.4 ms 12.8 ms 1.38 s 107 0.474 0.948 0.947 0.955 0.748 0.397 Network A social interaction network between dolphins.
Radial 10.4 ms 13.3 ms 1.02 s 76 0.486 0.948 0.944 0.947 0.767 0.347 Repository

DOROGOVTSEV-GOLTSEV-MENDES (5) 123 243 4.3 Random 14.4 ms 12.5 ms 1.31 s 104 0.377 0.930 0.860 0.986 0.722 0.534 NetworkX A graph that satisifies Dorogovtsev and Mendes
algorithm [20].Radial 31.2 ms 12.7 ms 730 ms 55 0.446 0.960 0.912 0.996 0.734 0.563

DUPLICATE DIVERGENCE 50 99 4.6 Random 7.7 ms 14.1 ms 1.29 s 91 0.415 0.925 0.913 0.907 0.747 0.483 NetworkX Starting with a small graph, nodes and some edges
repeatedly duplicated.Layered 8.2 ms 14.1 ms 318 ms 22 0.414 0.919 0.916 0.931 0.733 0.488

ENRON EMAIL 143 623 6.1 Random 28.1 ms 17.4 ms 1.02 s 57 0.390 0.921 0.888 0.948 0.725 0.234 Network An email network collected from the Enron energy
accounting scandal of 2001.Layered 27.7 ms 17.9 ms 726 ms 39 0.385 0.928 0.873 0.949 0.725 0.244 Repository

HIC 1K NET 6 4581 284924 4.2 Random 12.4 s 10.9 s 12.3 min 112 0.277 0.991 0.970 – – – BioSNAP Nodes are gnomic regions and edges are
normalized contacts between regions.Radial 16.0 s 10.9 s 6.2 min 55 0.303 0.993 0.985 – – –

LES MISERABLES 77 254 4.1 Random 12.9 ms 11.0 ms 770 ms 69 0.444 0.930 0.888 0.948 0.750 0.407 NetworkX The co-appearance of charecters in chapters of Les
Miserables.Layered 12.8 ms 11.7 ms 340 ms 28 0.424 0.920 0.873 0.945 0.759 0.417

MOVIES 101 192 7.0 Random 27.0 ms 12.8 ms 1.14 s 87 0.298 0.862 0.819 0.932 0.732 0.483 [16] Collabaration between 40 Hollywood composers
and 61 producers between 1964 and 1976.Radial 13.1 ms 12.9 ms 685 ms 52 0.280 0.859 0.804 0.939 0.754 0.471

SMITH 2970 97133 4.8 Random 4.98 s 3.91 s 114 s 28 0.045 0.882 0.705 – – – Facebook 100 Nodes are students from Smith college and edges
are the friendships between them.Radial 5.62 s 3.73 s 20.5 s 4 0.045 0.887 0.698 – – –

TRAIN BOMBING 64 243 4.6 Random 31.2 ms 11.9 ms 1.84 s 152 0.393 0.912 0.887 0.898 0.746 0.311 NetworkX Nodes are individuals involved in 2004 madrid train
bombing and edge are for prior known relations.Radial 12.8 ms 11.6 ms 174 ms 14 0.486 0.954 0.930 0.928 0.751 0.304

USAIR 97 332 2126 5.1 Random 101 ms 41.3 ms 2.21 s 51 0.323 0.938 0.851 0.876 0.711 0.301 Network A weighted graph of the air traffic between airports
in the US in 1997.Layered 108 ms 41.2 ms 3.69 s 87 0.307 0.926 0.820 0.864 0.712 0.301 Repository

Table 2: Table of sparse datasets. See Table 1 for a description.

Dataset |V | |E| Avg Layout TIT TAIT TLCMC CLCMC QLCMC Qtrust Qconv QEC QCA QMAR Source Description
ECC

AIRPORT 2896 15641 10.2 Random 908 ms 902 ms 69.5 s 76 0.245 0.948 0.849 – – – Openflights.org Airports are represented as nodes with edges
counting the number of routes between airports.Layered 1.1 s 893 ms 34.2 s 37 0.253 0.962 0.870 – – –

BALANCED TREE (3,6) 1093 1092 11.5 Random 92.9 ms 63.8 ms 7.55 s 117 0.221 0.808 0.676 0.995 0.702 0.752 NetworkX This dataset represents a balanced tree with 3
children and a height of 6.Radial 109 ms 74.5 ms 6.07 s 80 0.374 0.982 0.940 1.000 0.671 0.779

BARBELL 150 2501 48.3 Random 107 ms 35.7 ms 3.04 s 82 0.257 0.893 0.886 0.779 0.741 0.302 NetworkX Two non-overlapping 50 node complete subgraphs
connected by a 50 node path.Layered 108 ms 35.1 ms 529 ms 12 0.350 0.913 0.914 0.780 0.741 0.234

BCSSTK 110 254 13.4 Random 32.6 ms 12.0 ms 1.41 s 115 0.582 0.972 0.897 0.984 0.685 0.318 UF Sparse The stiffness matrix used in structural simulation.
Radial 16.8 ms 11.9 ms 1.27 s 106 0.575 0.973 0.900 0.990 0.705 0.386 Matrix Collection

BIO-DISEASOME 516 1188 11.6 Random 76.1 ms 42.4 ms 3.64 s 84 0.407 0.909 0.845 0.991 0.738 0.440 Network Graph of links for scientifically known
disorder-gene association [34].Radial 82.7 ms 42.8 ms 1.24 s 27 0.478 0.964 0.957 0.992 0.744 0.436 Repository

CIRCULAR LADDER GRAPH (100) 200 300 51.0 Random 33.7 ms 16.6 ms 1.77 s 105 0.455 0.956 0.805 0.995 0.750 0.426 NetworkX Pairs of nodes are connected in a ladder like pattern
and the ladder forms a large cycle.Radial 20.2 ms 16.4 ms 1.11 s 66 0.814 0.999 0.998 1.000 0.427 0.557

CONNECTED CAVEMEN (10,20) 200 1900 11.0 Random 85.3 ms 31.9 ms 1.33 s 39 0.493 0.985 0.986 0.961 0.766 0.050 NetworkX A graph of 10 cliques of 20 nodes each.
Radial 93.6 ms 32.9 ms 915 ms 25 0.496 0.986 0.985 0.961 0.768 0.045

ENGYMES-G123 90 127 10.3 Random 13.9 ms 13.9 ms 1.7 s 121 0.374 0.891 0.808 0.979 0.788 0.611 Network Graph of cheminformatics.
Layered 15.5 ms 14.3 ms 1.2 s 83 0.436 0.937 0.792 0.986 0.733 0.592 Repository

LADDER 20 28 8.0 Random 3.6 ms 15.3 ms 1.71 s 111 0.377 0.932 0.929 0.975 0.834 0.507 NetworkX Pairs of nodes connected in a ladder like pattern.
Radial 2.5 ms 15.1 ms 1.21 s 80 0.402 0.950 0.947 1.000 1.000 0.602

LOBSTER 300 299 77.5 Random 21.2 ms 20.9 ms 3.79 s 180 0.210 0.916 0.869 0.992 0.723 0.857 NetworkX A tree that forms a caterpillar graph with the
removal of a leaf [35].Layered 21.1 ms 19.9 ms 1.12 s 55 0.688 0.996 0.997 1.000 1.000 0.807

LOLLIPOP (10,50) 60 95 40.2 Random 6.9 ms 14.3 ms 1.37 s 95 0.444 0.894 0.833 0.909 0.803 0.770 NetworkX The shape of a lollipop with a clique of 10 nodes
connected to a thread of 50 nodes.Layered 7.4 ms 14.4 ms 482 ms 33 0.755 0.996 0.995 0.921 0.813 0.551

MAP OF SCIENCE 554 2276 12.6 Random 129 ms 56.4 ms 5.77 s 100 0.361 0.956 0.930 0.986 0.666 0.135 [10] Graph of science sub-disciplines and
cross-disciplinary co-authorships.Radial 153 ms 58.6 ms 4.14 s 68 0.402 0.977 0.957 0.990 0.687 0.145

RANDOM GEOMETRIC (400,0,1) 400 2263 13.5 Random 107 ms 51.8 ms 4.56 s 86 0.546 0.983 0.925 0.990 0.665 0.071 NetworkX Nodes randomly placed in a cube and connectted if
their distance is less than 0.1.Radial 113 ms 53.2 ms 2.83 s 51 0.622 0.987 0.963 0.993 0.660 0.076

RETWEET 96 117 7.3 Random 9.7 ms 14.0 ms 1.44 s 102 0.440 0.936 0.905 0.985 0.678 0.781 Network Network of twitter users as nodes and retweets as
edges.Radial 9.8 ms 14.0 ms 977 ms 69 0.466 0.935 0.900 0.989 0.736 0.778 Repository

SCIENCE COLLABORATION NETWORK 379 914 12.1 Random 61.6 ms 31.1 ms 2.52 s 79 0.433 0.947 0.887 0.992 0.741 0.352 [52] Nodes are network theory publishing scientists and
edges are collaborations between them.Layered 50.6 ms 36.2 ms 2.4 s 65 0.500 0.972 0.960 0.994 0.749 0.356

WATTS STROGATZ (100,5,0,0.5) 100 200 12.3 Random 24.7 ms 13.1 ms 1.75 s 131 0.479 0.927 0.882 0.989 0.687 0.199 NetworkX A small world graph that satisifies the
Watts-Strogatz model [70].Layered 13.9 ms 13.8 ms 470 ms 33 0.611 0.976 0.941 0.991 0.646 0.196

Initialization Time (TIT ) is the time taken to initialize the force-
directed layout simulation. For our approach, the timing includes the
overhead to calculate the spanning tree and position nodes.

Average Iteration Time (TAIT ) is the average time required to calcu-
late one iteration of the force-directed layout.

Total Time to LCMC Convergence (TLCMC) is the total time (TIT +
TAIT ∗CLCMC) required to reach the LCMC convergence criteria.

Finally, we produce a set of well-established graph readability met-
rics [21,36]. Our evaluation does not discuss them, but they are included
for completeness.

Edge Crossings (QEC) measures the ratio of non-intersecting edges
to total possible intersections. Graphs are generally considered more
readable with fewer crossings. QEC is normalized, such that QEC ∈
[0,1], where larger is better.

Crossing Angle (QCA) is the average deviation from the ideal cross-
ing angle. If edges cross, it is preferable they cross at an ideal crossing
angle of 70 degrees that makes their individual paths most visible.
QCA is normalized, such that QCA ∈ [0,1], where larger is better.

Minimum Angular Resolution (QMAR) measures the average devia-
tion of adjacent edge angles from the ideal angle (360◦/degree(vi)

for any vi ∈V ). For nodes with multiple edges, it is preferable to their
egress be distributed around the node as much as possible. QMAR is
normalized, such that QMAR ∈ [0,1], where larger is better.

5 RESULTS

We evaluate our method’s ability to untangle initial graph layouts,
followed by untangling cycle structures.

5.1 Untangling Initial Graph Layouts

We evaluate our initial graph layout approach in terms of graph quality,
convergence, and time. For the experiments, we initialized the graphs
with either the standard D3.js random layout or our approach and let
them run until D3.js stopped force calculations (after 300 iterations
using the default settings).

5.1.1 Layout Quality

Table 1 and 2 show the results for all quality metrics from Sect. 4.3,
except for the readability measures for the three largest graphs, which
were skipped due to very high computational costs. Although all
metrics are available, we discuss only QLCMC.
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Fig. 7: Example of dense graph initial layouts (left), final layouts (middle), and the result of running neato and sfdp (right). Graphs using our
technique (bottom) converge more quickly and show similar, occasionally better, results compared to the standard random approach (top).

Layered vs. Radial. The results in Table 1 and 2 show only the
layout method, layered or radial, which produced higher QLCMC. In
many cases, the result between both methods is effectively identical.
The results show that neither method is universally better and seemed to
be graph dependent. Nevertheless, the results for both layout methods
are available in the supplemental material.

Dense Graphs. With dense graphs (see Table 1 and Fig. 7), our ap-
proach generally produced higher QLCMC scores. However, for several
graphs, our scores were similar or slightly lower, e.g., Fig. 7e and 7f.
In these cases, the results are still quite similar visually. In general
though for dense graphs, it seems that no matter the initial position
of nodes, the layout will end in a more or less similar configuration.
Importantly, even when our score is lower, our approach converges
much more quickly, e.g., for the HIC 1K NET 6 dataset (see Fig. 11b),
our method produced a similar QLCMC in about one fifth the time of
the random layout. This property is discussed more in Sect. 5.1.2.

Sparse Graphs. With sparse graphs (see Table 2 and Fig. 9), the
story is a bit different, as these graphs are not so overconstrained.
Using random initial layouts, quite often, their topological structures
are overlapping or hidden altogether. On the other hand, our approach
untangles these topological structures, leading to better final graph
layouts, e.g., with ENGYMES-G123 dataset (see Fig. 9c) our approach
(QLCMC = 0.436) produces higher co-ranking scores than the random
layout (QLCMC = 0.374), and the cycle structures of the graph are
more clearly visible. There was one sparse case, BCSSTK, where our
approach performed slightly worse than random because it was unable
to untangle the long cycle in the graph (see supplement). However, the
interactive functionality discussed in Sect. 5.2 resolved that issue.

Larger Graphs. Improving layouts is particularly important for
larger graphs (i.e., graphs of 1000 nodes, see Sect. 4.2). Fig. 1 and 11
show examples of larger graphs. Our approach shows better clustering
structures for the HIC 1K NET and AIRPORT datasets, supported by
the improved QLCMC scores. SMITH, on the other hand, being a dense
graph, shows similar clustering and identical QLCMC scores.

Overall, we observe that although our approach could improve the
layout quality of dense graphs, sparse graphs almost always benefited
from utilizing our approach.

5.1.2 Rate of Convergence
We compute the convergence metrics (see Sect. 4.3) on all of the
datasets listed in Table 1 and 2, and we focus on the convergence of

the LCMC (CLCMC). Our results show that for all except one dataset,
USAIR 97, using our approach converged faster than random layouts,
often significantly so. Fig. 8 shows plots of QLCMC against iterations for
three example datasets, including USAIR 97. In all cases, our approach
starts with a much higher QLCMC score and fine-tunes the results. One
interesting observation is that the QLCMC sometimes starts high and
dips, e.g., in Fig. 8c. This results from our good initial layout being
in a high energy state which is distorted by the force-directed layout
before settling in a good quality low energy state.

The rate of convergence is particularly important for larger graphs,
where the average time per iteration is higher. For the large datasets,
AIRPORT, HIC 1K NET 6, and SMITH, our approach converged faster
than random layouts, with 37 vs. 76, 55 vs. 112, and 4 vs. 28 iterations,
respectively. This phenomenon is also visible in Fig. 1 and 11, where
graphs layouts are shown at several intervals—initial, 5 iterations, 10
iterations, etc. In all cases, the structures shown in the final graph are
visible much earlier with our approach (iteration 5 or 10) than with a
random layout (iteration 25 or more).

Therefore, we conclude that our approach significantly improves
convergence in most cases.

5.1.3 Compute Time
The improved rate of convergence our method offers does not come for
free. An initialization time penalty (i.e., TIT ), albeit small, must be paid.
Due to the imprecise time measurements offered by the web browser,
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iterations

(b) SCIENCE COLLAB.
iterations

(c) USAIR 97

Fig. 8: Plots of QLCMC against the number of iterations show that
compared to the random initial layout, our approach begins with high
co-ranking scores and spends most of the iterations fine-tuning.
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Fig. 9: Example of sparse graph initial layouts (left), final layouts (middle), and the result of running neato and sfdp (right). Graphs using our
technique (bottom) converge more quickly and produce better layouts than the standard random approach (top).

we forgo discussing small graphs and focus on larger graphs instead,
namely AIRPORT, HIC 1K NET 6, and SMITH. For these graphs, there
was an additional initialization cost (TIT ) of 15−20% over a random
initialization. Since we made no modifications to the force calculations,
the average time per iteration, TAIT , was virtually identical.

However, the time benefit of our approach is placed in context when
considering the time to convergence, TLCMC. Due to the low additional
overhead and significant reduction in number of iterations, our approach
offers a speed-up of∼ 2× for AIRPORT and HIC 1K NET 6, and a speed-
up of ∼ 5.6× for SMITH.

Given these observations, we conclude the benefits of fast conver-
gence far outweigh the additional initialization time required for the
spanning tree calculation, particularly for larger graphs.

5.1.4 Comparison to Other Algorithms

We also compared our results to other graph layout algorithms, namely,
neato, fdp, and sfdp. Due to space consideration, the majority of results
are presented in our supplemental document. However, results on larger
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Fig. 10: A comparison of graphs using a random initialization and
random initialization + H0 forces, and examples of our approach on
different cycles, random initialization + H1 forces. The results show
that our approach reveals cycles otherwise difficult to observe in the
data, and in most cases, our approach improves the overall graph layout.

graphs can be seen in Fig. 1 and 11, and on smaller graphs in Fig. 7
and 9. Generally speaking, one or more of these methods produced
graph layouts with similar or slightly better QLCMC scores than our
approach. Therefore, our method can be viewed as closing the gap
between random initialization force-directed layout and these more
advanced methods. Ultimately, we are still limited by the capacity of
the D3.js force-directed layout to produce high-quality final layouts.
Our method provides only a boost. Finally, an important aspect of our
approach is that the layouts are intended to be interactive. Users are
supposed to explore H0 and H1 features to learn the graph’s structure,
which is a capability not necessarily offered by these other methods.

5.2 Interactive Untangling with H1 Features

We evaluate whether the interaction with H1 features reveals anything
about the graph structure previously available using a random initializa-
tion force-directed layout or by using the H0 forces introduced in [63].

Generating H0 Examples. To compare to H0 persistent homology
feature forces, we start with the random initial layout (i.e., the D3.js
default) and allow the graph to converge to a stable configuration. In
other words, they look like the random final graph layouts in the upper
middle of Fig. 7 and 9. We then apply a force to all H0 features and
again allow the graph to converge.

Generating H1 Examples. To determine the efficacy of H1 persis-
tent homology feature forces, we configure them similarly. Starting
with the random initial layout, we allow the graph to converge to a
stable configuration. We then apply a force to a single H1 feature,
which is selected by considering H1 features with longer cycle lengths,
and again the graph is allowed to converge.

Results. The results are visible primarily in Fig. 10 and 12, and
additionally in Fig. 2. First, we can see that our approach reveals
cycle structures that are often hidden in standard graph layout and only
sometimes revealed using H0 features. In other words, our approach
reveals topology of the graph that is otherwise hidden or difficult to
see. The second observation we make is that whereas H0 features tend
to improve the overall presentation of the graph, i.e., higher QLCMC
scores, our approach of applying forces to H1 features has a much
stronger impact, resulting in even better graph layouts, sometimes
dramatically so, e.g., in CIRCULAR LADDER (Fig. 12b) or WATTS
STROGATZ (Fig. 12d) graphs.

An important aspect of interacting with H1 features is that highlight-
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Fig. 11: A comparison of random initial layout to our approach for large graphs shows the layouts at various stages of processing. Importantly,
our approach shows the graph structure much earlier in the process, and the final layout is similar or better quality. We also compare to the results
of non-interactive methods of neato, fdp, and sfdp (right).

ing different features may lead to very different graph layouts, e.g., see
Fig. 10b. Taken in isolation, it may be difficult to visually relate the
structures of each. However, when interacting, animation provides the
context for relating different structures. Our demo6 includes the ability
to interactively evaluate additional cycles from each dataset.

Given these observations, we see that our approach has the ability to
capture and highlight important cycle structures, and it can use those
structures to further untangle a force-directed layout.

6Demo at https://usfdatavisualization.github.io/

UntangleFDL/ .
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Fig. 12: Additional examples of graphs using a random initialization,
random initialization + H0 forces, or our approach, random initializa-
tion + H1 forces.

6 DISCUSSION AND CONCLUSIONS

In this paper, we have evaluated two new uses of persistent homology
on force-directed layouts. We first investigate using H0 persistent
homology for initializing graph layouts. Although the implementation
itself relies on maximal spanning trees, persistent homology provides
a theoretical foundation for justifying its use. At the same time, our
experimental results show that it indeed improves the convergence rate
and quality of force-directed layouts.

Second, we investigate using H1 features for highlighting and modi-
fying the forces of a force-directed layout. Here again, in addition to
the algorithmic contribution of efficiently extracting the H1 features, we
observe that using these features reveals hidden features and improves
graph layouts in many situations.

Beyond our current work, there is potentially room for developing
additional initial layout schemes or perhaps automatically identifying
which scheme would work best for a given dataset. Still, a good
balance between performance and final quality remains of the utmost
importance. In addition, our scheme for utilizing H1 features could
be utilized in a more elaborate manner. Additionally, it would be
interesting to study whether other simplicial complexes could be used
with persistent homology to capture topological information about other
graph structures, e.g., cliques, stars and trees. Finally, our approach
is implemented using the D3.js force-directed layout, but we believe
the approach would work with other state-of-the-art techniques and
frameworks. However, the exact implementation and the ultimate
performance and quality gain require additional study.

Demo: https://usfdatavisualization.github.io/UntangleFDL/
Source: https://github.com/USFDataVisualization/UntangleFDL/
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