
TopoBERT: Exploring the Topology of
Fine-Tuned Word Representations

Journal Title
XX(X):1–23
c©The Author(s) 2022

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Archit Rathore1,2, Yichu Zhou1, Vivek Srikumar1,3, Bei Wang1,2

Abstract
Transformer-based language models such as BERT and its variants have found widespread use in natural language
processing (NLP). A common way of using these models is to fine-tune them to improve their performance on a
specific task. However, it is currently unclear how the fine-tuning process affects the underlying structure of the word
embeddings from these models. We present TopoBERT, a visual analytics system for interactively exploring the fine-
tuning process of various transformer-based models — across multiple fine-tuning batch updates, subsequent layers of
the model, and different NLP tasks — from a topological perspective. The system uses the mapper algorithm from
topological data analysis (TDA) to generate a graph that approximates the shape of a model’s embedding space
for an input dataset. TopoBERT enables its users (e.g., experts in NLP and linguistics) to (1) interactively explore
the fine-tuning process across different model-task pairs, (2) visualize the shape of embedding spaces at multiple
scales and layers, and (3) connect linguistic and contextual information about the input dataset with the topology of the
embedding space. Using TopoBERT, we provide various use cases to exemplify its applications in exploring fine-tuned
word embeddings. We further demonstrate the utility of TopoBERT, which enables users to generate insights about the
fine-tuning process and provides support for empirical validation of these insights.

Keywords
Visualization, Topological Data Analysis, Transformers, Language Models, BERT, Word Representations

1 Introduction

Recent advances in deep learning have improved the state-
of-the-art across various natural language processing (NLP)
tasks. In particular, contextualized word embeddings such
as BERT1 and RoBERTa2 have revolutionized NLP by
providing general-purpose learned embeddings. A common
theme across these models is that word embeddings are
computed using several transformer layers3, where the
neuron activations (i.e., outputs of neurons) at a particular
layer (typically the last one) are treated as the vector
representations of the words. For simplicity, we use
“embeddings” to refer to these high-dimensional vector
representations produced by a particular layer of a model-
task pair, and “embedding space” to refer to the space of
these embeddings.

The attention mechanism of transformers3 is widely con-
sidered to be the main reason behind their impressive per-
formance, but how the embeddings generated by these mod-
els encode various types of linguistic information remains
mostly unknown. The large size of these transformer-based
models prohibits direct analysis of the model architecture,
and computational limitations prohibit combinatorial meth-
ods such as feature ablation studies. Hence, there is a need for
methods that can probe the embeddings produced by these
models to understand the reasons behind the effectiveness of
these models.

There are two ways to use a pretrained transformer-
based model: as a feature extractor where the parameters of
trained model are frozen, or by fine-tuning the parameters
of a pretrained model for a downstream task. It has been

observed that fine-tuning generally improves task-specific
performance compared to the pretrained model4. However,
the effect of fine-tuning on the embedding space is relatively
less understood. Previous works5–9 have studied embeddings
from fine-tuned models through classifier-based probes
and geometric analysis of the embedding space10. These
methods, however, do not capture details of how the fine-
tuned word embeddings are organized at intermediate and
final layers.
Contributions. In this paper, we present TopoBERT, a
visual analytics system to explore the topological structure
of word embeddings during the fine-tuning process of a
transformer-based model. It combines tools from topological
data analysis (TDA) and visualization to enable interactive
exploration of the embedding spaces obtained from models
that are fine-tuned on a set of NLP tasks. In particular,
TopoBERT leverages the mapper graph from Singh et al.11

to summarize the topological structure of the embeddings.
Each node of the mapper graph represents a cluster of
embeddings, and two nodes are connected by an edge if their
corresponding clusters have a nonempty intersection. Built
upon the mapper graph, TopoBERT provides visualization
and analysis capabilities for generating insights into the
organization and evolution of embeddings, and validating
them using subsequent experiments. Its targeted users are
experts in NLP and linguistics. In summary:

1 School of Computing, University of Utah. 2 Scientific Computing and
Imaging Institute, University of Utah. 3 Allen Institute for AI
Email: beiwang@sci.utah.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

1. We introduce TopoBERT, a visual tool to explore
word embeddings during the fine-tuning process
for transformer-based models using topological tech-
niques. To the best of our knowledge, this is the first
tool of its kind.

2. For a model-task pair, the tool provides an accessible,
no-code pipeline to perform visual analytics on
embeddings across multiple layers. TopoBERT can
be easily extended to explore any embeddings across
layers and tasks beyond fine-tuning (e.g., during the
training process).

3. TopoBERT comes equipped with a number of unique
features to explore the embedding space. It considers
a cluster of embeddings associated with a node in
the mapper graph as a topological neighborhood.
It introduces the notion of purity for such a
neighborhood using entropy to capture the mixing
behavior of labels in the embedding space. It provides
a method to study how embeddings of the validation
examples are positioned with respect to the embedding
space of training examples using node attachment.

4. We present various use cases demonstrating how
TopoBERT can be used to explore embeddings from
transformer-based models.

5. We demonstrate the utility of TopoBERT for
generating and validating insights into the local and
global structures of the embeddings and how the fine-
tuning process affects the embedding spaces.

We have also released an open-source implementation of our
tool on GitHub (https://github.com/tdavislab/
TopoBERT).
Overview. We review related work in Sect. 2. We give a
brief introduction to the topological tool — the mapper graph
— in Sect. 3. We then describe the current configuration of
the NLP components within TopoBERT regarding datasets,
embeddings, and models in Sect. 4. We introduce the design
requirements of TopoBERT in Sect. 5 and outline the user
interface and architecture of TopoBERT in Sect. 6. We
present various use cases in Sect. 7. We illustrate the utility
of TopoBERT in generating and validating insights regarding
embeddings in Sect. 8. We present post-deployment expert
evaluation in Sect. 9. Finally, we conclude with future
directions in Sect. 10.

2 Related Work
Interpretability has become increasingly important in
understanding how ML models give predictions. We review
a number of recent works that analyze the internal
representations of these models from TDA, ML, data
visualization, and NLP communities. However, there are no
existing tools that probe the embedding space using topology
and visualization, in particular, to understand the fine-tuning
process of transformer-type models.

2.1 TDA for ML and NLP
Tools from TDA have been integrated with ML and NLP
in recent years. Hofer et al.12 proposed a method to
convert topological signatures into vector features usable for
deep learning. Rathore et al.13 proposed a visual analytics

system using the mapper algorithm from TDA to visualize
the embedding space from image classifiers and (to a
lesser extend) pre-trained BERT models. Gabrielsson et
al.14 demonstrated the existence of certain layer-specific
topological structures in convolutional neural network.
Clough et al.15, Hu et al.16, and Chen et al.17 proposed
various topological loss functions for image segmentation
tasks. Topology has also been used to propose criteria for
a neural network’s generalization properties18–21. TDA has
been used in NLP for movie genre detection22, textual
entailment23, document summarization24, and analysis of
sentence embeddings25. The topology of the attention layers
has been leveraged for text classification26,27, acceptability
judgements28, and robustness against adversarial attacks29.

2.2 Visualization for ML Interpretability
Various visual analytics systems have been proposed for
interpreting ML models30–38. Studies from Chen et al.39,
Yang et al.40, Krause et al.41, and May et al.42 focused on
understanding the distribution of the input data and feature
selection. Other methods have visualized the intermediate
representations from the hidden layers43–47.

Systems such as ModelTracker48, Squares49, and Man-
ifold50 enable interactive visualization for debugging
ML models, performing error examination, and under-
standing instance-level performance. HypoML51 performs
hypothesis-based evaluation of an ML model using visual
analytics. iNNvestigate-GUI52 provides a toolbox of feature
visualization techniques for input visualization and model
output explanation. See53–55 for comprehensive surveys of
visual analytics for machine learning.

2.3 Visualization for NLP
We also review work on visual analytics for interpreting
deep NLP models; see56 for a comprehensive survey of
various visualization works for deep learning. Liu et al.57

proposed new techniques for visualizing high-dimensional
word embeddings beyond dimensionality reduction with
a focus on capturing syntactic and semantic analogies.
The explAIner system58 is a visual analytics framework
for understanding ML models by applying concepts from
explainable AI (XAI) research such as LIME30 and
ANCHORS59. Liu et al.60 proposed NLIZE, a visual
analytics system that enables perturbation-driven exploration
for inputs, intermediate embeddings, and outputs. The
Melody system by Chan et al.61 constructs a global overview
of model and data behavior from local explanations by
using information theory. Tools such as RNNVis62 and
LSTMVis63 use correlation analysis to cluster hidden-state
neuron activations for various tasks. Berger64 proposed
a system for analyzing contextualized embeddings from
transformers and a related family of models by using
pairwise co-occurence information of words and spans.
Xiaonan et al.65 proposed a system for exploring neural
embeddings of documents and identifying salient features
for task-specific applications. The BertViz system by Vig
et al.66 visualizes self-attention in transformer-based models
to increase interpretability. In general, word embeddings
from NLP models are high-dimensional vectors, so generic

Prepared using sagej.cls

https://github.com/tdavislab/TopoBERT
https://github.com/tdavislab/TopoBERT


Rathore et al. 3

high-dimensional visualization techniques such as PCA67, t-
SNE68, and UMAP69 are applicable (see Liu et al.70 for a
survey on visualizing high-dimensional data).

2.4 Probing Embeddings in NLP
Transformer-based models are widely used in contemporary
NLP71 applications, and various studies have focused on
probing the contextualized word embeddings they construct.
The most commonly used methodology involves training
a classifier to predict linguistic properties5–9 based on the
embeddings. Different properties such as complexity72 and
minimum description length73 of the learned classifiers
have been used to evaluate the embeddings. In addition to
classifier-based probing, various studies have analyzed the
internal structure of embeddings and provided insights about
the geometry of the embedding space74–76. For example,
Hewitt and Manning77 showed that syntactic dependency
relationships can be recovered from the BERT embeddings
by a simple linear transformation, and Ethayarajh78 showed
that the vectors in the embeddings occupy a narrow cone in
the embedding space. Fine-tuning a model for a specific task
is a common practice, but there are limited insights10,79–82

into the process of fine-tuning. Specifically, few studies have
attempted to understand how fine-tuning affects the model
parameters and internal embeddings.

In this paper, we investigate contextualized word
embeddings from a topological perspective, in contrast to a
geometric perspective employed in previous works74–76. We
discover new insights about the organization and evolution of
embeddings using TopoBERT. As far as we are aware, this is
one of the first works (besides13) to analyze the topological
structure of word embeddings, and use it to examine how
they encode linguistic information.

3 Topology Background
In this section, we review the technical background on
mapper graphs, a widely used tool from TDA. We also
describe quantitative measures associated with the mapper
graph that are used in the experiments of Sect. 8.

3.1 Mapper Graph on Point Cloud Data
Given a high-dimensional point cloud X ⊂ Rd equipped
with a continuous function f : X→ R, the mapper graph11

provides a topological summary of the data. It is, in a
nutshell, a clustering of points in X induced by the function
f . There are two concepts essential to the understanding of a
mapper graph, namely, a cover and its nerve. We illustrate
the construction of a mapper graph from a 2-dimensional
point cloud X sampled from a toy dataset of “circle with
three hairs”. As shown in Fig. 1(a), X is equipped with a
height function f , where red colored points are lower and
blue colored points are higher along the height function.

An open cover of X is a collection U = {Ui} of open sets
such that X ⊂

⋃
i Ui. Given an open cover U of X, the 1-

dimensional nerve83 of U , denoted as N1(U), is constructed
as a graph: each cover element Ui is represented as a node
i, and there is an edge between node i and node j if Ui

and Uj have nonempty intersection. Intuitively, as illustrated
in Fig. 1(a), imagine covering a set of points X with partially

overlapping postage stamps (e.g., rectangles) such that no
point in X is visible. To construct the nerve, each stamp is
a cover element abstracted as a node, and there is an edge
between nodes if their intersection contains points in X; this
is shown in Fig. 1(b). For example, cover elements U1 and
U4 have a nonempty intersection in Fig. 1(a), hence there is
an edge between node 1 and node 4 in the nerve.

f
<latexit sha1_base64="55hgc/kLnASydH8ZiyRNyy3fqyY=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhjlI4EL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94jThfkRHSoSCUbTSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+16zXNr3n290rjJ4yjCGZzDJXhwBQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD4H4jUQ=</latexit><latexit sha1_base64="55hgc/kLnASydH8ZiyRNyy3fqyY=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhjlI4EL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94jThfkRHSoSCUbTSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+16zXNr3n290rjJ4yjCGZzDJXhwBQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD4H4jUQ=</latexit><latexit sha1_base64="55hgc/kLnASydH8ZiyRNyy3fqyY=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhjlI4EL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94jThfkRHSoSCUbTSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+16zXNr3n290rjJ4yjCGZzDJXhwBQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD4H4jUQ=</latexit><latexit sha1_base64="55hgc/kLnASydH8ZiyRNyy3fqyY=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhjlI4EL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94jThfkRHSoSCUbTSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+16zXNr3n290rjJ4yjCGZzDJXhwBQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD4H4jUQ=</latexit>

f
<latexit sha1_base64="55hgc/kLnASydH8ZiyRNyy3fqyY=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhjlI4EL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94jThfkRHSoSCUbTSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+16zXNr3n290rjJ4yjCGZzDJXhwBQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD4H4jUQ=</latexit><latexit sha1_base64="55hgc/kLnASydH8ZiyRNyy3fqyY=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhjlI4EL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94jThfkRHSoSCUbTSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+16zXNr3n290rjJ4yjCGZzDJXhwBQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD4H4jUQ=</latexit><latexit sha1_base64="55hgc/kLnASydH8ZiyRNyy3fqyY=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhjlI4EL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94jThfkRHSoSCUbTSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+16zXNr3n290rjJ4yjCGZzDJXhwBQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD4H4jUQ=</latexit><latexit sha1_base64="55hgc/kLnASydH8ZiyRNyy3fqyY=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhjlI4EL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94jThfkRHSoSCUbTSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+16zXNr3n290rjJ4yjCGZzDJXhwBQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD4H4jUQ=</latexit>

a b c

X<latexit sha1_base64="zl/G43d9kLFU+gVQUE7f3TJn1e8=">AAAB83icbVDLSsNAFL3xWeur6tLNYCu4Kkk3uiy6cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7G5tb2zW9or7x8cHh1XTk47Jk41420Wy1j3Qmq4FIq3UaDkvURzGoWSd8PpXe53n7g2IlaPOEt4ENGxEiPBKFrJr/kRxUkYZr15bVCpunV3AbJOvIJUoUBrUPnyhzFLI66QSWpM33MTDDKqUTDJ52U/NTyhbErHvG+pohE3QbbIPCeXVhmSUaztU0gW6u+NjEbGzKLQTuYRzaqXi/95/RRHN0EmVJIiV2x5aJRKgjHJCyBDoTlDObOEMi1sVsImVFOGtqayLcFb/fI66TTqnlv3HhrV5m1RRwnO4QKuwINraMI9tKANDBJ4hld4c1LnxXl3PpajG06xcwZ/4Hz+AIKgkVI=</latexit><latexit sha1_base64="zl/G43d9kLFU+gVQUE7f3TJn1e8=">AAAB83icbVDLSsNAFL3xWeur6tLNYCu4Kkk3uiy6cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7G5tb2zW9or7x8cHh1XTk47Jk41420Wy1j3Qmq4FIq3UaDkvURzGoWSd8PpXe53n7g2IlaPOEt4ENGxEiPBKFrJr/kRxUkYZr15bVCpunV3AbJOvIJUoUBrUPnyhzFLI66QSWpM33MTDDKqUTDJ52U/NTyhbErHvG+pohE3QbbIPCeXVhmSUaztU0gW6u+NjEbGzKLQTuYRzaqXi/95/RRHN0EmVJIiV2x5aJRKgjHJCyBDoTlDObOEMi1sVsImVFOGtqayLcFb/fI66TTqnlv3HhrV5m1RRwnO4QKuwINraMI9tKANDBJ4hld4c1LnxXl3PpajG06xcwZ/4Hz+AIKgkVI=</latexit><latexit sha1_base64="zl/G43d9kLFU+gVQUE7f3TJn1e8=">AAAB83icbVDLSsNAFL3xWeur6tLNYCu4Kkk3uiy6cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7G5tb2zW9or7x8cHh1XTk47Jk41420Wy1j3Qmq4FIq3UaDkvURzGoWSd8PpXe53n7g2IlaPOEt4ENGxEiPBKFrJr/kRxUkYZr15bVCpunV3AbJOvIJUoUBrUPnyhzFLI66QSWpM33MTDDKqUTDJ52U/NTyhbErHvG+pohE3QbbIPCeXVhmSUaztU0gW6u+NjEbGzKLQTuYRzaqXi/95/RRHN0EmVJIiV2x5aJRKgjHJCyBDoTlDObOEMi1sVsImVFOGtqayLcFb/fI66TTqnlv3HhrV5m1RRwnO4QKuwINraMI9tKANDBJ4hld4c1LnxXl3PpajG06xcwZ/4Hz+AIKgkVI=</latexit><latexit sha1_base64="zl/G43d9kLFU+gVQUE7f3TJn1e8=">AAAB83icbVDLSsNAFL3xWeur6tLNYCu4Kkk3uiy6cVnBPqAJZTKdtkMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEykMuu63s7G5tb2zW9or7x8cHh1XTk47Jk41420Wy1j3Qmq4FIq3UaDkvURzGoWSd8PpXe53n7g2IlaPOEt4ENGxEiPBKFrJr/kRxUkYZr15bVCpunV3AbJOvIJUoUBrUPnyhzFLI66QSWpM33MTDDKqUTDJ52U/NTyhbErHvG+pohE3QbbIPCeXVhmSUaztU0gW6u+NjEbGzKLQTuYRzaqXi/95/RRHN0EmVJIiV2x5aJRKgjHJCyBDoTlDObOEMi1sVsImVFOGtqayLcFb/fI66TTqnlv3HhrV5m1RRwnO4QKuwINraMI9tKANDBJ4hld4c1LnxXl3PpajG06xcwZ/4Hz+AIKgkVI=</latexit>

Figure 1. A simple example of computing a mapper graph. A
point cloud X in (a) is colored by the height (e.g., y-coordinate)
function f : X → R. The cover U = {U1, . . . , U13} of X is
induced by a cover V = {V1, . . . , V7} of f(X) that contains 7
intervals with 1/3 overlap in (c). The 1-dimensional nerve of U
is the mapper graph in (b).

The next question is how to construct a reasonable cover
of X using information provided by the function f . The cover
shown in Fig. 1(a) is, in fact, constructed as follows. We start
with a finite cover V = {Vj} of the image f(X), such that
f(X) ⊆

⋃
j Vj . Since f is a scalar function, Vj is an open

interval in R. Fig. 1(c) illustrates the set V = {V1, . . . , V7}
covering f(X). We obtain the cover U of X by considering
the clusters induced by points in f−1(Vj) for each j, as
shown in Fig. 1(a). The 1-dimensional nerve of U , denoted as
M := N1(U), is referred to as the mapper graph of (X, f),
as shown in Fig. 1(b).

The function f is called the lens (or filter function),
through which we look at the data. Different lenses (such
as density and eccentricity) provide different insights11,84. In
this paper, we use the L2-norm of the embeddings as the
lens function across all our analysis. Such a lens function
has been shown to produce meaningful results in the analysis
of activation vectors from images13. Finding the best lens
function for a particular dataset beyond best practices84,85

remains an open problem.
Besides f , a number of parameters are associated with

a mapper graph. To define the cover V of f(X), the most
common strategy is to use uniformly sized overlapping
intervals. Two parameters define such a cover: the number
of intervals n and the amount of overlap p between
adjacent intervals. These parameters may be modified by
the user via the interface of TopoBERT. We choose a
default configuration by setting n = 50 and p = 0.5. These
parameters are currently hand-tuned; however, there are
studies detailing automatic parameter tuning methods86,87.
As we compute the clustering of the points lying within
f−1(Vi) and connect the clusters whenever they have
nonempty intersection, additional parameters are associated
with the clustering algorithm. A typical algorithm to use is

Prepared using sagej.cls



4 Journal Title XX(X)

density-based DBSCAN88, which requires two parameters:
minPts is the number of samples in a neighborhood for
a point to be considered as a core point, and ε is the
maximum distance between two samples for one to be
considered in the neighborhood of the other. TopoBERT uses
the elbow method suggested in88 and utilized in89 to estimate
ε automatically and allows the user to specify minPts through
its interface. We use a default value of minPts = 3.

3.2 Topological Neighborhood Purity
The mapper graph captures the topological structure of a
point cloud X with respect to a chosen lens function f
(e.g., L2-norm in our setting). It is by definition a graph,
where each node consists of a cluster of points in the
data, and there is an edge between two nodes if their
corresponding clusters have a nonempty intersection. We
thus define a cluster of points associated with a node in
the mapper graph a topological neighborhood. In other
words, each node in the mapper graph is a topological
neighborhood, and the edges between these nodes encode
the overlaps between these neighborhoods. A topological
neighborhood of X is induced by f and is not necessarily
the same as a Euclidean neighborhood: two points x and y
are in the same topological neighborhood if they are close to
each other in terms of a Euclidean metric, and their function
values f(x) and f(y) fall in the same interval (i.e., a cover
element) of f(X).

Suppose an input point cloud X is equipped with k class
labels, L = {li, . . . , lk}, and a labeling l : X→ L assigns
each point a label in L. Let X ⊂ X denote a topological
neighborhood consisting of m points {x1, . . . , xm}, which
corresponds to a node in the mapper graph. Let DX be the
observed distribution of labels {l(x1), . . . , l(xm)} for points
in X . Let D be a uniform distribution of labels among m
points. Let H denote the Shannon entropy of a distribution.
We define the purity p(X) of a topological neighborhood X
to be

p(X) := 1− H(DX)

H(D)
.

p(X) describes the mixing behavior of labels in X and also
referred to as the node purity to emphasize its association
with a node in the mapper graph. It reaches the highest value
of 1 when all points in X are from the same class, and the
lowest value of 0 when the points are uniformly distributed
over all classes. Note that this notion of purity is different
from those recently introduced by Purvine et al.90

3.3 Interpreting Mapper Graph of Word
Embeddings

We now describe how a mapper graph can be interpreted
in the context of TopoBERT. The mapper graph of a high-
dimensional point cloud X is a graphical representation of
its topological structure. It represents the shape of the data
with respect to the lens function by encoding topological
neighborhoods via nodes and their proximity via edges.

In the context of TopoBERT, a mapper graph is
constructed by taking the data (X, f) as input, where X is
a point cloud of high-dimensional word embeddings, and f :
X→ R is the L2-norm. In particular, X contains activations
of input tokens (i.e., words in a sentence) from a layer

of a BERT-type model during a batch-update of the fine-
tuning process (see Sect. 4.2 for details). The L2-norm of
a point in X captures the magnitude of the activation, that
is, how strongly the model is “activated” by the input token.
Therefore, embeddings are clustered into the same node of
a mapper graph if (a) they have similar activation magnitude
when passed through the model, and (b) they are close to
each other in the high-dimensional space under a Euclidean
metric.

The set of embeddings within a single node may have
different class labels. TopoBERT encodes the distribution of
class labels as a pie chart (see Fig. 3). This encoding allows
users to quickly inspect the node purities (see Sect. 3.2) in
different regions of the graph.

Exploring the mapper graph provides users a way to
reason about the embedding space from a topological
perspective. We highlight a number of use cases in Sect. 7.

3.4 Mapper Graph Node Attachment
For a given NLP task, we work with a point cloud comprised
of the embeddings of training, test, or validation examples
(i.e., words in their context). In TopoBERT, the mapper
graph is constructed from embeddings of the training
examples. However, it is often useful to understand how
embeddings of the validation examples are positioned with
respect to the embedding space of training examples. To that
end, we propose a simple heuristic to attach the embedding
of a validation example to nodes in the mapper graph
(constructed from training examples).

First, we compute the mapper graphM of the embeddings
X from the training examples. Next, for each embedding y of
a validation example, we compute its nearest neighbor x in
X. By construction, x belongs to at most two nodes inM. If
x belongs to a single nodeX inM, then we attach y toX . If
x belongs to two nodes X and X ′ inM, then we attach y to
the node with a closer centroid (w.l.o.g., assume y is attached
to X). To reduce visual clutter, we group all points y that are
attached to the same node X inM into a single super-node
and create an edge connecting the super-node with X in the
visualization; see Fig. 9 for an example.

3.5 Distance Between Mapper Graphs
TopoBERT allows users to explore the mapper graphs of
embedding spaces across multiple fine-tuning batch updates,
subsequent layers of the model, and different NLP tasks.
It is therefore useful to compare two mapper graphs to
quantify their differences. We particularly focus on mapper
graphs of embeddings that arise from the same set of
training examples, as they go through a neural network
whose weights are changing over the course of fine-tuning. In
other words, given an embedding space of training examples
before fine-tuning, we are interested in the evolution of its
mapper graph as the underlying embedding space changes
across batch updates.

By construction, a mapper graph M constructed from a
point cloud X could be modeled as a hypergraph H: each
point x ∈ X is a node in H, and each subset of points that
constitutes a node inM is a hyperedge inH. By representing
a mapper graph as a hypergraph, we employ a hypergraph

Prepared using sagej.cls



Rathore et al. 5

Table 1. A summary of pretraining method, dimension of
embeddings, and number of parameters for the models
available within TopoBERT. MLM stands for the Masked
Language Model objective 1 for pretraining transformer-based
models.

Rep Pretraining Dim #Param

BERT-base MLM 768 110.1M
RoBERTa-base MLM 768 125M
BERT-Tiny distillation 128 4.4M

distance based on co-optimal transport91 to compute the
distance between two mapper graphs.

4 Datasets, Embeddings, and Models
In this section, we describe the configuration of the various
NLP components used in TopoBERT. These are easily
generalizable to other datasets, embeddings, and models.

4.1 Datasets
We conduct our analysis on three NLP tasks, covering
syntactic and semantic aspects of languages. Here, we
provide a brief description of these tasks.

Preposition supersense disambiguation is the task of
predicting coarse semantic categories of prepositions called
supersenses. There are two sets of labels—Supersense
Role and Supersense Function—and correspondingly
two separate classification tasks. Following previous
work92, we make predictions for single prepositions
using the annotations from Streusle v4.2 corpus; we
obtain the Streusle dataset from https://github.com/
nert-nlp/streusle.

Dependency relation refers to the task of assigning a
dependency label to a pair of tokens in a sentence. These
labels describe the syntactic relation between the two
tokens. To generate the embeddings for this classification
task, we concatenate the embeddings of these tokens. The
concatenated embedding is used as the vector representation
of the token pair. We use the English portion of the parallel
universal dependency (PUD) treebank93, where the PUD
treebank is downloaded from https://github.com/
UniversalDependencies/UD_English-PUD.

4.2 Embeddings
In this work, we consider three representative embedding
models from the BERT family: BERT-base1, BERT-Tiny94

and RoBERTa-base2. Table 1 summarizes the method
used to train these models, the dimensionality of the
corresponding embeddings, and the number of parameters in
each of these models.

4.3 Fine-Tuning
We fine-tune the models from Sect. 4.2 on the datasets
described in Sect. 4.1. Following the methods used in
previous work10, we fine-tune BERT-base and RoBERTa-
base for 3 epochs and BERT-Tiny for 10 epochs. During
the fine-tuning process, we save the checkpoints of these
models at every fixed number of updates (5 updates for

BERT-base and RoBERTa-base, 15 updates for BERT-Tiny)
to track how these embeddings change. After fine-tuning,
we generate the embeddings in all layers of the model
using these checkpoints. All the models are fine-tuned using
HuggingFace library95 and using the AdamW96 optimizer
with a batch size of 32. A linear weight scheduler with 10%
warmup steps is used. We use a learning rate of 3× 10−4 for
all the models.

5 Design Requirements
In this section, we outline the design requirements that have
guided the development of TopoBERT. Our goal is to design
a tool for exploring embeddings from language models
that are fine-tuned for specific tasks from a topological
perspective.

TopoBERT has been designed to address the requirements
from (1) NLP experts involved in model understanding
and analysis, and (2) linguists working on taxonomy and
categorization that lead to task definitions. See Sect. 6.3
for some expert feedback during design and development,
and Sect. 9 for a post-deployment expert evaluation. Using
TopoBERT, we aim to help these users explore word
embeddings using qualitative visual exploration followed by
quantitative analysis.

R1. Summarizing the underlying structure of word
embeddings from a topological perspective.

The word embeddings from a transformer model are
vectors in a high-dimensional space, endowed with a rich
structure that reflects the model’s understanding of lexical,
syntactic, and semantic concepts.

Common approaches for summarizing word embeddings
are centered around clustering and dimensionality reduction
techniques. Clustering techniques (such as K-Means97 and
DBSCAN98) group similar data points in a cluster but do not
explicitly preserve the relationships between clusters, that
is, the intracluster information. Dimensionality reduction
techniques (such as PCA67, t-SNE68, and UMAP69)
transform data from a high-dimensional space into a low-
dimensional (oftentimes 2- or 3-dimensional) space so that
the low-dimensional representation retains certain properties
of the original data. However, they introduce distortions
and may not preserve local (or intercluster) information,
e.g., data points far away in the high-dimensional space are
projected near each other in the low-dimensional space.

In comparison to the above common approaches, the
mapper graph utilized in TopoBERT provides a graph-based
representation that aims to preserve the topological structure
in high dimension. Locally similar points are grouped into
nodes (clusters), thus preserving intercluster information,
whereas intracluster relationships are encoded explicitly as
edges between the nodes (clusters). In particular, the mapper
graph of an embedding space captures the local structure
that encodes fine-grained complexities in the language, as
well as the global structure that reflects coarse-grained
concepts. As demonstrated in Sect. 7, such a graph-based
representation summarizes the topological structure of high-
dimensional embeddings, and enables novel explorations of
the embedding space.

Prepared using sagej.cls

https://github.com/nert-nlp/streusle
https://github.com/nert-nlp/streusle
https://github.com/UniversalDependencies/UD_English-PUD
https://github.com/UniversalDependencies/UD_English-PUD


6 Journal Title XX(X)

R2. Supporting interactive exploration with structural
summaries across model-task combinations.

Word embeddings are associated with multifaceted
metadata, have complex structures, and may arise from
various data sources. To understand these embeddings, a
visual analytics system should not only support interactions
with their global summary structures (“overview first”99),
but also allow drilling down into the associated metadata
(“details on demand”99), e.g., the sentences associated with
or class labels attached to certain words (tokens). The
system should also enable users to focus on a subset of the
embeddings, via selection, search, and highlighting (“zoom
and filter”99). For generalizability, the system should be
adaptable to different models and tasks. Finally, users should
be able to change parameters of the algorithms used to obtain
the summary structures.

R3. Enabling the generation and validation of insights for
word embeddings during the fine-tuning process.

An important aspect of interactive exploration is to enable
users to generate insights into word embeddings from two
perspectives. First, how does a model’s representation of
the data give rise to interesting structures in the embedding
space? Second, how do the structures captured with a model
relate to the linguistic aspects of the data? Generating
insights into both the data and the model is important, since
NLP experts are interested in the model’s representation,
whereas linguists aim to identify and design annotation
schemes for various language tasks. Additionally, the system
should provide a way for the users to validate these insights
easily through follow-up analysis and experiments.

6 Implementation and User Interface

6.1 Architecture and Implementation
TopoBERT is built using a server-client architecture, as
illustrated in Fig. 2. The web-based frontend is implemented
using Vue.js and D3.js. The backend is developed using
Python and Flask and consists of the computation engine,
web server, and the embedding data store. Mapper graphs are
precomputed using a particular set of parameters and then
cached in the browser during interactive exploration. Any
change to parameters that are not already cached triggers a
computation on the backend. A parallelized version of the
mapper algorithm from Zhou et al.89 is used to compute the
mapper graphs efficiently on the fly.

Backend

E
m

b
ed

d
in

g
 D

at
a 

S
to

re 🗎
🗎
🗎

Computation Engine

REST API

Frontend

Vue Interface D3 visualization

Figure 2. System architecture for TopoBERT.

6.2 User Interface
As illustrated in Fig. 3, the interface of TopoBERT
consists of two primary components: the mapper graph

panel (a) and the control panel (b). The mapper graph
panel (a) shows a graph-based topological summary of the
embeddings from a transformer-based model fine-tuned on
a linguistic task. The mapper graph is visualized by a
force-directed layout. It supports panning, zooming, and
selection of a subset of the nodes. Each node in the mapper
graph represents a topological neighborhood in the high-
dimensional embedding space. It contains a number of input
data points (e.g., embeddings of training examples), and is
visualized by a pie chart that denotes the distribution of
class labels among its data points, which allows for a quick
inspection of the neighborhood class composition and node
purities. The panel also contains a class composition view (c)
that displays the distribution of class labels in the selected
nodes.

The control panel (b) supports the inspection of metadata
and the selection of parameters for the mapper algorithm. To
address the design requirement R2, it allows users to select
from the model-task pair in Sect. 4.1 via the data source
parameters. The control panel also provides functionalities
to display metadata (e.g., sentences that contain certain
tokens/words) and lens function distribution associated with
the selected nodes via the selected nodes panel. In addition
to browser-cached mapper graphs, it allows users to tweak
the parameters for computing the mapper graphs on the fly
via the mapper parameters panel. The panel further provides
capabilities for searching and highlighting nodes in the graph
by class labels or specific words via the search and highlight
panel. Finally, it shows the PCA projection of embeddings
for comparative purposes via the dataset PCA projection.

6.3 Expert Feedback During Design and
Development

During the design and development of TopoBERT, experts
in NLP and computational linguistics have been part of
the collaborative effort. Two NLP experts (both coauthors)
have been involved in the entirety of the collaboration. In
particular, their inputs have helped to draft and refine the
design requirements (Sect. 5) as well as the initial user
interface (Sect. 6).

We also conducted a 60-minute demo session to collect
feedback from two independent experts in computational
linguistics. We include a number of key comments from the
session below (denoted by Cs).

C1: A better tutorial is needed for introducing the mapper
graphs to domain experts who are unfamiliar with topology.

To address C1, we are creating a tutorial on mapper graphs
for experts in NLP and linguistics who wish to employ
topological analysis driven by TopoBERT, but might not be
familiar with topology.

C2: When exploring the mapper graphs, TopoBERT should
enable users to dive deeper into the metadata associated with
the embeddings. In particular:

C2a. When selecting a node in the mapper graph, a user
should be able to observe the class label associated
with each embedding and differentiate among different
labels.

C2b. A distribution of lens (filter function) values is needed
to gauge the variation among embeddings.

Prepared using sagej.cls



Rathore et al. 7

ba

a b

a
c b

Figure 3. The visual interface of TopoBERT. The mapper graph panel (a) provides a graph-based topological summary of the
embeddings. The control panel (b) supports the inspection of metadata and the selection of parameters for the mapper algorithm.
The class composition view (c) displays the distribution of class labels in the selected nodes of a mapper graph. Each node in the
mapper graph represents a topological neighborhood of embeddings. It is visualized by a pie chart that encodes its class
composition. Edges between nodes encode overlaps between two nearby topological neighborhoods.

C2c. An enlarged pie chart would be useful to dive deeper
into the composition of topological neighborhoods.

Based on C2, we added or enhanced several features of the
visual interface shown in Fig. 3, described next.
Enhancement to the metadata view. We enhanced the
metadata view, whose features are visible in Fig. 3(b) under
Sentence Data. In addition to showing the plain sentence
information in the initial prototype, we provide high-level
labels from the metadata table, highlight target tokens in the
context of sentences, and enrich the color encoding of class
labels for easier differentiation.
Enhancement to the control panel. We added visualization
that highlights the distribution of lens function (Lens
Distribution). The Search and Highlight feature were also
improved based on the feedback.
Addition of the composition view. We added the
composition view to display the distribution of class labels
in the selected nodes of a mapper graph, which helps experts
better investigate topological neighborhoods locally.

7 Use Cases for Linguistic Phenomena
We now present various use cases for exploring contex-
tualized word embeddings using TopoBERT, considering
experts in NLP and linguistics as users.

7.1 Global Structures of Embeddings
Understanding the global structures of embeddings at the
intermediate and final layers and their evolution during fine-
tuning is a key step to understanding models and improving
them. We present two use cases for how TopoBERT can be
used to better understand these structures and suggest actions

for model improvement. TopoBERT is generalizable to study
the organization and evolution of embeddings at intermediate
layers during training or transfer learning.

Structural differences for the same task across different
models. First, a user may employ TopoBERT to explore
structural differences among embeddings generated for the
same task across different models. We focus on embeddings
at the final layer (i.e., layer 12) from BERT-base, RoBERTa-
base, and BERT-Tiny, all of which are fine-tuned on the
Supersense-Role task.

We visualize the mapper graphs constructed from
embeddings of training examples in Fig. 4. The mapper
graphs for BERT-base and RoBERTa-base are similar, and
both of which contain isolated chains of nodes with high
purity. Such a similarity indicates that these two models map
different classes to different regions in the embedding space,
which implies good predictive performance of the model. In
contrast, the mapper graph for BERT-Tiny contains several
large chains of impure nodes in the center. These impure
chains indicate that BERT-Tiny may perform worse on inputs
from the classes in these impure chains. Whereas the poor
predictive performance of BERT-Tiny is expected because
it has far fewer parameters (see Table 1), TopoBERT goes
beyond just a single number to estimate performance, and
gives us both a mechanistic explanation for the observed
accuracy, and also an identification of specific labels and
examples that are confused by the model.

These observations provide natural actionable items for
improving model performance, namely: (1) increasing model
capacity by introducing more layers, (2) fine-tuning for
a larger number of batch updates, (3) fine-tuning by
emphasizing classes found in the impure chains, and (4)
adding new loss terms that incorporate this topological

Prepared using sagej.cls



8 Journal Title XX(X)

Figure 4. Topological structures of embeddings at the final layers of BERT-base (left), RoBERTa-base (middle), and BERT-Tiny
(right), fine-tuned on the Supersense-Role task.

information for training BERT-Tiny to encourage the class
separation we observe from the mapper graphs of BERT-base
and RoBERTa-base.

Structural differences across batch updates during fine-
tuning. During fine-tuning, it is a common practice to
monitor various statistics such as loss and accuracy for
training or validation examples. Using TopoBERT, a user
may explore structural changes across batch updates during
fine-tuning. As illustrated in Fig. 5, TopoBERT provides
additional qualitative measures for judging the progress of
the fine-tuning process based on the evolution of mapper
graphs across updates. In particular, we observe significant
improvement in node purity from update 5 to update 70, and
purity subsequently improves only slightly at update 175.
The notion of node purity can lead to additional insights
about the model. We will see in Sect. 8 that the average node
purity is correlated with model performance on the unseen
data.

In other words, the global structure of embeddings appears
to stabilize faster (at update 70) than when the model is
deemed to have converged (at update 175). We expect that by
integrating TopoBERT into monitoring dashboards such as
the TensorBoard100, model designers may derive additional
insights about the training and fine-tuning processes.

7.2 Local Behaviors of Embeddings
We now present a few use cases of how TopoBERT can
be used to understand the local behaviors of embeddings,
especially at intermediate layers.

Identifying subcategories of linguistic phenomena cap-
tured by a model. Transformer-based models encode con-
textual information in their word embeddings, as opposed to
static embeddings such as Word2Vec101. Using TopoBERT,
we can identify different types of linguistic phenomena
captured by these contextualized embeddings.

Consider the example in Fig. 6 using the RoBERTa-
base model fine-tuned on Supersense-Role. This example
shows a chain formed from training examples with the
same class label ‘Identity’. Examining the examples in
the nodes using TopoBERT, we observe variation of a
linguistic phenomenon (i.e., fronted clause) captured by the
embeddings. Specifically, TopoBERT shows that the mapper

graph identifies a chain along which the fronted (Fig. 6a) vs
nonfronted usage (Fig. 6b-c) of the word ‘as’ are separated.
This phenomenon is not encoded in the class labels for fine-
tuning, or explicitly defined in the original training examples
for the base model. Whereas the embeddings of training
examples with the same label are shown to be grouped
together in the mapper graph, TopoBERT allows a user to
hypothesize, investigate, and discover additional structure
among them that align with linguistic concepts such as sub-
categories that are not explicitly specified in the original task
definition.

In addition to identifying specific and frequent linguistic
phenomena in the data, this process can lead to better
linguistic insight about the class ontology itself, allowing
annotation designers to either refine or merge class labels. In
this fashion, TopoBERT can be useful, not only for exploring
the space of embeddings, but also for understanding the
linguistic phenomena at play in the underlying text.

Discovering model confusions in embedding spaces.
TopoBERT makes the structures in a high-dimensional
embedding space explicit using a mapper graph, which
is constructed by grouping embeddings into clusters and
preserving the pairwise relations among these clusters with
edges. This feature makes TopoBERT distinct from methods
such as dimensionality reduction because it enables a user
to dive into the local neighborhood of the embedding
space and analyze its class composition, as outlined in R1.
TopoBERT also makes the relationship between topological
neighborhoods explicit through the edges in the mapper
graph, allowing structures such as branches, loops, and
chains in the embedding space to be identified, which is
not possible with dimensionality reduction or clustering
techniques. These features can be especially useful for
discovering class labels that are frequently confused by the
model.

In Fig. 7, we illustrate one such exploration scenario,
where we focus on a chain of nodes with low purity. The
model appears to group embeddings from three semantically
unrelated classes (‘Cost’, ‘Possession’, and ‘Theme’). Using
TopoBERT, a user may further explore the input sentences
corresponding to these embeddings and conclude that the
model confusion arises due to all sentences discussing
monetary concepts.

Prepared using sagej.cls



Rathore et al. 9

Figure 5. Topological structures of embeddings from the final layer of BERT-base fine-tuned on Supersense-Role task, at updates
5 (left), 70 (middle), and 175 (right).

a

b

c

a b c

Figure 6. A chain corresponding to the ‘Identity’ class
distinguishes between the fronted (a) and nonfronted usage
(b-c) of the word ‘as’ for embeddings from RoBERTa-base
fine-tuned on Supersense-Role.

We see similar labels being confused in the Dependency
task, shown in Fig. 8. In the central region of the mapper
graph, embeddings from two classes (‘amod’ in fuchsia and
‘compound’ in blue) are first clustered together in node
(a) and then branched into their own regions in nodes
(b) and (c), respectively. In this case, these class labels
are linguistically close—per the Universal Dependencies
guidelines102, ‘amod’ denotes an adjective-noun relation,
whereas ‘compound’ essentially represents a noun-noun
relation.

These examples could indicate to the user (either a model
developer or an annotation designer) that the embeddings are
capturing confounding concepts that could interfere with the
prediction of the desired class labels. A model developer may
take action to prevent such behavior in the model’s learned
embeddings, whereas an annotation designer may better
clarify these examples and make changes to the annotation
scheme if required. Studying these model confusions can

a b

Figure 7. A chain combines embeddings of training examples
with labels ‘Cost’, ‘Possession’, and ‘Theme’. Samples of
training examples in nodes (a) and (b) are shown. This chain is
from Layer 9 of BERT-base embeddings fine-tuned on
Supersense-Role at Update 50.

help the user improve the task definitions. Additionally,
these examples can also provide feedback for improving
distinction between easily confused classes by taking actions
such as sampling or annotating more training examples that
correspond to classes found in the impure chains.

7.3 Error Analysis Through Node Attachments
Analyzing errors in a validation set of examples is a key
step in the development and refinement of an ML model.
Commonly used metrics such as accuracy, precision, and
recall provide overall measures of the performance of a
model. Additionally, confusion matrices are used to further
understand which classes are frequently misclassified.
Through the use of node attachments, TopoBERT provides a
more detailed view of the embeddings of validation examples
where the model is unable to separate the classes from a

Prepared using sagej.cls



10 Journal Title XX(X)

a

b

c

b

c

a

Figure 8. Connected component from the mapper graph of the
BERT-base model fine-tuned on the Dependency task,
illustrating that the model’s representation groups points with
labels ‘amod’ (blue) and ‘compound’ (magenta).

topological perspective. It also allows exploration of the
examples that the model is likely to confuse, which are
candidates for further analysis.

For example, in Fig. 9, an embedding of a validation
example with class ‘Topic’ (green) is attached to a chain of
embeddings of training examples with class ‘Circumstance’

a

b

a

b
Figure 9. Node attachment of an embedding of a validation
example (indicated by the dotted circle boundary) of class
‘Topic’ (green) to a chain of embeddings of training examples
with labels ‘Circumstance’ (blue).

(blue). The model classifies this validation example as
‘Circumstance’, confirming that the mapper graph reflects
the internal structure of the embeddings. Another interesting
aspect of this misclassification is that the target token for all
embeddings in Fig. 9 is ‘on’, which may indicate that the
embedding is emphasizing the lexical aspects of the word
more than its context.

8 Insight Generation and Validation
The various visual components of TopoBERT allow users
to interactively explore the embeddings from the fine-tuning
process of transformer-based models. Such an exploration
is key to generating insights about the local and global
structures of the embeddings, as well as understanding how
the fine-tuning process affects the embedding space, as
described in the design requirement R3. TopoBERT is built
in a modular way that enables qualitative analysis using
the frontend visualization as well as subsequent quantitative
experiments using the computationally generated data from
the backend API.

We first focus on Supersense-Role task using the BERT-
base model, and then provide evidence of generalizing these
insights to other models and tasks. We also generalize
these insights for a number of model-task pairs in the
supplementary material. Whereas Sect. 7 focuses on use
cases of exploring contextualized word embeddings for
linguistic phenomena for a specific model-task pair, this
section focuses on studying general principles regarding the
evolution of embeddings during fine-tuning across different
model-task pairs.

8.1 Organization and Evolution of
Embeddings During Fine-Tuning

In this section, we present multiple insights generated
using TopoBERT and perform a follow-up analysis to
validate them. We focus on BERT-base fined-tuned on
Supersensense-Role. However, these insights are generaliz-
able to other model-task pairs, as shown in Sect. 8.2.

Prepared using sagej.cls



Rathore et al. 11

Insight 1. Fine-tuning changes the topological structures of
embeddings in higher layers more than in lower layers.

Kovaleva et al.103 compared the cosine similarity of the
attention layer’s weight before and after fine-tuning, and
observed that task-specific fine-tuning of transformer-based
models leads to more changes in the higher layers of the
model. Using TopoBERT, we can interactively observe the
topological changes in the embeddings of training examples
across all batch updates of the fine-tuning process.

As observed in the top of Fig. 10 (b) and (c), at the
beginning of the fine-tuning process, the mapper graphs
at layers 9 and 12 contain one large chain with mostly
impure nodes and a number of single node islands. Such an
observation indicates that before fine-tuning, the data points
(i.e., embeddings of training examples) are scattered across
the embedding space without much structure to them. On the
other hand, embeddings obtained after fine-tuning for layers
9 and 12 show a number of disconnected chains of pure
nodes, where points with the same label are grouped closer
together in the embedding space. In comparison, we do not
observe a qualitative difference in the mapper graphs before
and after fine-tuning for layer 1, see Fig. 10 (a).

We also quantify the amount of change in various layers
by computing the distance between the mapper graph at each
batch update with respect to the mapper graphs before fine-
tuning (at batch update 0), using their induced hypergraphs
(see Sect. 3.5 for details). Fig. 11 plots the distances for
layers 1, 4, 9, and 12. We observe, first, that the distance
between the mapper graphs changes rapidly at the beginning
of the fine-tuning process and then plateaus. This observation
suggests that the embedding space changes the most during
the initial fine-tuning batch updates, which is consistent with
findings from Zhou et al.10. Second, the magnitude of change
in the topological structure is greater in later layers (e.g.,
layers 9 and 12) than in earlier ones (e.g., layers 1 and 4).

Insight 2. During fine-tuning, the topological neighbor-
hood purity changes more for the higher layers than for the
lower layers.

TopoBERT provides an easy way to inspect neighborhood
purities by using pie-chart glyphs for the nodes. Nodes with
higher purities have a single or a small number of slices.
From visual inspection of the mapper graphs, we observe that
the node purities (see Sect. 3.2 for details) change more for
the higher layers than for the lower layers. Specifically, the
mapper graph nodes of the higher layers are purer than those
in the lower layers; see the bottom of Fig. 10 (b) and (c) for
examples.

We also verify this insight quantitatively by plotting the
kernel density estimate of the distribution of node purities
for layers 1, 9, and 12 across batches in Fig. 12. We see a
clear shift in the distribution towards higher purity values for
layer 9 and 12 as the fine-tuning progresses. In particular,
the distribution of node purities for layer 1 does not change
much, but the distribution of node purities for layers 9 and
12 concentrate around the value 1 at the end of the fine-
tuning process. This observation indicates that as the fine-
tuning progresses, more neighborhoods obtain higher purity
in terms of their class label composition.

We also quantify the shift in node purities by computing
the earth mover’s distance of the node purity distribution at

each batch update with respect to the mapper graph before
fine-tuning (at update 0), see Fig. 13. We observe that the
distance remains roughly constant for layer 1, whereas it
increases over batch updates for layers 9 and 12.

Insight 3. The average topological neighborhood purity is
correlated with model performance on unseen data.

From Insight 1, we observe that the mapper graphs of
the embeddings from training examples in later layers have
higher overall node purity and better label separation during
the fine-tuning process. Using TopoBERT, we also observe
that a large number of nodes become purer at the beginning
of fine-tuning. We conjecture that the purity of mapper nodes
may be related to how well the model is able to differentiate
between different class labels.

To validate this insight, we plot the average node purities
of the mapper graphs (computed on the embeddings of
training examples) at various layers along with the accuracy
of the validation examples, as shown in Fig. 14 and Fig. 15
left. From the plots, we observe that the average purity for
layers 9 and 12 follows the same trend as the accuracy of
the validation examples, whereas the node purities for layer
1 remain roughly constant (also observed in Insight 2). This
observation indicates a possible correlation between the node
purity and model accuracy.

To validate this insight quantitatively, we compute the
Pearson correlation coefficient (PCC) between the average
purities and the validation accuracy for each layer of BERT-
base model in Fig. 15 (left). The highest correlation of
0.930 appears in layer 9, which suggests that layer 9 is
capturing structures that may have the best predictive power
for the Supersense-Role task that the model is fine-tuned on.
Previous studies75,92 confirm that that this is indeed the case.

Insight 4. The purity of the neighborhood a validation point
(i.e., the embedding of a validation example) attaches to can
be used to predict the correctness of the model for that point.

We are interested in the embeddings of training examples
(i.e., training points) as well as the embeddings of validation
examples (i.e., validation points). TopoBERT visualizes the
attachment of validation points onto the mapper graph of
training points, as described in Sect. 3.4. Roughly speaking,
for each validation point x, we compute its nearest neighbor
y among the training points. We further observe the purity of
the node that y belongs to. If y belongs to more than one node
in the mapper graph, we compute the average node purity.
We then use this average node purity to predict whether the
model would correctly classify a validation point or not. Note
that this binary classification task is different from the actual
task of the model in predicting the class label.

Fig. 16 shows the precision and recall of this binary
classifier. The threshold value for the binary classification is
estimated using cross-validation, i.e., by splitting the purity
values into two sets, one for estimating the threshold and one
for testing the prediction of the classifier using the estimated
threshold. We compare it against a baseline classifier that
always predicts a validation point to be correctly classified.
Since the data is imbalanced, at each batch update, nearly
80% of the validation points are correctly classified. We
observe that the simple binary classification is able to
consistently get higher precision than the baseline. In other

Prepared using sagej.cls



12 Journal Title XX(X)

a cb

Figure 10. Top: mapper graphs of the embeddings at update 0 before fine-tuning. Bottom: mapper graphs at update 176 after
fine-tuning. From left to right: layers 1 (a), 9 (b), and 12 (c), respectively. BERT-base fined tuned on Supersense-Role.

Figure 11. Distance between a mapper graph at each batch
update with respect to the mapper graph before fine-tuning, at
layers 1, 4, 9, and 12.

words, the attachment node purity has high predictive power
for the validation point. The lower recall indicates, however,
that this measure misses some validation points that are
correctly classified.

Insight 5. During the fine-tuning process, points of the
same label move closer, whereas points of different labels
move further away from one another in the embedding space.

Based on existing studies by Zhou et al.10,75, we know
that the fine-tuning process transforms the embedding space
geometrically such that points of the same label move closer
and points of different labels move further away from one
another. TopoBERT facilitates the validation of this insight
from a topological perspective, by generating a mapper graph
of the embedding space at every batch update. As shown in

Fig. 10 (b) and (c), the mapper graphs before fine-tuning
consist of a set of nodes with mixed class labels and poor
separation. After fine-tuning, the mapper graphs contain
clearly separated chains with pure class labels.

We further corroborate this insight by plotting the t-SNE
projection of the embedding space before and after fine-
tuning in Fig. 17 and comparing it against the mapper graphs
of the same embedding space. The t-SNE projection on the
top of Fig. 17 shows that after fine-tuning, the embeddings
cluster more tightly with better class separation. The main
strength of the mapper graphs is that they better capture the
intercluster relationships among points of the same label,
and the intracluster relationships among points of different
labels, as shown in Fig. 17 bottom.

8.2 Generalization to Other Models and Tasks
We present most of the above insights using word
embeddings generated by the BERT-base model fine-tuned
on Supersense-Role task. We present evidence in this section
that these insights generalize to other model-task pairs.

Starting from the BERT-base model, we show that
Insight 2 generalizes from one task to another. As shown in
Fig. 18, we observe the same trend in the node purity for
embeddings from BERT-base fine-tuned on the Dependency
task. Specifically, we compute the node purity distribution
for layers 1, 9, and 12 and observe that purities for higher
layers change much more than those for lower layers.

Similarly, the insight that average topological purity is
correlated with model performance (Insight 3) holds for

Prepared using sagej.cls



Rathore et al. 13

Figure 12. Distribution of node purities over batch updates (along the y-axis) for layers 1, 9, and 12. BERT-base fine-tuned on
Supersense-Role.

Figure 13. The earth mover’s distance of the node purity
distribution at each batch update with respect to the mapper
graph before fine-tuning (at update 0).

embeddings from RoBERTa-base model fine-tuned on the
Supersense-Role dataset as well. In particular, Fig. 19 shows
that the average node purity of higher layers of RoBERTa-
base is more correlated with the validation point accuracy
than the lower layers. We provide additional evidence of the
generalization of the insights in the supplementary material.

9 Expert Evaluation
We conducted a 60-minute tutorial using TopoBERT,
followed by 60- to 150- minute semistructured interviews
with five domain experts (E1-E5), all of whom have 3 to 7

Figure 14. The average node purities of the mapper graphs
(constructed from embeddings of training examples) from layers
1, 9, and 12 across batch updates. BERT-base fine-tuned on
Supersense-Role.

Figure 15. Left: the accuracy of validation examples across
batch updates. Right: the Pearson correlation coefficients (PCC)
between average node purity and the accuracy of validation
examples. BERT-base fine-tuned on Supersense-Role.

Prepared using sagej.cls



14 Journal Title XX(X)

Figure 16. Precision (top) and recall (bottom) curves using a
binary classifier based on purities of the attachment nodes of
the validation points. Layer 9 of BERT-base fine-tuned on
Supersense-Role.

Figure 17. t-SNE projections (top) and mapper graphs (bottom)
of the word embeddings from layer 12 at batch update 0 (left)
and 176 (right). BERT-base fine-tuned on Supersense-Role.

years of research experiences in NLP. E1, E2, E3, and E4
are 3rd, 4th, 4th and 5th year Ph.D. candidates in Computer
Science, and E5 is a Computer Science Ph.D. working in
the industry. All of them have published research papers in
NLP, and regularly use contextualized embeddings in their
work. During the tutorial, we first introduced the three NLP
tasks, and their corresponding BERT-type models that were
fine-tuned. To establish a knowledge baseline, we explained
that checkpoints were saved during fine-tuning to generate
embeddings for all layers: for the supersense tasks, each
embedding corresponds to a single-token preposition, and
for the dependency task, we concatenated contextualized
embedding of two tokens and treated the concatenation
as the representation of the pair. We then introduced the
notion of a mapper graph, demonstrated the visual interface
of TopoBERT and its various features, and showcased its
exploratory capacities with several case studies. We then
solicited their feedback on the utility, usability, and potential
improvements of TopoBERT both verbally and in writing.
We also collected their comments on the tutorial itself, in
particular, on the best way to introduce topological concepts
to NLP experts.

In terms of utility, all participants expressed that studying
the topology of non-contextualized and contextualized word
embeddings is something new to them, and they appreciated
the use of visualization to explore the space of embeddings.
E1 appreciated the ability to explore and compare structures
of embeddings across different layers of the model. E2 stated
that the tool gave a direct way to observe how embeddings
behave during fine-tuning, and it allowed close investigation
of such embeddings. He also appreciated that TopoBERT can
be used to explore the models before fine-tuning. He was
particularly interested in exploring the linguistic phenomena
captured by the pure chains. He also expressed interest in
exploring, under the same parameter settings, why longer
and purer chains were forming for the dependency task
after fine-tuning. E3 wanted to use TopoBERT to study
the differences between models. During the tutorial, he
placed two instances of TopoBERT side by side to compare
embeddings from BERT-base before fine-tuning and BERT-
Tiny after fine-tuning. He hypothesized that comparing node
purities from these models would help him study their
generalizability and distillation of BERT-like models. During
the tutorials, E2 and E3 had a debate about the correlation
between purities and lengths of chains with model robustness
and began to formulate their individual hypotheses.

In terms of usability, all participants found the interface
to be easy to use with a short live demo. In particular, an
introduction of the mapper graph algorithm followed by a
brief Q&A addressed their initial concern on the topological
construct. E1 found the interface to be “beautiful”, and
thought it was “cool to be able to select particular
substructures from the mapper graph, drag and reorder
them” for detailed investigations. E5 was impressed by
the visualization of embeddings and expressed interest in
exporting the visualizations as images for use in research
papers. E4 liked the ability to “highlight by class labels”.
He also stated that TopoBERT “could be an exceptionally
useful tools to view and find annotation errors” and “to
choose the best examples for an active learning paradigm.”
E2 appreciated that a sufficient amount of NLP relevant

Prepared using sagej.cls



Rathore et al. 15

Figure 18. Distribution of node purities for layers 1, 9, and 12. BERT-base fine-tuned on the Dependency task.

Figure 19. Top: average node purities for layers 1, 9, and 12
across batch updates. Bottom: accuracy of validation points
across batch updates. RoBERTa-base model fine-tuned on
Supersense-Role task.

information is already included in TopoBERT, in particular,
tokens’ metadata (labels and sentences). E3 pointed out that
PCA is a weak baseline visualization of embeddings due to
its occlusions and suggested adding t-SNE as an alternative;
although he also acknowledged the scalability issue of t-SNE
for real-time computations.

In addition, we asked the participants how they would like
to use TopoBERT to assist in their research in the future
(if at all). E5 stated that he would like to use TopoBERT
for more complex NLP tasks beyond the ones currently in
the tool, such as common-sense reasoning. E3 suggested
that the mapper graphs of embeddings from the last layers
are useful for model diagnostics. Specifically, he would like
to “find ambiguous examples and hard examples (e.g., data
points from impure branching nodes), train on them” for
model improvements, and “annotate less data to get better
performance”. Furthermore, he hypothesized that he would
be able to use purity as an indicator for an early-layer
exiting strategy during inference tasks. E2 was interested
in exploring small and isolated chains and conjectured that
they might contain obscure examples of interest. E4 would
like to see TopoBERT applied to an NLP task with fewer
labels. For example, he would be curious to know if a 3-class
NLI (Natural Language Inference) classifier would form
extremely long chains or innumerable tiny islands.

In terms of future improvements, most participants
suggested the extension of support for GPT-type models.
They believed that TopoBERT is also applicable to a
number of NLP classification tasks, such as topic modeling,
sentiment analysis, product classification, and name entity
tagging. E2 would like to see TopoBERT extended to
study multilingual BERT, in particular, comparing English
against low-resource languages. E3 would like to compare
models side by side (instead of using two instances of
TopoBERT simultaneously). He would also like to see
additional statistics displayed with each mapper graph:
the distribution of node purities, number and lengths of
branches, etc. E5 would like to study the evolution of a

Prepared using sagej.cls



16 Journal Title XX(X)

single token during the fine-tuning process more easily with
precomputed animations. Studying a single-token evolution
currently requires manually searching and highlighting the
token in the mapper graph at each batch update. He would
also like to have an interface to add new token embeddings
and update the underlying mapper graph. All participants
would like to have enhanced search capabilities beyond user-
specified tokens, including searching with labels, token-label
pairs, and a drop-down token list. E3 would like to search
and filter by node size and node purity as he would like
to use TopoBERT to discover data points associated with
model confusion for retraining purposes. E2 would like to
be able to save intermediate results to form an exploration
sequence to be visited later. All participants would like to see
a user manual associated with the interface, which is under
development.

In terms of the tutorial itself, all participants found that the
introduction to topological concepts such as mapper graphs
and the mapper algorithm to be appropriate and sufficient
for an NLP audience. E4 stated that “the topology section
was clear and easy to digest.” E2 and E3 were particularly
interested in understanding the parameters (the number of
intervals n and the amount of overlap p) and their impact
on the mapper graphs. E3 was less interested in exploring
the different lens functions beyond the default L2-norm
and stated that it was less relevant to the NLP experts.
He also pointed out that it is important to differentiate the
hierarchical clustering of embeddings from the mapper graph
to avoid confusion. E2 and E3 were very excited about the
tool’s potential and suggested that TopoBERT should be
shown as a system demonstration in NLP venues such as
ACL and EMNLP to reach a large NLP audience.

10 Conclusion and Future Work
This paper presents TopoBERT, a new tool to examine
contextualized word embeddings from a transformer-based
model fine-tuned on linguistics tasks. TopoBERT is the
first tool (to our knowledge) that employs topological data
analysis to interactively probe contextualized embeddings
during fine-tuning. Its interface allows users to perform
exploratory analysis of global and local structures in
embedding spaces. We provide various use cases for the tool
that can help bridge the gap between model architects who
design statistical NLP models and experts in computational
linguistics who design annotation schemes. The modular
design of the computational and visualization components
of the system facilitates insight generation and validation of
various aspects of the fine-tuning process.

In this work, we mainly focus on neural network
architectures from the transformer family on a set of
semantic tasks using token-based word embeddings. The
modular design of TopoBERT means that it is agnostic to
the provenance of the embeddings, the specific linguistic
tasks being studied, and the objects that are embedded
or the language under investigation. TopoBERT can be
easily extended to work with other non transformer-
based models, such as the LSTM-based ELMo104 model.
Similarly, TopoBERT can easily be extended to analyze
embeddings of other objects such as token spans or entire
sentences. Whereas the examples presented in this work

are English-specific, TopoBERT can also be used to probe
and understand the increasingly prevalent non-English and
multilingual embeddings (such as XLM-RoBERTa105) for
their lexical, syntactic, and semantic regularities. Finally,
we currently restrict our analysis to models fine-tuned on
specific tasks, exploring cross-task performance of models
using TopoBERT would be an interesting direction to
explore.

Acknowledgements

This work is supported in part by NSF awards DMS 2134223, IIS
2205418, IIS 1513616, IIS 1910733, IIS 1822877, CNS 1801446,
III 2007398, and CCF 2217154, and by a generous gift from Verisk
Inc.

References

1. Devlin J, Chang MW, Lee K et al. BERT: Pre-training of
deep bidirectional transformers for language understanding.
In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies. pp. 4171–4186.

2. Liu Y, Ott M, Goyal N et al. RoBERTa: A robustly
optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

3. Vaswani A, Shazeer N, Parmar N et al. Attention is all you
need. Advances in Neural Information Processing Systems
2017; 30: 5998–6008.

4. Howard J and Ruder S. Universal language model fine-tuning
for text classification. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Melbourne, Australia: Association
for Computational Linguistics, pp. 328–339.

5. Belinkov Y. Probing classifiers: Promises, shortcomings, and
advances. Computational Linguistics 2022; 48(1): 207–219.

6. Tenney I, Xia P, Chen B et al. What do you learn from
context? probing for sentence structure in contextualized
word representations. In International Conference on
Learning Representations (ICLR) 2019.

7. Immer A, Torroba Hennigen L, Fortuin V et al. Probing as
quantifying inductive bias. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Dublin, Ireland: Association for
Computational Linguistics, pp. 1839–1851.

8. Lasri K, Pimentel T, Lenci A et al. Probing for the usage
of grammatical number. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Dublin, Ireland: Association for
Computational Linguistics, pp. 8818–8831.

9. Aghazadeh E, Fayyaz M and Yaghoobzadeh Y. Metaphors
in pre-trained language models: Probing and generalization
across datasets and languages. In Proceedings of the
60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Dublin, Ireland:
Association for Computational Linguistics, pp. 2037–2050.

10. Zhou Y and Srikumar V. A closer look at how fine-tuning
changes BERT. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers). Dublin, Ireland: Association for Computational
Linguistics, pp. 1046–1061.

Prepared using sagej.cls



Rathore et al. 17

11. Singh G, Mémoli F and Carlsson GE. Topological methods
for the analysis of high dimensional data sets and 3D
object recognition. Eurographics Symposium on Point-Based
Graphics 2007; : 91–100.

12. Hofer C, Kwitt R, Niethammer M et al. Deep learning
with topological signatures. Advances in Neural Information
Processing Systems 2017; 30: 1634–1644.

13. Rathore A, Chalapathi N, Palande S et al. TopoAct: Exploring
the shape of activations in deep learning. Computer Graphics
Forum 2021; 40(1): 382–397.

14. Gabrielsson RB and Carlsson GE. A look at the
topology of convolutional neural networks. arXiv preprint
arXiv:1810.03234, 2018.

15. Clough JR, Öksüz I, Byrne N et al. A topological loss
function for deep-learning based image segmentation using
persistent homology. IEEE Transactions on Pattern Analysis
and Machine Intelligence 2020; 44: 8766–8778.

16. Hu X, Li F, Samaras D et al. Topology-preserving deep image
segmentation. Advances in Neural Information Processing
Systems 2019; 32: 5657–5668.

17. Chen C, Ni X, Bai Q et al. A topological regularizer
for classifiers via persistent homology. In Proceedings of
the 22nd International Conference on Artificial Intelligence
and Statistics, Proceedings of Machine Learning Research,
volume 89. PMLR, pp. 2573–2582.

18. Rieck B, Togninalli M, Bock C et al. Neural persistence: A
complexity measure for deep neural networks using algebraic
topology. arXiv preprint arXiv:1812.09764, 2018.

19. Corneanu CA, Escalera S and Martinez AM. Computing
the testing error without a testing set. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 2677–2685.

20. Naitzat G, Zhitnikov A and Lim LH. Topology of deep
neural networks. Journal of Machine Learning Research
2020; 21(184): 1–40.

21. Barannikov S, Sotnikov G, Trofimov I et al. Topological
obstructions in neural networks learning. arXiv preprint
arXiv:2012.15834, 2020.

22. Doshi P and Zadrozny W. Movie genre detection using
topological data analysis. In International Conference on
Statistical Language and Speech Processing. Springer, pp.
117–128.

23. Savle K, Zadrozny W and Lee M. Topological data
analysis for discourse semantics? In Proceedings of the
13th International Conference on Computational Semantics-
Student Papers. pp. 34–43.

24. Guan H, Tang W, Krim H et al. A topological collapse
for document summarization. In IEEE 17th International
Workshop on Signal Processing Advances in Wireless
Communications (SPAWC). pp. 1–5.

25. Das S, Haque SA, Tanveer M et al. Persistence homology of
TEDtalk: Do sentence embeddings have a topological shape?
arXiv preprint arXiv:2103.14131, 2021.

26. Kushnareva L, Piontkovski D and Piontkovskaya I. Betti
numbers of attention graphs is all you really need. arXiv
preprint arXiv:2207.01903, 2022.

27. Kushnareva L, Cherniavskii D, Mikhailov V et al. Artificial
text detection via examining the topology of attention maps.
arXiv preprint arXiv:2109.04825, 2021.

28. Cherniavskii D, Tulchinskii E, Mikhailov V et al. Acceptabil-
ity judgements via examining the topology of attention maps.

arXiv preprint arXiv:2205.09630, 2022.
29. Perez I and Reinauer R. The topological BERT: Transforming

attention into topology for natural language processing. arXiv
preprint arXiv:2206.15195, 2022.

30. Ribeiro MT, Singh S and Guestrin C. “Why should
I trust you?” explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp.
1135–1144.

31. Liu M, Shi J, Li Z et al. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on
Visualization and Computer Graphics 2016; 23(1): 91–100.

32. Pezzotti N, Höllt T, Van Gemert J et al. DeepEyes:
Progressive visual analytics for designing deep neural
networks. IEEE Transactions on Visualization and Computer
Graphics 2017; 24(1): 98–108.

33. Wongsuphasawat K, Smilkov D, Wexler J et al. Visualizing
dataflow graphs ofdeep learning models in TensorFlow. IEEE
Transactions on Visualization and Computer Graphics 2017;
24(1): 1–12.

34. Choo J and Liu S. Visual analytics for explainable deep
learning. IEEE Transactions on Visualization and Computer
Graphics 2018; 38(4): 84–92.

35. Liu S, Wang X, Liu M et al. Towards better analysis
of machine learning models: A visual analytics perspective.
Visual Informatics 2017; 1(1): 48–56.

36. Wang ZJ, Turko R, Shaikh O et al. CNN explainer: Learning
convolutional neural networks with interactive visualization.
IEEE Transactions on Visualization and Computer Graphics
2021; 27(2): 1396–1406.

37. Arrieta AB, Dı́az-Rodrı́guez N, Del Ser J et al. Explainable
Artificial Intelligence (XAI): Concepts, taxonomies, oppor-
tunities and challenges toward responsible AI. Information
Fusion 2020; 58: 82–115.

38. Wexler J, Pushkarna M, Bolukbasi T et al. The What-If
Tool: Interactive probing of machine learning models. IEEE
Transactions on Visualization and Computer Graphics 2020;
26: 56–65.

39. Chen C, Yuan J, Lu Y et al. OoDAnalyzer: Interactive
analysis of out-of-distribution samples. IEEE Transactions
on Visualization and Computer Graphics 2021; 27(1): 3335–
3349.

40. Yang W, Li Z, Liu M et al. Diagnosing concept drift with
visual analytics. In IEEE Conference on Visual Analytics
Science and Technology (VAST). pp. 12–23.

41. Krause J, Perer A and Bertini E. INFUSE: interactive feature
selection for predictive modeling of high dimensional data.
IEEE Transactions on Visualization and Computer Graphics
2014; 20(12): 1614–1623.

42. May T, Bannach A, Davey J et al. Guiding feature
subset selection with an interactive visualization. In IEEE
Conference on Visual Analytics Science and Technology
(VAST). pp. 111–120.

43. Springenberg JT, Dosovitskiy A, Brox T et al. Striving for
simplicity: The all convolutional Net. In Workshop Track
Proceedings of the 3rd International Conference on Learning
Representations (ICLR). San Diego, CA, USA.

44. Rauber PE, Fadel SG, Falcao AX et al. Visualizing the hidden
activity of artificial neural networks. IEEE Transactions on
Visualization and Computer Graphics 2016; 23(1): 101–110.

Prepared using sagej.cls



18 Journal Title XX(X)

45. Wang J, Gou L, Yang H et al. GANViz: A visual
analytics approach to understand the adversarial game. IEEE
Transactions on Visualization and Computer Graphics 2018;
24(6): 1905–1917.

46. Kahng M, Andrews PY, Kalro A et al. ActiVis: Visual
exploration of industry-scale deep neural network models.
IEEE Transactions on Visualization and Computer Graphics
2018; 24: 88–97.

47. Hohman F, Park H, Robinson C et al. Summit:
Scaling deep learning interpretability by visualizing activation
and attribution summarizations. IEEE Transactions on
Visualization and Computer Graphics 2020; 26(1): 1096–
1106.

48. Amershi S, Chickering M, Drucker SM et al. ModelTracker:
Redesigning performance analysis tools for machine learning.
In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. pp. 337–346.

49. Ren D, Amershi S, Lee B et al. Squares: Supporting
interactive performance analysis for multiclass classifiers.
IEEE Transactions on Visualization and Computer Graphics
2016; 23(1): 61–70.

50. Zhang J, Wang Y, Molino P et al. Manifold: A model-agnostic
framework for interpretation and diagnosis of machine
learning models. IEEE Transactions on Visualization and
Computer Graphics 2019; 25: 364–373.

51. Wang Q, Alexander W, Pegg J et al. HypoML: Visual analysis
for hypothesis-based evaluation of machine learning models.
IEEE Transactions on Visualization and Computer Graphics
2021; 27: 1417–1426.

52. Garcea F, Famouri S, Valentino D et al. iNNvestigate-
GUI - explaining neural networks through an interactive
visualization tool. In Artificial Neural Networks in Pattern
Recognition. pp. 291–303.

53. Yuan J, Chen C, Yang W et al. A survey of visual analytics
techniques for machine learning. Computational Visual
Media 2021; 7(1): 3–36.

54. Chatzimparmpas A, Martins RM, Jusufi I et al. A survey of
surveys on the use of visualization for interpreting machine
learning models. Information Visualization 2020; 19: 207–
233.

55. Islam MR, Akter S, Ratan MR et al. Deep visual analytics
(DVA): applications, challenges and future directions.
Human-Centric Intelligent Systems 2021; 1(1-2): 3–17.

56. Hohman F, Kahng M, Pienta RS et al. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE
Transactions on Visualization and Computer Graphics 2019;
25: 2674–2693.

57. Liu S, Bremer PT, Thiagarajan JJ et al. Visual exploration
of semantic relationships in neural word embeddings. IEEE
Transactions on Visualization and Computer Graphics 2018;
24(1): 553–562.

58. Spinner T, Schlegel U, Schäfer H et al. explAIner: A visual
analytics framework for interactive and explainable machine
learning. IEEE Transactions on Visualization and Computer
Graphics 2019; 26(1): 1064–1074.

59. Ribeiro MT, Singh S and Guestrin C. Anchors: High-
precision model-agnostic explanations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.

60. Liu S, Li Z, Li T et al. NLIZE: A perturbation-driven
visual interrogation tool for analyzing and interpreting
natural language inference models. IEEE Transactions on

Visualization and Computer Graphics 2019; 25(1): 651–660.
61. Chan GYY, Bertini E, Nonato LG et al. Melody:

Generating and visualizing machine learning model summary
to understand data and classifiers together. arXiv preprint
arXiv:2007.10614, 2020.

62. Ming Y, Cao S, Zhang R et al. Understanding hidden
memories of recurrent neural networks. In IEEE Conference
on Visual Analytics Science and Technology (VAST). pp. 13–
24.

63. Strobelt H, Gehrmann S, Pfister H et al. LSTMVis: A tool for
visual analysis of hidden state dynamics in recurrent neural
networks. IEEE transactions on visualization and computer
graphics 2017; 24(1): 667–676.

64. Berger M. Visually analyzing contextualized embeddings. In
IEEE Visualization Conference (VIS). pp. 276–280.

65. Ji X, Shen HW, Ritter A et al. Visual exploration of neural
document embedding in information retrieval: Semantics and
feature selection. IEEE Transactions on Visualization and
Computer Graphics 2019; 25: 2181–2192.

66. Vig J. A multiscale visualization of attention in the
transformer model. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics:
System Demonstrations. Florence, Italy: Association for
Computational Linguistics, pp. 37–42.

67. Pearson K. LIII. On lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin
philosophical magazine and journal of science 1901; 2(11):
559–572.

68. Van der Maaten L and Hinton G. Visualizing data using t-
SNE. Journal of Machine Learning Research 2008; 9(11).

69. McInnes L, Healy J and Melville J. UMAP: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

70. Liu S, Maljovec D, Wang B et al. Visualizing high-
dimensional data: Advances in the past decade. IEEE
Transactions on Visualization and Computer Graphics 2017;
23(3): 1249–1268.

71. Rogers A, Kovaleva O and Rumshisky A. A primer
in BERTology: What we know about how BERT works.
Transactions of the Association for Computational Linguistics
2021; 8: 842–866.

72. Whitney WF, Song MJ, Brandfonbrener D et al. Evaluating
representations by the complexity of learning low-loss
predictors. In Neural Compression: From Information Theory
to Applications, Workshop at ICLR.

73. Voita E and Titov I. Information-theoretic probing with
minimum description length. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Process-
ing (EMNLP). Association for Computational Linguistics, pp.
183–196.

74. Limisiewicz T and Mareček D. Introducing orthogonal
constraint in structural probes. In Proceedings of the
59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, pp. 428–442.

75. Zhou Y and Srikumar V. DirectProbe: Studying representa-
tions without classifiers. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, pp. 5070–5083.

Prepared using sagej.cls



Rathore et al. 19

76. Karidi T, Zhou Y, Schneider N et al. Putting words
in BERT’s mouth: Navigating contextualized vector spaces
with pseudowords. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, pp. 10300–10313.

77. Hewitt J and Manning CD. A structural probe for finding
syntax in word representations. In Proceedings of the
2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Association
for Computational Linguistics, pp. 4129–4138.

78. Ethayarajh K. How contextual are contextualized word
representations? Comparing the geometry of BERT, ELMo,
and GPT-2 embeddings. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Association for Com-
putational Linguistics, pp. 55–65.

79. Peters ME, Ruder S and Smith NA. To tune or not to
tune? adapting pretrained representations to diverse tasks. In
Proceedings of the 4th Workshop on Representation Learning
for NLP (RepL4NLP-2019). Association for Computational
Linguistics, pp. 7–14.

80. Merchant A, Rahimtoroghi E, Pavlick E et al. What happens
to BERT embeddings during fine-tuning? In Proceedings
of the Third BlackboxNLP Workshop on Analyzing and
Interpreting Neural Networks for NLP. Association for
Computational Linguistics, pp. 33–44.

81. Mosbach M, Khokhlova A, Hedderich MA et al. On
the interplay between fine-tuning and sentence-level probing
for linguistic knowledge in pre-trained transformers. In
Proceedings of the Third BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP.
Association for Computational Linguistics, pp. 68–82.

82. Hao Y, Dong L, Wei F et al. Investigating learning dynamics
of BERT fine-tuning. In Proceedings of the 1st Conference of
the Asia-Pacific Chapter of the Association for Computational
Linguistics and the 10th International Joint Conference on
Natural Language Processing. Suzhou, China: Association
for Computational Linguistics, pp. 87–92.

83. Aleksandroff PS. Über den allgemeinen dimensionsbegriff
und seine beziehungen zur elementaren geometrischen
anschauung. Mathematische Annalen 1928; 98(1): 617–635.

84. Biasotti S, Giorgi D, Spagnuolo M et al. Reeb graphs
for shape analysis and applications. Theoretical Computer
Science 2008; 392: 5–22.

85. Biasotti S, Marini S, Mortara M et al. An overview on
properties and efficacy of topological skeletons in shape
modelling. In Shape Modeling International.

86. Carrière M, Michel B and Oudot S. Statistical analysis and
parameter selection for mapper. Journal of Machine Learning
Research 2018; 19(12): 1–39.

87. Chalapathi N, Zhou Y and Wang B. Adaptive covers
for mapper graphs using information criteria. In IEEE
International Conference on Big Data (Big Data).

88. Ester M, Kriegel HP, Sander J et al. A density-based algorithm
for discovering clusters in large spatial databases with noise.
In Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining. pp. 226–231.

89. Zhou Y, Chalapathi N, Rathore A et al. Mapper Interactive:
A scalable, extendable, and interactive toolbox for the visual

exploration of high-dimensional data. In Proceedings of the
IEEE 14th Pacific Visualization Symposium (PacificVis). pp.
101–110.

90. Purvine E, Brown D, Jefferson B et al. Experimental
observations of the topology of convolutional neural network
activations. In Proceedings of the 37th AAAI Conference on
Artificial Intelligence (AAAI).

91. Chowdhury S, Needham T, Semrad E et al. Hypergraph co-
optimal transport: Metric and categorical properties. arXiv
preprint arXiv:2112.03904, 2021.

92. Liu NF, Gardner M, Belinkov Y et al. Linguistic
knowledge and transferability of contextual representations.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, pp. 1073–1094.

93. Nivre J, de Marneffe MC, Ginter F et al. Universal Dependen-
cies v1: A multilingual treebank collection. In Proceedings of
the Tenth International Conference on Language Resources
and Evaluation (LREC). Portorož, Slovenia: European Lan-
guage Resources Association (ELRA), pp. 1659–1666.

94. Turc I, Chang MW, Lee K et al. Well-read students learn
better: On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962, 2019.

95. Wolf T, Debut L, Sanh V et al. Transformers: State-of-
the-art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Online: Association for
Computational Linguistics, pp. 38–45.

96. Loshchilov I and Hutter F. Decoupled weight decay
regularization. In International Conference on Learning
Representations (ICLR).

97. Lloyd S. Least squares quantization in PCM. IEEE
Transactions on Information Theory 1982; 28(2): 129–137.

98. Ester M, Kriegel HP, Sander J et al. A density-based algorithm
for discovering clusters in large spatial databases with noise.
In Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, volume 96. pp. 226–
231.

99. Shneiderman B. The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings of
IEEE Symposium on Visual Languages. pp. 336–343.

100. Abadi M, Agarwal A, Barham P et al. TensorFlow: Large-
scale machine learning on heterogeneous systems. https:
//www.tensorflow.org/, 2015.

101. Mikolov T, Sutskever I, Chen K et al. Distributed repre-
sentations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems, vol-
ume 26. pp. 3111–3119.

102. de Marneffe MC, Dozat T, Silveira N et al. Universal
Stanford dependencies: A cross-linguistic typology. In
Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC). Reykjavik,
Iceland: European Language Resources Association (ELRA),
pp. 4585–4592.

103. Kovaleva O, Romanov A, Rogers A et al. Revealing the
dark secrets of BERT. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong, China:

Prepared using sagej.cls

https://www.tensorflow.org/
https://www.tensorflow.org/


20 Journal Title XX(X)

Association for Computational Linguistics, pp. 4365–4374.
104. Peters ME, Neumann M, Iyyer M et al. Deep

contextualized word representations. In Proceedings of
the Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies (Volume 1 Long Papers). New Orleans,
Louisiana: Association for Computational Linguistics, pp.
2227–2237.

105. Conneau A, Khandelwal K, Goyal N et al. Unsupervised
cross-lingual representation learning at scale. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics. pp. 8440–8451.

Prepared using sagej.cls



Rathore et al. 21

11 Supplementary Materials

We give additional examples of generalizing insights from Sect. 8 to other model-task pairs.
While Insight 1 is applicable to BERT-base fine-tuned on the Supersense-Role task, it is also observed for BERT-base

fine-tuned on the Dependency task, as shown in Fig. 20. Specifically, we observe that after fine-tuning, the embeddings for
layer 1 remain largely unchanged, while the embeddings for layers 9 and 12 contain distinct chains of points with the same
class labels.

a cb

Figure 20. Mapper graphs before (top, batch update 0) and after (bottom, batch update 176) fine-tuning, for layers 1 (a), 9 (b), and
12 (c). BERT-base fined-tuned on the Dependency task.

We also plot the distances between mapper graphs at each batch update and the mapper graph before fine-tuning, for
BERT-base fined-tuned on the Dependency task. This is shown in Fig. 21. Again, we observe that the distance changes
rapidly at the beginning of the fine-tuning process.

Figure 21. Distance between the mapper graph at each batch update with respect to the mapper graph before fine-tuning, for
layers 1, 4, 9, and 12. BERT-base fined-tuned on the Dependency task.

In terms of Insight 2, we can observe that the node purity (for nodes in higher layers) increases for tasks beyond the
Supersense-Role. We quantify this observation by plotting the kernel density estimate of the node purities for layers 1, 9, and
12, for embeddings from BERT-base fine-tuned on the Dependency task, and RoBERTa-base fine-tuned on the Supersense-
Role task; this is shown in Fig. 22. We also quantify the shift in purities by computing the earth mover’s distance, as shown
in Fig. 23.

Prepared using sagej.cls



22 Journal Title XX(X)

Figure 22. Node purity distributions for layers 1, 9, and 12. Top: BERT-base fined-tuned on the Dependency task. Bottom:
RoBERTa-base fined-tuned on the Supersense-Role task.

In terms of Insight 3, we observe similar trends in correlating the node purity with the model performance on the unseen
data, for BERT-base fine-tuned on the Dependency task, as shown in Fig. 24. Specifically, the correlation between the node
purity and the model performance is higher for layers 9 and 13 than layer 1.

Prepared using sagej.cls



Rathore et al. 23

Figure 23. The earth mover’s distance of the node purity distribution at each batch update with respect to the mapper graph before
fine-tuning. Left: BERT-base fined-tuned on the Dependency task. Right: RoBERTa-base fined-tuned on the Supersense-Role task.

Figure 24. Left: Average node purities of embeddings from layers 1, 9, and 12 across batch updates. Right: Accuracy of the
validation points across batch updates. BERT-base fine-tuned on the Dependency task.

Figure 25. Precision (left) and recall (right) curves using a binary classifier based on the purity of the attachment nodes.
RoBERTa-base fined tuned on the Supersense-Role task.

In terms of Insight 4, we replicate our experiments for RoBERTa-base fine-tuned on the Supersense-Role task. As shown
in Fig. 25, the purity of the node a validation point attaches to can be used to predict the correctness of the model for that
point.

Finally, we discuss dimensionality reduction for comparing word embeddings. We apply different dimensionality reduction
techniques, PCA, t-SNE, and UMAP (Fig. 26) to demonstrate that traditional dimensionality reduction methods do not
capture detailed intercluster and intracluster relations among the embeddings, comparing with the mapper graphs.

Prepared using sagej.cls



24 Journal Title XX(X)

a cb

Figure 26. Dimensionality reduction with PCA (a), t-SNE (b), and UMAP (c) on the embeddings before (top) and after (bottom)
fine-tuning. BERT-base fine-tuned on the Supersense-Role task.

Prepared using sagej.cls


	1 Introduction
	2 Related Work
	2.1 TDA for ML and NLP
	2.2 Visualization for ML Interpretability
	2.3 Visualization for NLP
	2.4 Probing Embeddings in NLP

	3 Topology Background
	3.1 Mapper Graph on Point Cloud Data
	3.2 Topological Neighborhood Purity
	3.3 Interpreting Mapper Graph of Word Embeddings
	3.4 Mapper Graph Node Attachment
	3.5 Distance Between Mapper Graphs

	4 Datasets, Embeddings, and Models
	4.1 Datasets
	4.2 Embeddings
	4.3 Fine-Tuning

	5 Design Requirements
	6 Implementation and User Interface
	6.1 Architecture and Implementation
	6.2 User Interface
	6.3 Expert Feedback During Design and Development

	7 Use Cases for Linguistic Phenomena
	7.1 Global Structures of Embeddings
	7.2 Local Behaviors of Embeddings
	7.3 Error Analysis Through Node Attachments

	8 Insight Generation and Validation
	8.1 Organization and Evolution of Embeddings During Fine-Tuning
	8.2 Generalization to Other Models and Tasks

	9 Expert Evaluation
	10 Conclusion and Future Work
	11 Supplementary Materials

