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Figure 1: Comparison of the original connectivity construction for a local bilinear Jacobi set (left) and our novel reduced
connectivity (right). The color coding (blue-to-red) shows the gradient alignment field of two analytic functions, and the
extracted/computed Jacobi set is displayed by solid black lines. The center images show zoomed-in details of two regions in the
visualizations (marked by white outlines). It can be observed that the reduced connectivity construction results in fewer edges
and, therefore, in a clearer visual representation.

ABSTRACT

We present a new topological connection method for the local bi-
linear computation of Jacobi sets that improves the visual repre-
sentation while preserving the topological structure and geometric
configuration. To this end, the topological structure of the local
bilinear method is utilized, which is given by the nerve complex of
the traditional piecewise linear method. Since the nerve complex
consists of higher-dimensional simplices, the local bilinear method
(visually represented by the 1-skeleton of the nerve complex) leads
to clutter via crossings of line segments. Therefore, we propose a
homotopy-equivalent representation that uses different collapses and
edge contractions to remove such artifacts. Our new connectivity
method is easy to implement, comes with only little overhead, and
results in a less cluttered representation.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques; Mathematics of computing—Discrete mathe-
matics

1 INTRODUCTION

The topological study of multiple scalar fields comprises a broad
range of mathematical instruments. One of these tools is the Jacobi
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set, a topological descriptor that is based on Morse theory. For
two Morse functions, it is defined as the set of points where the
gradients align. So far, there are two computational methods for the
numerical computation and extraction of Jacobi sets. Edelsbrunner
and Harer [10] introduced an edge-based computation of Jacobi sets
that is based on a piecewise linear (PL) scheme. This PL method
produces a non-smooth and inaccurate representation of the Jacobi
set due to an edge-based identification and PL interpolation. As a
result, this leads to zig-zag patterns and discretization artifacts.

Based on the PL method, Klötzl et al. [19] presented a local
bilinear (LB) computation of Jacobi sets that enhances the geometry
while maintaining the topology of the PL method. The LB method
introduces so-called Jacobi set points, a geometrically more precise
(in terms of the gradient alignment measure [19]) representation
of the Jacobi set. The connection of these points leads to a line
segment representation of the Jacobi set that is equal to the nerve
complex of the PL method. As the nerve complex consists of higher-
dimensional simplices, the visual representation with its 1-skeleton
description has clutter via crossings of line segments (see Figure 1
(left), in particular, bottom right corner).

In this paper, we want to address these issues to obtain an im-
proved visual representation while preserving the topological struc-
ture and geometrical configuration. To achieve this, we apply the
theory of topological collapses to the LB method, leading to dif-
ferent collapsing strategies for the higher-dimensional simplices.
Our proposed solution is a combination of these, resulting in a
new homotopy-equivalent representation of the LB method with
reduced connectivity (see Figure 1 (right)). This new connectivity
construction method preserves the topology and inherits important
properties, such as the Even Degree Lemma. In addition, the geo-
metrical configuration is maintained and the representation is less
cluttered due to its reduced connectivity. The proposed algorithm
to compute the connectivity comes with only little overhead and is
easy to implement.



The remainder of the paper is structured as follows: After a dis-
cussion of related work in Section 2, Section 3 recaps topological
foundations (simplicial collapse, strong collapse, and edge contrac-
tion) and summarizes the original LB method for the computation
of Jacobi sets. In Section 4, we propose our new connectivity con-
struction method, starting with design goals that clarify the desired
topological and geometrical properties. Then, our method is de-
rived with the help of topological collapses and edge contractions.
We conclude this section with the formulation of the algorithm. In
the subsequent section, our method is evaluated qualitatively and
quantitatively. Finally, Section 6 concludes the paper.

2 RELATED WORK

The Jacobi set [10] is an important tool in topological data analysis
that describes the relationship between multiple scalar fields in
terms of their gradient behavior. It has been employed in various
scientific applications to model the relationship between salinity
and temperature of water in oceanography [4], define the critical
paths of gravitational potentials of celestial bodies [10], detect tree
rings [22], extract ridges in images [25], track features in time-
varying simulations [7], and estimate the interrelationships between
geophysical multi-fields [2], to name a few.

The classic algorithm that computes the Jacobi set [10] is designed
for piecewise linear functions defined on triangulations, which is
known to produce a large number of discretization artifacts (such
as small loops and zig-zag patterns) that can skew the analysis [5].
Recent work by Klötzl et al. [19] improves upon the piecewise linear
approach by utilizing bilinear interpolation to obtain a smoother
and more accurate geometric representation of the Jacobi set while
preserving its topology. Our paper adopts their bilinear computation
set but extends their approach with a new topological connection
method that improves its visual representation while preserving its
topological structure.

Instead of improving upon interpolation schemes to enhance the
Jacobi set representation, a number of previous works introduce
controlled simplification of a Jacobi set, oftentimes by ranking and
removing parts of the Jacobi sets. The indirect simplification of the
Jacobi set (e.g., [7, 21]) simplifies the underlying functions to obtain
a structurally and geometrically simpler representation, whereas the
direct simplification (e.g. [5, 11, 24]) aims to identify and remove
portions of the Jacobi set that are deemed unimportant. Our work
is different from Jacobi set simplification approaches as it employs
simplicial collapses to improve the bilinear representation while
preserving the geometry that is lost under simplification schemes.

Finally, a simplicial collapse first introduced by Whitehead [28] is
a topological method that reduces a simplicial complex to a subcom-
plex that is homotopy-equivalent. It has been applied in, e.g., compu-
tational homology [18], discrete Morse theory [13], and topological
data analysis, e.g., in the study of homotopy types [1].

3 BACKGROUND

In this section, we first recap the theory of simplicial complexes
and collapses. For this, we use the manuscripts by Forman [14] and
Boissonnat et al. [6]. For a detailed introduction to these topics,
we refer to the publications by Whitehead [28], Milnor [23], and
Cohens [8]. Besides the topological aspects, we provide a summary
of the LB Jacobi set computation by Klötzl et al. [19], which is the
mathematical and algorithmic foundation of this paper.

3.1 Simplicial Complex and Collapse

To derive our method, we need the theory of simplicial collapse,
strong collapse, and edge contraction. Before we explain these
topics, we recap necessary topological definitions such as simplicial
complex, simplicial cone, and the nerve of a simplicial complex. For
a more detailed introduction, we refer to the book by Hatcher [17].
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Figure 2: Simplicial collapse of a tetrahedral simplicial 3-complex to
a graph (1-complex). The procedure uses four elementary collapses.

Simplicial complex Given a non-empty finite set X , a simplicial
complex K is given by a collection of subsets of X such that for
every subset L ⊂ K, all the subsets of L are contained in K. An
element σ ∈ K with the cardinality of k+1 is denoted as k-simplex.
If σ ⊆ σ ′, σ is called a face of σ ′ and σ ′ a coface of σ . The
notion of a maximal simplex is given, if it is not a face of any other
simplex in K. A sub-collection L of K is a simplicial complex called
subcomplex. Simplicial maps are defined as maps between two
simplicial complexes φ : K → L and induced by vertex-to-vertex
maps h : V (K)→V (L) if the images of the vertices of every simplex
in K span a simplex in L.

For a simplex σ contained in a simplicial complex K, the closed
star StK(σ) is defined as a subcomplex of K with StK(σ) := {τ ∈
K | τ ∪σ ∈ K} and the link LkK(σ) := {τ ∈ StK(σ) | τ ∩σ = /0} is
the set of simplices in StK(σ) that do not intersect with σ . The join
of simplicial complexes is defined as the disjoint union of the two
spaces, where every point of one space is attached by line segments
to every point of the other space. In this context, the join of a vertex
with a simplicial complex is called simplicial cone. For a given
simplicial complex L and a vertex a /∈ L the simplicial cone aL is
defined as aL := {a,τ | τ ∈ L or τ = σ ∪ a for σ ∈ L}, where a,τ
represents a simplex.

An important construction is the nerve of a simplicial complex
K, N (K). For a simplicial complex K, the vertices of N (K) are
given by the maximal simplices of K and the simplices of N (K) by
their non-empty intersection. The nerve can be defined iteratively
for j ≥ 2 as N j(K) = N (N j−1(K)) with N 1(K) := N (K). An
important property of nerves of simplicial complexes is their con-
nection to the strong collapse, which will be explained later on.

Simplicial collapse Let K be a simplicial complex and L a
subcomplex L ⊂ K of K. The simplicial complex K collapses to L
with an elementary simplicial collapse if there are only two simplices
S, S′ ∈ K with S ∩ L = /0 and S′ ∩ L = /0, where S is a free face
of S′, i.e., S′ is the unique simplex of K with S as a face. The
elementary simplicial collapse of K to L is denoted as K ↘e L. In
general, a simplicial complex K simplicially collapses to L, K ↘ L,
or L expands to K if there exists a sequence of finite subcomplexes
K1, . . . ,Kn with K = K1 and Kn = L such that Ki ↘e Ki+1 for all
i∈ {1, . . . ,n−1}. It can be proven that K collapses to L if and only if
the two simplicial complexes are simple homotopy-equivalent [29].

To illustrate the simplicial collapse, Figure 2 shows a tetrahedral
simplicial 3-complex that is simplicially collapsed via four elemen-
tary collapses to a graph (1-complex). The elementary collapses are
always characterized by two simplices that are “deleted” from the
complex K. In the first elementary collapse, the respective simplices
S′ and S are the 3-cell and one of the 2-cell faces.
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Figure 3: Strong collapse of a simplicial complex. The dark blue
vertices are dominated by the light blue vertices, respectively.
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Figure 4: Edge contractions of different simplicial complexes, where
contracted edges are marked in blue. The left and middle complexes
are homotopy-equivalent, while the middle and right complexes
are not. The shared element of the two links contradicting the link
condition is encircled in orange.

Strong collapse For the definition of a strong collapse, we need
the notion of dominated vertices. Given a simplicial complex K, a
vertex a ∈ K is a dominated vertex if the link LkK(a) is a simplicial
cone. This means that a vertex a is dominated if there exists a vertex
a′, a ̸= a′, and a subcomplex L ∈ K such that LkK(a) = a′L. In this
case, the vertex a is dominated by the vertex a′. Another equivalent
formulation is given by the notion of maximal simplices. If and only
if all the maximal simplices of K containing a also contain a′, the
vertex a ∈ K is dominated by a′ ∈ K [3].

Analogously to the simplicial collapse, the strong collapse is again
defined via elementary strong collapses. To perform an elementary
strong collapse one identifies and deletes a dominated vertex a from
K: K ↘↘e K \a. An example of a strong collapse, derived from
three elementary collapses, is given in Figure 3. The strong collapse
of a simplicial complex K to a subcomplex L, which we denote as
K ↘↘ L, is thus defined as a series of elementary strong collapses.

The strong collapse of K to L leads to the same strong homotopy
type of K and L, and it is also well-known that if K and L have the
same strong homotopy type, this implies the same simple homotopy
type (but not vice versa). Another important aspect is that for a
simplicial complex K, there exists a subcomplex L isomorphic to
N 2(K), such that K ↘↘ L [3, Proposition 3.4].

Edge contraction For an edge ab of a simplicial complex K, an
edge contraction is a simplicial map φ : K → L induced by the vertex
map hab : V (K)→V (L) mapping h(b) = a and everywhere else to
identity. The topology change for edge contractions is investigated
by Dey et al. [9] for different configurations. One of the most
important results for our context will be the following link condition
as a sufficient condition for the preservation of the topology for
the edge contraction of certain simplicial complexes. Given a 1-
complex K, if LkK(a)∩LkK(b) = /0, the edge contraction of ab
from K to L is a homotopy equivalence. This result is applied in
the illustrative example given in Figure 4. In the first contraction
(K1 → K2), the link of the two vertices (marked in blue) is disjoint.
This leads to a homotopy-equivalent contraction of the edge to a new
vertex, whereas the second contraction (K2 → K3) is not homotopy-
equivalent since the two vertices share an element in their link
(encircled in orange).
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Figure 5: Sketch of the PL and LB computation of Jacobi sets.
The illustration shows the configuration for the edge ab. While the
PL method extracts edges (such as the edge ab), the LB method
computes Jacobi set points (such as the point p).

3.2 Local Bilinear Jacobi Set Computation

In this subsection, we explain the LB Jacobi set computation by
Klötzl et al. [19], which is the basis for the connectivity method in
this paper. To do this, we start with a description of the PL computa-
tion of Jacobi sets by Edelsbrunner and Harer [10]. For a consistent
description of both methods, Klötzl et al. [19] reformulate the Jacobi
set J( f ,g) = {x ∈M | ∇ f (x)×∇g(x) = 0} for smooth functions
f ,g : M→ R defined on a subset M⊂ R2 into the equivalent set

J( f ,g) = {x ∈M | κx( f ,g) = 0} , (1)

where κx( f ,g) := ∂x f (x)∂yg(x)− ∂y f (x)∂xg(x) is the gradient
alignment value. This value characterizes the linear independence
of ∇ f (x) and ∇g(x) at the point x ∈M and is used to formalize the
LB and PL methods as described in the following.

In general, both methods operate on a triangulation and consider
edges individually to extract a 1-manifold that represents the Jacobi
set. In Figure 5, a sketched edge configuration is shown, where the

Algorithm 1: Computation of Jacobi set points [19, Alg. 1]
Input: Scalar fields f and g, edges E = (ei)
Output: JE = (ei,pi): List of critical edges ei with

corresponding Jacobi set points pi
1 begin
2 for ei ∈ E do
3 Find v1,v2 ∈ Lk(ei)

4 Compute κ li
v1
,κ li

v2
// [19, Eq. 6 and Eq. 7]

5 if sgn(κ li
v1
) ̸= sgn(κ li

v2
) then

6 Compute κbi
v1
,κbi

v2
// [19, Eq. 10 and Eq. 11]

7 if sgn(κbi
v1
) ̸= sgn(κbi

v2
) then

8 λ = κbi
v1
/(κbi

v2
−κbi

v1
)

9 else
10 λ = κ li

v1
/(κ li

v2
−κ li

v1
)

11 m = a+(b−a)/2
12 if λ < 1/2 then
13 pi = v1 +2λ (m−v1)

14 else
15 pi = m+(1−2λ )(m−v2)

16 add (ei,pi) to JE



(a) Piecewise linear Jacobi set (b) Local bilinear Jacobi set
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Figure 6: Overview of different Jacobi set representations (top row) and collapsing methods (bottom row). In (a,b), the PL (solid black) and
LB (red) methods are shown for a given triangulation. The resulting 1-skeleton of the nerve computed by the LB method is illustrated in (b).
Simplicial collapse is applied to this Jacobi set in two different ways (c,d). In (e), the strong collapse of the PL method via the geometrical
configuration of the LB method is illustrated.

edge ab is examined with regard to its criticality. This is the first
part of the LB (or PL) method as shown in Algorithm 1 (lines 2–5).

Assuming f and g to be PL, i.e., both functions are linear in the
triangles {abv1} and {av2b}, respectively, Klötzl et al. [19] proved
that the (linear) gradient alignment value at the vertices v1 and v2 is
given by the following formulae

κ
li
v1
( f ,g) =

1
Aabv1

·( fb− fa)gv1 +( fa− fv1)gb+( fv1 − fb)ga, (2)

κ
li
v2
( f ,g) =

1
Aav2b

·( fa− fb)gv2 +( fv2 − fa)gb+( fb− fv2)ga, (3)

where Ap1p2p3 = xp1(yp2 −yp3)+xp2(yp3 −yp1)+xp3(yp1 −yp2) de-
scribes the area of the spanned parallelogram between the vertices
p1,p2, and p3. These gradient alignment values are used to identify
the critical edges of the PL approach by Edelsbrunner and Harer:

ab ∈ J( f ,g) ⇔ sgn
(
κ

li
v1
( f ,g)

)
̸= sgn

(
κ

li
v2
( f ,g)

)
(4)

As the PL formulation results in piecewise constant gradient align-
ment fields κx( f ,g), it is only possible to visually represent the
Jacobi set via the identified critical edges. For the resulting collec-
tion of line segments, the so-called Even Degree Lemma holds [10].

Even Degree Lemma. The degree of every vertex in J( f ,g) is even,
i.e., the number of critical edges attached to a vertex is even.

Thus, the collection of line segments can be unfolded to a 1-manifold.
More precisely, for every vertex with a degree larger than two, the
attached edges can be unglued in a way that they do not cross.

Based on the PL approach by Edelsbrunner and Harer [10], the
LB method by Klötzl et al. [19] enhances the representation ge-
ometrically while preserving the topology. This is achieved by
introducing the concept of Jacobi set points in the first stage (lines
6–16 in Algorithm 1) as well as a method to connect them in the
second stage. Assuming bilinearly interpolated functions f and g on
a quadrilateral cell that encloses a critical edge, they showed that the
underlying gradient alignment field κx as a function of x is linear.

Therefore, it is possible to compute a single point given by the zero
of the gradient alignment field between the neighboring vertices of
the critical edge. Klötzl et al. [19] provided explicit formulae for
κbl

v1
and κbl

v2
to compute the zero for each of the critical cells. This

point is called Jacobi set point and is assigned to the critical edge (in
principle, it replaces the critical edge). We refer to Algorithm 1 for
the computation of the Jacobi set points (the algorithm is identical
to Algorithm 1 in Klötzl et al. [19]).

The connection of the Jacobi set points can be done in a canon-
ical way by using the connectivity of the underlying PL method.
An illustration of these steps is provided in Figure 6 (top). This
technique solves the problem of zig-zag patterns but introduces clut-
ter and crossings of line segments. Klötzl et al. [19] showed that
the homotopy is still equivalent to the PL approach because the
connectivity coincides with the topological 1-skeleton of the nerve
complex. To be more precise, defining U as the union of the closure
of each PL Jacobi set edge, the nerve N (U ) coincides with the
local bilinear representation and is, therefore, homotopy-equivalent
to the piecewise linear representation [19, Appendix].

4 OUR APPROACH

In this section, we present the proposed connectivity method start-
ing with the formulation of desired design goals. Then, different
collapsing strategies are evaluated, which leads to the derivation of
our method. Finally, the associated algorithm is described.

4.1 Design Goals

The typical result of the LB method by Klötzl et al. [19] is demon-
strated in Figure 6 (top). Since the connectivity of the LB method
is given by the nerve complex and, in this case, actually consists of
a tetrahedron (marked by the red transparent area), the 1-skeleton
representation ends up in crossings of line segments. For this rep-
resentation, the Even Degree Lemma holds (for any vertex an even
number of critical edges is connected to it), resulting in a 1-manifold
(the 1-manifold property is achieved through the unfolding of edges).

Our goal is now to find a reduced connectivity, that is, a repre-
sentation with less clutter due to the conceptual removal of higher-



dimensional simplices. In addition to that primary goal, the connec-
tivity should satisfy the following design goals as well:

• Preservation of topology (homotopy-equivalent representation)

• Preservation of the geometrical configuration (Jacobi set points
and their positions)

• Upholding of the Even Degree Lemma

• Computation in a deterministic way.

4.2 Derivation
We are now able to derive our method. Starting with the connectivity
of the LB method given in Figure 6 (b), we aim for a representation
with the desired design goals. To this end, we explore different
collapsing strategies in the following to get rid of the crossings that
arise from the higher-dimensional simplices.

Simplicial collapse of LB method To collapse the tetrahedron
in Fig 6 (b) or any other higher-dimensional simplex contained in
a simplicial complex, which we will denote as K in the follow-
ing, we have a closer look at its topological structure. Due to the
Even Degree Lemma, K consists only of odd-dimensional simplices.
Therefore, each of the higher-dimensional simplices can be collapsed
individually because, by construction, they are only connected to
other simplices via vertices. This collapsing strategy leads to a
1-complex as illustrated in Figure 6 (c) or, in more detail via elemen-
tary simplicial collapses, in Figure 2. In principle, three edges of the
topological 1-skeleton are removed for a tetrahedron.

While this approach seems promising with regard to topological
and geometrical properties, it is not uniquely determined and may
violate the Even Degree Lemma. This can be observed in Figure 6 (c)
for the vertices 1′ and 4′. However, this issue can be solved as the
following theorem shows.

Theorem 1. Given a simplicial complex K containing only odd-
dimensional simplices that are connected via vertices. For each
n-simplex there are n− 1 configurations to simplicially collapse
K → L such that a 1-complex is obtained, the Even Degree Lemma
holds for L, and the vertices of K are preserved.

Proof. First, we want to point out that each of the vertices in an
odd-dimensional n-simplex has an odd number of edges inside the
n-simplex attached to it. For each higher-dimensional n-simplex S,
(n > 1), we collapse the simplex iteratively such that all edges of
one of the (n−1) contained (n−1)-simplices are collapsed (leading
to (n−1) possible configurations). This (n−1)-simplex, which we
denote as S′, can be chosen freely. The procedure is illustrated in
Figure 6 (d), where the 3-dimensional simplex S = {1′,2′,4′,5′}
(transparent red tetrahedron) is collapsed via simplicial collapses of
the edges contained in the face S′ = {1′,2′,4′}.

As a result, for each vertex of the (n− 1)-simplex S′ (a vertex
of S′ has n attached edges in S), (n− 1) edges are collapsed so
that only one attached edge remains. For the vertex that is not
contained in S′ (5′ in Figure 6 (d)), the attached edges do not change.
Therefore, each of the vertices has an odd number of attached edges
in S (since 1 and n are odd). Taking the surrounding simplicial
complex into account, where an odd number of edges are attached
to each vertex of S, we can conclude that every vertex has an even
degree. The 1-complex results by construction through collapsing
all edges of one (n− 1)-simplex S′ (resulting in a total of A(n,1),
elementary collapses to collapse the simplex S to a 1-simplex, where
A(n,m) := ∑

m+1
k=0 (−1)k(n+1

k
)
(m+ 1− k)n is the Eulerian number).

One of the resulting 1-complexes is illustrated in Figure 6 (d).

The theorem points out that there are multiple configurations such
that the Even Degree Lemma holds. One of these configurations
is shown in Figure 6 (d). Even though this approach would lead
to a topologically and geometrically preserving representation, it is

Local bilinear 
Jacobi set

Reduced 
connectivity

Simplicial 

collapse/

anticollapse

Edge 
contraction/
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Figure 7: Overview of our method to obtain the reduced connectivity
construction. Inspired by the simplicial collapse and strong collapse,
the proposed homotopy-equivalent representation is derived. The
homotopy-equivalent edge contraction is encircled in orange.

still not uniquely determined, which makes the topological study of
scalar fields via Jacobi sets difficult due to ambiguous solutions.

Strong collapse of LB method Another collapsing strategy
for the tetrahedron in Figure 6 (b) or any other simplicial complex
K is the strong collapse. As pointed out in the background section,
an efficient method to perform the strong collapse is to apply the
nerve complex twice. Since we already know that the LB method by
Klötzl et al. [19] coincides with the nerve complex of the PL method
by Edelsbrunner and Harer [10], we obtain the desired homotopy-
equivalent representation by taking the nerve once again.

For the nerve construction of the LB representation (i.e., the
strong collapse of the PL approach), the geometry cannot be pre-
served as all the simplices are mapped to new vertices. The heuristic
approach is to take the barycenter of the respective simplices as
illustrated in Figure 6 (e).

To be clear, the notion of strong collapse refers to the strong
collapse of the PL Jacobi set. Although this approach preserves
the topology (since the PL and LB representations are homotopy-
equivalent), satisfies the Even Degree Lemma, and is deterministic,
it does not preserve the geometry given by the Jacobi set points.
Ignoring the location of the Jacobi set points leads to a representation
that takes no advantage of the LB method. In fact, the barycentric
relocation of all Jacobi set points results in an undesired smoothing
that may provide misleading information about the Jacobi set.

Algorithm 2: Computation of Reduced Connectivity.
Input: JE = (ei,pi): List of critical edges ei with

corresponding Jacobi set points pi
Output: JSC = {lk = (pki ,pk j )}: Jacobi set lines

1 begin
2 Initialization list L // L maps vertices to critical edges
3 for (vi1 ,vi2) = ei ∈ JE do
4 L(vi1) = L(vi1)∪{ei}
5 L(vi2) = L(vi2)∪{ei}
6 for vertex v ∈ L do
7 L(v) = {ev1 , . . . ,evd}
8 if d == 2 then
9 add line segment l = (pv1 ,pv2) to JSC

10 else
11 pC

m = 1
d ∑

d
k=1 pvk

12 for j = 1, . . . ,d do
13 add line segment l = (pv j ,pC

m ) to JSC



Reduced Connectivity of LB method After the evaluation
of the two collapsing strategies—simplicial collapse and strong
collapse—we can deduce our new connectivity method as a combi-
nation of both. An overview of our approach is given in Figure 7.
Inspired by the strong collapse, we propose using a barycentric repre-
sentation for the higher-dimensional simplex. Nevertheless, inspired
by the simplicial collapse, we keep the Jacobi set points and connect
the vertices of the higher-simplicial complex to the barycenter. This
leads to a representation with reduced connectivity that inherits the
advantages of both collapsing strategies while avoiding their issues.

In fact, the representation preserves the geometrical configuration
as the Jacobi set points from the local bilinear computation are used.
The barycenter is well justified geometrically as the Jacobi set points
around it are zeros of the gradient alignment field (for even higher-
dimensional simplices, there are many more Jacobi set points around
it). Also, the representation preserves topology since a homotopy-
equivalent simplicial collapse (anticollapse) and edge contraction
(vertex split) can be applied to show homotopy equivalence (see
Figure 7). In addition, the Even Degree Lemma holds because all
connections between vertices affected by the higher-dimensional
simplex are resolved and, instead, one single connection to the
barycenter is established (see Figure 7). Finally, the procedure is
deterministic by construction. Therefore, all of our design goals are
met. In the next subsection, we formulate an appropriate algorithm
to compute the reduced connectivity.

4.3 Algorithm
For the formulation of the algorithm, we recap that Algorithm 1
produces a list of critical edges ei with the corresponding Jacobi set
points pi. This list is the input for our algorithm, which is presented
in Algorithm 2. According to the derivation of our reduced connec-
tivity, the first step is to identify the higher-dimensional simplices.
These are characterized by vertices that have four or more critical
edges connected to them. Thus, the first part of Algorithm 2 is to
generate a list L that maps vertices to critical edges (this list is a
subset of the general vertex-to-edge list). Algorithmically, it can be
computed via a for loop over the critical edges (lines 2–5).

The next part of the algorithm is to iterate over each vertex that
is in the list L and to check how many critical edges are connected
to the vertex (lines 6–7). Due to the Even Degree Lemma, there are
either two connected critical edges connected to the vertex or a larger
number that is even. In the case of only two connected critical edges,
no higher-dimensional simplex is involved in the representation and,
hence, the usual connectivity, i.e., one line segment, can be used
(lines 8–9). If there are more than two critical edges connected to a
vertex, then there is a higher-dimensional simplex that needs to be
reduced. According to our derivation, the barycenter of the higher-
dimensional simplex is computed via the location of the vertices
(line 11) and used for the connectivity, i.e., each vertex is connected
to the barycenter via a line segment (lines 12–13).

Algorithm 2 results in a collection of line segments that approxi-
mates the Jacobi set. Compared to the representation by Klötzl et
al. [19], our reduced connectivity produces fewer edges and a clearer

Table 1: Number of resulting edges of the non-reduced connectivity
method and our reduced connectivity construction.

Non-reduced
connectivity

Reduced
connectivity

Analytic (80x80) 2,014 1,424
Analytic + noise 6,376 4,807
Kármán Vortex 7,360 5,993
Hurricane Isabel 370,026 272,031
Droplet impact 21,729 16,049

representation while still preserving the topology and geometry. The
number of reduced edges can be mathematically formalized as

K

∑
j=1

(
N j

2

)
−N j,

where N j is the dimension of each of the K higher-dimensional
simplices. If there is no higher-dimensional simplex in the repre-
sentation, then no edges are removed (in this case, there is also no
visual clutter). Otherwise, the number of reduced edges for each
higher-dimensional simplex j is given as follows: the binomial

(N j
2

)
refers to the number of edges of the (N j −1)-dimensional simplex in
the original connectivity method and is subtracted by N j , the number
of edges which result from Algorithm 2 by connecting each of the
N j vertices to the barycenter (see Figure 7).

Another important aspect of Algorithm 2 is the low computational
overhead compared to the original LB method. Our connectivity
method iterates over all critical edges ei ∈ JE in the first for-loop
and over vertices that are connected to critical edges in the second
for-loop. Since the quantities inside of the loops are computed lo-
cally (in our experiments, due to a reasonable triangulation, the
value d was typically smaller than 10), the time complexity is linear
with respect to the number of critical edges #e, i.e., it is given by
O(#e). This is also true for the non-reduced connectivity method
by Klötzl et al. [19]. Moreover, since the non-reduced connectiv-
ity method simply adds line segments between all critical edges
that share a vertex (i.e., there is a pairwise connection between the
edges ev1 , . . . ,evd in line 7 in Algorithm 2), the only overhead of our
connectivity method is introduced through the computation of the
barycenter pC

m in line 11.

5 EVALUATION

In this section, our new reduced connectivity for the LB computation
of Jacobi sets is compared to the visualization by Klötzl et al. [19].
We analyze both variants with respect to the following datasets: an
analytic example with different resolutions and induced uncertainty
as well as a numerically simulated droplet impact on a fluid film. In
contrast to the analytical dataset, the droplet dataset consists of multi-
ple physical phenomena that highlight the advantages of our method.
For each scenario, the quantitative reduction of edges, as well as
the computation time of our connectivity method (Algorithm 2),
is shown in Table 1 and Table 2, respectively. As a reference, the
quantitative analysis is also performed for the von Kármán Vortex
Street [16] and the Hurricane Isabel1 dataset, which is further inves-
tigated in [19]. The computation was done with MATLAB (R2022a)
on a MacBook Pro with an Intel Dual-Core i5 CPU @3.1 GHz and
8 GB of RAM.

1Hurricane Isabel data produced by the Weather Research and Forecast
(WRF) model, courtesy of NCAR and the U.S. National Science Foundation
(NSF) (http://www.vets.ucar.edu/vg/isabeldata/)

Table 2: Computation times (in ms) of the Jacobi set point computa-
tion (Alg. 1 [19]), the non-reduced connectivity method (Alg. 2 [19]),
and the reduced connectivity construction (Alg. 2).

Comp. of
JS points

Non-reduced
connectivity

Reduced
connectivity

Analytic (80x80) 10.69 0.59 1.33
Analytic + noise 17.56 2.99 8.27
Kármán Vortex 69.92 2.34 2.51
Hurricane Isabel 473.01 75.08 162.95
Droplet impact 1,829.21 16.34 42.99

http://www.vets.ucar.edu/vg/isabeldata/


Figure 8: Comparison of the original connectivity construction (top row) and our reduced connectivity (bottom row) for the following different
resolutions: 60×60, 80×80, and 160×160. The dataset, zoomed-in areas, and the color-coding are the same as in Figure 1.

Figure 9: Comparison of the original connectivity construction (left) and our reduced connectivity (right) for the analytic dataset with induced
uncertainty and the resolution 80×80. The uncertainty is modeled with a salt-and-paper noise and a gaussian noise leading to a distortion of
the Jacobi set. In the middle, zoomed-in areas are shown that belong to the white-marked areas in the respective outer visualizations.

5.1 Analytic Dataset
The first dataset is artificial and consists of two scalar fields f and g
that are characterized by bivariate normal distributions on the unit
square. For a more detailed description and visualization of the
scalar fields (as well as the resulting analytic Jacobi set J( f ,g)),
we refer to Klötzl et al. [19], who introduced this dataset. In the
first part of this subsection, we consider the dataset for different
resolutions. Afterward, uncertainty is induced into the dataset to
make the extraction and visualization of Jacobi sets more difficult.

Different resolutions The dataset is shown for the resolution
40× 40 in Figure 1 and for the resolutions 60× 60, 80× 80, and
160×160 in Figure 8. In Figure 1, the entire domain is visualized as
well as two zoomed-in areas. The same zoomed-in areas are shown
in Figure 8 with a higher resolution.

In all comparisons, we observe that our reduced connectivity
successfully reduces the number of edges. Thus, a less cluttered
representation is achieved that shows the connections in a clearer
way. This fact can be particularly observed in the bottom right zoom
areas in Figure 8, where many topological structures are identified.

The other zoomed-in area in the middle of the unit square demon-
strates that our connectivity method removes many redundant edges,
i.e., edges that do not lie in the white area (zero level set of the

gradient alignment field). These redundant edges arise from the
1-skeleton of the higher-dimensional simplices, which are collapsed
by our method. In Figure 1, this fact can be observed in the top right
part of the first zoomed-in area, where the simplex collapses to an
hourglass structure. The triangle in the lower left part, though, is
clearly a discretization artifact and the method does not simplify this,
since the edges do not build a higher-dimensional simplex. Instead,
it maintains the geometrical Jacobi set points and connectivity of the
1-complexes as intended.

Table 1 confirms the observations as the number of edges are
reduced significantly for the different resolutions. Approximately
25% of the edges (line segments) are removed in all scenarios due to
our connectivity method. The computation time for this is presented
in Table 2. It can be observed that Algorithm 2 does only produce
little overhead compared to the LB method.

Induced uncertainty To modify the analytic dataset with a
resolution of 80×80, we apply a salt-and-paper noise and a weak
Gaussian noise to the two scalar fields f and g, leading to a distortion
of the Jacobi set J( f ,g). In Figure 9, the conventional connectivity
and our reduced connectivity are shown for the entire domain and
the same zoomed-in areas as in Figure 1 (or Fig 8).

In contrast to the non-modified dataset, we observe that more



Figure 10: Line integral convolution visualization of the droplet
impact dataset at initial condition, shortly after impact, and during
crown formation. In general, the color encodes the velocity magni-
tude of the fluid. For gas, the colormap is gray-scaled, whereas, for
liquid, a blue-to-red colormap (low to high velocity) is used.

topological patterns are identified due to distortion, which makes
the conventional representation even more cluttered. Our reduced
connectivity still facilitates the representation in a meaningful way
and, in particular, has a clearer topological and geometrical identifi-
cation. These aspects can be observed in the top zoomed-in areas,
where, e.g., loops are visualized in a lucid way.

Analogously to the non-modified dataset, our reduced connectiv-
ity method does not produce much overhead (see Table 2), although
many more edges are identified. In fact, Table 1 states that the
LB method identifies 6,376 edges and the reduced connectivity
configuration only produces 4,807 edges. This is a reduction of
approximately 25%.

5.2 Droplet dataset

Droplet impact onto thin wall films is a fundamental process in
a lot of modern technological applications and natural processes.
Over the past years, a lot of experimental and numerical research
has been done in this area. In this context, the classification of the
impact outcome, e.g., splashing with the generation of secondary
droplets or deposition, was investigated. Furthermore, the crown
shape and temporal evolution are of great interest [26]. Besides
experimental [15] and numerical investigations, an analytical model
for the evolution of the base radius of the crown was proposed [20].

The utilized Direct Numerical Simulation of a droplet impact
onto a thin wall film2 was performed with the program package
Free Surface 3D [12]. The code solves the incompressible Navier-
Stokes equations in a one-field formulation with a Volume of Fluid
approach. It takes all relevant forces into account, being inertia of
the liquid and the ambient gas, the surface tension of the interface,
as well as friction losses, and gravity.

Exploiting the symmetry of the phenomenon, the 3D simulation
has been reduced to a quarter of the droplet. The investigated dataset
is a slice through the symmetry plane according to Figure 10. For
each of the 85 time steps, the dataset consists of velocity vectors and
a phase indicator function, which distinguishes between liquid and
gas. The resolution is 1024×1024. Three snapshots are illustrated
in Figure 10 showing the initial condition, a time step shortly after
droplet impact, and the formation of the crown. For the computation
of the Jacobi set, the time step 83 (equal to the last snapshot in
Figure 10) is used. To be more precise, the x and y components
(horizontally and vertically) of the velocity field are used as scalar
fields f and g as input for the computation of J( f ,g).

Similar to the previous dataset, the number of resulting edges of
the reduced connectivity construction is approximately 25% lower,
as presented in Table 1. Since the droplet dataset is around four times
larger than the Hurricane Isabel dataset, the computation of Jacobi
set points is more expensive, whereas the non-reduced and reduced

2The simulation results of a droplet impact onto a liquid film are publicly
available in [27].

connectivity methods require less time (due to the lower number
of critical edges), as shown in Table 2. The qualitative results are
shown in Figure 11 (only the lower section of the dataset is used).

Since the visualizations in the top row in Figure 11 do not provide
detailed insights into the dataset, three characteristic sections for the
droplet impact onto thin wall films are used for the investigation and
comparison of the Jacobi set representations.

In the first zoomed-in area a large air bubble and two tiny air
bubbles can be observed in the dataset, which are represented by
the green line highlighting the interface between liquid and gas.
Whereas the large bubble is in the center line of impact and is exam-
ined in many experimental studies, the tiny bubbles are numerical
relicts that are not observed in experiments. The Jacobi set identifies
topological structures around the bubbles. These structures appear
due to the topological change of velocity. In fact, the larger bubble
comes along with much larger topological areas. As noted before,
our method generally unclutters parts of the representation. This
aspect is clearly visible in the tiny bubble on the right, where the
reduced connectivity has a clearer Jacobi representation.

The second zoomed-in area shows a part of the highly curved
crown. In this region, the liquid has a high velocity. The small
structures lying inbetween the green interfaces are represented and
separated more distinctly with our method. In particular, we observe
in the top right part a clearer circular topological structure.

Finally, in the third zoomed-in area the thicker rim bounding
the thin crown is shown. In this area, the surface tension forces of
the interface and the inertial forces of the liquid play an important
role. Here, we observe the same general characteristics of our
new reduced connectivity construction: Filled areas get thinned out
(top left), 1-manifold geometrical structures get preserved (bottom
middle), and small-scale textures are more clearly represented (at the
rim bounding the crown). In sum, our method enables the reliable
and fast identification of topological structures within the droplet
impact for further analysis of the phenomena.

6 CONCLUSION AND FUTURE WORK

This paper introduced a new connectivity method for the local bi-
linear computation of Jacobi sets [19]. The method combines the
advantages of different topological collapses to avoid the problem of
visualizing higher-dimensional simplices. The resulting reduced con-
nectivity leads to a representation that is less cluttered while topology
and geometry are still preserved. In addition, important properties
such as the Even Degree Lemma still hold and the provided de-
terministic algorithm comes with only little overhead. Hence, our
proposed reduced connectivity enhances the visualization and analy-
sis of scalar fields via bilinearly computed Jacobi sets.

In the future, we want to use our method for the study of dif-
ferent phenomena including, for instance, fluid dynamics. In this
regard, we want to focus not only on the topological structure but
also on the geometrical configuration, which our method indeed
accounts for. Another research direction could be to visualize the
higher-dimensional simplices in a completely different way, e.g., to
use a color highlighting for the dimensionality such that different
connectivity patterns could be emphasized.
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Figure 11: Comparison of the original connectivity construction (left column) and our reduced connectivity (right column) for the LB computed
Jacobi set of the droplet dataset. The color coding (blue-to-red) shows the gradient alignment field of two consecutive time steps. The black
solid lines correspond to the extracted Jacobi set and the green solid line indicates the interface between liquid and gas.
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