Volume 0 (1981), Number 0 pp. 1-4

COMPUTER GRAPHICS forum

TopoAct: Visually Exploring the Shape of Activations
in Deep Learning: Supplementary Material

Archit Rathore! @, Nithin Chalapathi'

, Sourabh Palande’ , Bei Wang1

1 School of Computing, Scientific Computing and Imaging (SCI) Institute, University of Utah, USA

1. TopoAct User Interface and System Design

We provide details regarding the user interface and system design
of TopoAct. Figure 3 in the main paper illustrates the user interface
under single-layer exploration mode.

The control panel includes information regarding the layer of
choice (e.g., 3a, 3b, 4a), the dataset (across various mapper parame-
ters) under exploration (e.g., overlap-30-epsilon-fixed, overlap-50-
epsilon-adaptive), and a class search box that supports filtering by
a set of classes. It enables projections of the activation vectors us-
ing t-SNE and UMAP. The control panel also contains a check box
that superimposes averaged activation images over the graph nodes
to provide an alternative overview of the topological summary (see
feature visualization panel for details). It also supports the filtering
of graph edges based on the Jaccard index.

D]
bib (A)

)| crib | (ambulance J atar | Afican hur
oboe
banjo e
sabot usbie [banana Y el epper [bookshop oo
| tabby bald eage |
| banana L
beaker e
eaver i reesourger [cnsorme [f conse
bubble can opener J Cardigan [chambered nautilus

Figure 1: Class search box used to specify a set of classes to be
filtered by the mapper graph.

Class search box with a shopping directory view. As illustrated
in Figure 1, users can type a class name in the search box, which is
used to filter the mapper graph. The search bar uses partial match-
ing to locate a list of possible class names. Alternatively, users can
select a subset of classes from the “shopping directory” view in
which top classes within the current layer are listed in alphabetical
order. The mapper graph will highlight the clusters that contain any
of the user-specified classes among their top three classes.

When the projection view is enabled, class search will also
highlight all activations for that class in the t-SNE/UMAP pro-
jection. As an example, in Figure 3, we look at t-SNE projection

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

(o]

Figure 2: A mapper graph highlighting nodes that include classes
of large motor vehicles.

of activations from layer 5a of the ImageNet dataset (overlap-30-
epsilon-adaptive). Using the shopping directory view, we select
several classes of large motor vehicles, for example, school bus,
tow truck, fire engine, minibus, minivan, etc. Each node high-
lighted in the mapper graph of Figure 2 contains at least one of the
selected classes among its top three classes.

Figure 3: Class search in the projection view for the lifeboat class.
Users can search one or more classes and visualize them in the
t-SNE or UMAP projection.

1.1. Single Layer Exploration Mode

For single layer exploration, the interface is composed of three pan-
els: the mapper graph panel, the data example panel, and the feature

https://orcid.org/0000-0002-2965-3561
https://orcid.org/0000-0002-6160-1155
https://orcid.org/0000-0002-1404-8238
https://orcid.org/0000-0002-9240-0700

A. Rathore, N. Chalapathi, S. Palande, & B. Wang / TopoAct: Visually Exploring the Shape of Activations

visualization panel (see Figure 3 in the main paper for an illustra-
tion).

Mapper graph panel. For ImageNet dataset, TopoAct uses the
mapper construction to construct a topological summary from the
activation vectors of 300K images across 1K classes. Different
from dimensionality reduction approaches such as t-SNE [MHO0S8]
and UMAP [MHM 18], TopoAct computes and captures the shape
of the activation space in the original high-dimensional space in
the form of a mapper graph and preserves the structural informa-
tion as much as possible when the mapper graph is drawn on the
2-dimensional plane.

As shown in Figure 3(a) in the main paper, we use a force-
directed layout by Dwyer [Dwy09] to visualize the mapper graph.
Each node represents a cluster of “similar” activation vectors (in
terms of their proximities in Euclidean distance), and each edge
encodes the relations between clusters of activation vectors. Given
two clusters of activation vectors C, and C,, an edge uv connects
them if |C, N Cy| # 0. Given C, and C, connected by an edge uv,
the edge weight of uv is their Jaccard Index, that is, J(Cy,Cy) :=
|CuNCy|/|Cu UCy). Each edge is then visualized by visual encod-
ings (i.e., thickness and colormap) that scale proportionally with
respect to their weights. Weights on the edges highlight the strength
of relations between clusters.

To explore the mapper graph, users can zoom and pan within the
panel. Hovering over a node in the mapper graph will display sim-
ple statistics of the cluster: the number of activation vectors in the
cluster and the averaged lens function value. Clicking on a node
will give information on the top three classes (with a membership
percentage) within the selected cluster; it will also update the selec-
tion for the data example panel and the feature visualization panel,
as described below.

Data example panel. To make each cluster more interpretable, we
combine the original data examples with feature visualization. For
a selected node (cluster) in the mapper graph, we give a textual
description of the top three classes in the cluster as well as five
data examples from each of the three top classes. For example, as
illustrated in Figure 4a, a selected cluster in the mapper graph view
for layer 5a (of overlap-30-epsilon-adaptive) contains the three top
classes of images: fire engine, tow truck, and electric locomotive.
Its corresponding data example view contains five images sampled
from each class to give a concrete depiction of the input images that
trigger the activations.

Feature visualization panel. After a user selects a node (clus-
ter) in the mapper graph panel, we display activation images pre-
generated for each input image from the data example panel. These
individual activation images are generated by applying feature vi-
sualization to individual activation vectors from the 300K input im-
ages. The feature visualization displays up to 15 of such individ-
ual activation images, up to 5 for each of the top classes; see Fig-
ure 4(b). Furthermore, we also average the activation vectors that
fall within the cluster and run feature inversion on the averaged
activation, producing an averaged activation image per cluster, as
shown in Figure 4(c). Moving across clusters following edges of
the mapper graph will help us understand how the averaged activa-
tion images vary across clusters. We obtain a global understanding
of not only what the network “sees” via these idealized images but

0.55% 13/2359
0.47% 11/2359
0.47% 11/2359

Figure 4: A data example panel (a) and a feature visualization
panel (b) for layer 5a, where (c) contains an averaged activation
image for the chosen cluster.

also how these idealized images are related to each other in the
space of activations.

In addition to the graph view, we can replace each node in the
mapper graph by an averaged activation image as a glyph. This can
be perceived as an alternative to the activation atlas [CAS™19] with
one crucial difference: the mapper graph captures clusters of activa-
tion vectors in their original high-dimensional space and preserves
relations between these clusters. Such a global view provides valu-
able insights during in-depth explorations.

t-SNE and UMAP projections. For comparative purpose, we per-
form dimensionality reduction on the activation vectors for each
layer using t-SNE and UMAP. The projection is done using all
300K activation vectors onto a 2-dimensional space. For t-SNE, we
use the Multicore-TSNE [Uly16] Python library and set perplexity
to be 50 following the parameter choice used in the activation at-
las [CAS™19]. The UMAP projection is performed using its offi-
cial Python implementation [MHSG18] with 20 nearest neighbors
and a minimum distance of 0.01. t-SNE and UMAP projections are
precomputed due to the large number (300K) of activation vectors.
We also provide a linked view between the mapper graph and the t-
SNE/UMAP projection. Selecting a node in the mapper graph will
highlight its corresponding activation vectors in the t-SNE/UMAP
projections. We provide subsampled versions of these projections
(5K, 10k, 50K, 100K, and 300K) to deal with the issue of visual
clutter and to accommodate various browser rendering capabilities
on a number of devices.

1.2. Multilayer Exploration Mode

In the multilayer exploration mode, three adjacent layers are ex-
plored side by side; see Figure 6(top). After choosing a particular
class or a set of classes using the class search box, TopoAct high-
lights nodes (clusters) across all three layers that contain the cho-
sen set of classes among its top three classes. Other visualization
features are inherited from the single layer exploration. Multilayer
exploration helps capture the evolution of classes as images are run
through the network and supports structural comparisons of sum-
maries across layers. Such exploration can be particularly useful
when used in conjunction with the class search tool. As an example
of a class search in multilayer mode, we look at layers 4e, 5a and 5b

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

A. Rathore, N. Chalapathi, S. Palande, & B. Wang / TopoAct: Visually Exploring the Shape of Activations

of the overlap-30-epsilon-adaptive dataset. We use the same selec-
tion of classes of large motor vehicles used in the earlier example
of a class search in single layer mode (Figure 2). Figure 5 shows
the class search results, now in the multilayer exploration mode.

TopoAct
,,,,, 0DO0O0OBE ccunne — .
B B =]

Figure 5: Class search highlights nodes that include classes of
large motor vehicles across multiple layers.

Under the multilayer exploration mode, we can compare the
shape of activation spaces across multiple layers. As illustrated
in Figure 6, we show a side-by-side comparison of all layers for the
ImageNet dataset (overlap-30-epsilon-adaptive). A further investi-
gation into structural comparisons across layers, such as tracking
the evolution of a particular branching node, is nontrivial and left
for future work.

Figure 6: Comparing nine mapper graphs for the ImageNet dataset
using multilayer exploration. Configuration: 70 intervals, 30%
overlap, adaptive € for DBSCAN.

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

1.3. System Design

TopoAct is open-source via GitHub: https://github.com/
tdavislab/TopoAct/, and web-based with a public demo:
https://tdavislab.github.io/TopoAct/. It is tested
for Google Chrome and Mozilla Firefox. It is developed using
Javascript, HTML, and CSS, along with D3.js and Chart.js. The
300K dataset examples were sampled from ImageNet dataset.
For our mapper graph construction, we used a modified ver-
sion [ZCR*20] of the open-source KeplerMapper library [vVS19]
that we optimized to handle the large number of data points that
we encountered in our use case. The construction of mapper graphs
across layers was performed on high-performance server machines
with 128, 160, and 256 CPU cores, and RAM ranging from 504
GB to 1024 GB. The construction took around 15 minutes for
layers with lower dimensional activation vectors (i.e., layer 3a
produces 256-dimensional activation vectors) and 25-30 minutes
for higher dimensional activation vectors (e.g., layer 5b produces
1024-dimensional activation vectors). For our choice of € for the
DBSCAN algorithm, we ran PyNNDescent [Mcl] on a commod-
ity workstation with a 4 core intel 17 (4750HQ) and 8GB of RAM.
Computing € took on average 5 minutes per layer. Finally, we used
Google Colab [Bis19, Goo] to run our feature visualization with
GPUgs, either from an Nvidia P100, Nvidia K80, or Nvidia T4 GPU.
Feature visualization of all 300K input images was done via the
Lucid library [Ten], which took on average 8 hours. Feature visual-
ization of average activation vectors took between 2.5 (i.e., 3a) and
6 hours (i.e., 5b) per mapper graph.

2. L, Norm and Adaptive Cover

In the demo, we used a uniform cover, which caused large varia-
tions in cluster sizes. Although some clusters were composed of
only a handful of activation vectors, several clusters had thousands
of activation vectors, and large intersections between neighboring
clusters. Finding meaningful relationships across such large clus-
ters is difficult in these cases since the top three classes may not be
good representatives of the cluster as a whole.

The branches and loops explored in our examples contain rela-
tively small clusters for which the averaged activation images are
more meaningful. The best way to remedy the large variation in
cluster sizes is to use an adaptive cover, in which interval lengths
are modified in such a way that each interval contains approxi-
mately the same number of points. Creating adaptive cover ele-
ments may be achieved by looking at the distribution of lens func-
tion values using histograms. We now discuss this in more detail.

In general, vectors with a dimension as high as the ones from
a neural network (maximum of 1024 dimensions in our case) tend
to suffer from the curse of dimensionality, which implies that in
very high dimensions, the Euclidean metric or the L, norm does
not exhibit variation - all distances and norms look the same.

Figure 7 shows the distribution of L, norms for all layers in the
Inception architecture. Notice that the distribution is bell-shaped
with long tails, and the variance of the distribution is reasonably
large. The severity of the curse of dimensionality may be reduced
by using an adaptive cover that has more intervals in the denser
regions of lens function. The resulting mapper graphs with such an

https://github.com/tdavislab/TopoAct/
https://github.com/tdavislab/TopoAct/
https://tdavislab.github.io/TopoAct/

A. Rathore, N. Chalapathi, S. Palande, & B. Wang / TopoAct: Visually Exploring the Shape of Activations

mixed3a

2000 A mixed3b

mixed4a

1750 1 mixed4b

mixed4c

1500 mixed4d

1 mixed4de

1250 mixed5a

1000 1 mixed5b
750 A
500 A
2501

0- T
5 6 7 8

Figure 7: L, norms of activation vectors across all layers.

adaptive cover will contain nodes of comparable sizes. This is left
for future work.

References

[Bis19] BISONG E.: Google colaboratory. In Building Machine Learning
and Deep Learning Models on Google Cloud Platform. Apress, Berke-
ley, CA, 2019. 3

[CAS*19] CARTER S., ARMSTRONG Z., SCHUBERT L., JOHNSON 1.,
OLAH C.: Activation Atlas. Distill 4, 3 (2019), el5. 2

[Dwy09] DWYER T.: Scalable, versatile and simple constrained graph
layout. Computer Graphics Forum 28, 3 (2009), 991-998. 2

[Goo] GOOGLE RESEARCH: Google colab. https://colab.
research.google.com. 3

[McI] MCINNES L.: PyNNDescent. https://github.com/
Imcinnes/pynndescent. 3

[MHO8] MAATEN L. V. D., HINTON G.: Visualizing data using t-SNE.
Journal of Machine Learning Research 9 (2008), 2579-2605. 2

[MHM18] MCINNES L., HEALY J., MELVILLE J.: UMAP: Uni-
form manifold approximation and projection for dimension reduction.
arXiv:1802.03426, 2018. 2

[MHSG18] MCcCINNES L., HEALY J., SAUL N., GROSSBERGER L.:
UMAP: Uniform manifold approximation and projection. Journal of
Open Source Software 3,29 (2018), 861. 2

[Ten] TENSORFLOW: Lucid library. https://github.com/
tensorflow/lucid. 3

[Ulyl6] ULYANOV D.: Multicore-TSNE. https://github.com/
DmitryUlyanov/Multicore-TSNE, 2016. 2

[vWS19] vAN VEEN H. J.,, SAuL N KeplerMapper.
http://doi.org/10.5281/zenodo.1054444, Jan 2019. 3

[ZCR*20] ZHOU Y., CHALAPATHI N., RATHORE A., ZHAO Y., WANG
B.: Mapper Interactive: A scalable, extendable, and interactive toolbox
for the visual exploration of high-dimensional data. arXiv:2011.03209,
2020. 3

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://colab.research.google.com
https://colab.research.google.com
https://github.com/lmcinnes/pynndescent
https://github.com/lmcinnes/pynndescent
https://github.com/tensorflow/lucid
https://github.com/tensorflow/lucid
https://github.com/DmitryUlyanov/Multicore-TSNE
https://github.com/DmitryUlyanov/Multicore-TSNE

