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Abstract

In this thesis, we explore techniques in statistics and persistent homology, which detect
features among data sets such as graphs, triangulations and point cloud. We accompany
our theorems with algorithms and experiments, to demonstrate their effectiveness in prac-
tice.

We start with the derivation of graph scan statistics, a measure useful to assess the
statistical significance of a subgraph in terms of edge density. We cluster graphs into
densely-connected subgraphs based on this measure. We give algorithms for finding such
clusterings and experiment on real-world data.

We next study statistics on persistence, for piecewise-linear functions defined on the
triangulations of topological spaces. We derive persistence pairing probabilities among
vertices in the triangulation. We also provide upper bounds for total persistence in expec-
tation.

We continue by examining the elevation function defined on the triangulation of a
surface. Its local maxima obtained by persistence pairing are useful in describing features
of the triangulations of protein surfaces. We describe an algorithm to compute these local
maxima, with a run-time ten-thousand times faster in practice than previous method. We
connect such improvement with the total Gaussian curvature of the surfaces.

Finally, we study a stratification learning problem: given a point cloud sampled from
a stratified space, which points belong to the same strata, at a given scale level? We as-
sess the local structure of a point in relation to its neighbors using kernel and cokernel
persistent homology. We prove the effectiveness of such assessment through several infer-
ence theorems, under the assumption of dense sample. The topological inference theorem
relates the sample density with the homological feature size. The probabilistic inference
theorem provides sample estimates to assess the local structure with confidence. We de-
scribe an algorithm that computes the kernel and cokernel persistence diagrams and prove
its correctness. We further experiment on simple synthetic data.
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Chapter 1
Introduction

Data and features in data. Recent advances in science and technology have created
an explosion of empirical information which need data abstraction and analysis. When
we only have relation data, we model them as graphs, which are points connected with
edges, with or without geometric information. This applies to various network data, either
natural, social or technological. For example, protein interaction network models protein
molecules as vertices, direct-contact association and long range interactions (i.e. signal
transduction) as edges. Social network models individuals or organizations as vertices,
pair-wise social relations as edges. Wireless sensor networks treat sensors as vertices,
transmissions between them as edges. When we have surface data, we model them as
triangulations, which include points, edges and higher order simplicies (i.e. triangles).
Triangulations encode geometric information and are convenient for computation and vi-
sualization. For example, the protein surface is modeled as a triangulation of 2-manifold
in studying molecular structure. Solid modeling commonly uses triangulated representa-
tions for rendering. More generally, sometimes the object of interest is only known to us
through a finite set of sample points, called point cloud data, from which we try to recover
geometric and topological information for the original object. For example, points sam-
pled from manifold, or medical data mapped as points in high dimension. Some examples
are shown in Figures 1.1.

Feature extraction becomes essential to understand data that comes in various forms.
First we need to define what we call features. In terms of graphs, apart from global descrip-
tors such as degree distribution, we are interested in their clustering structure, meaning the
appearance of internally densely connected groups of vertices with sparse connections be-
tween groups [87]. For protein structure, we are interested in describing the “bumps” on
the surface which are protrusions and cavities important for protein docking. For point
cloud data, we are interested in both global and local topological properties, such as ho-
mology and local homology.

In this thesis, we discuss techniques developed in statistics and computational topol-
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FIGURE 1.1: From left to right: a network of proteinprotein interactions in yeast with 1,548 pro-
teins and 2,358 interactions [104]; 20,000 points sampled from the Swiss Roll data set [78]; a
triangulated molecular surface.

ogy to describe and measure features of the data. Specifically, we use spatial scan statistics
inspired methods to study the structure of graphs. We adopt persistent homology to study
triangulation of manifolds of dimension 1 and 2. We combine both statistical and topo-
logical methods to study homological structure of a point cloud data, and derive sampling
conditions for topological inferences.

A brief history of ideas. I have always been fascinated by biological phenomena, such
as protein interactions and transcription network. That is why I became interested in the
elevation function, which was useful in identifying coarse docking configurations for pro-
tein pairs [112]. It was defined on a smoothly embedded 2-manifold in R3 and constructed
based on the persistence structure of the 2-parameter family of height functions. In prac-
tice, the elevation local maximal were computed for piecewise linear triangulation of the
protein surfaces which mark their cavities and protrusions. The previous algorithm com-
puted the maxima in timeO(n5 log2 n), where n is the number of edges in the triangulation
[6]. We proposed an initial algorithm that runs in timeO(n5) by dividing the Gauss sphere
into regions and investigating the change of persistence pairing across regions. This initial
attempt leads us to a new way of thinking, of exploring the relation between elevation and
the Gaussian curvature. The resulting algorithm is described in Chapter 4. This is joint
work with Dmitriy Morozov and Herbert Edelsbrunner.

At the same time I was working on the elevation function, I had an opportunity to
work with the algorithm group at the HP Labs for a summer internship. The group at
the time, including my collaborators Robert Schreiber, Dennis Wilkinson, Nina Mishra
and Robert Tarjan, was working on graph clustering algorithms for studying web users’
browsing history. Several algorithms were discussed, including the ones based on edge
count and modularity from the physics literature. However, I was not quite satisfied with
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the clustering methods that rely on edge count but lack the statistical justification. After
working with Jeff Phillips at Duke, we came up with the graph scan statistics based on
hypothesis testing, which is described in Chapter 2.

With statistical tools at hand, it became rather tempting to take a statistical approach
towards the persistent homology. I started focusing on a small problem, namely, the total
persistence in expectation, which is discussed in Chapter 3.

My last project combines statistics with persistence. It started with the discussions with
Paul Bendich and Sayan Mukherjee. Inspired by the work on local homology of stratified
spaces [20], we would like to go further as to cluster points sampled from stratified spaces
into the same strata. Our proposed framework was based on mapping homology groups of
small neighborhoods of pairs of points to their intersections. For the theoretical part, we
first derived a topological inference theorem based on homological feature size. We also
studied the geometric intuitions behind the topological term. Furthermore, we looked at
the problem from a statistical perspective and derived a sampling condition to guarantee
our inference theorems with confidence. For the algorithm part, at first, we constructed
Rips complexes from the point sample and used Laplacian Eigenmaps to cluster points
based on weight derived from the homology maps. We realized later that the weight matrix
was ill-posed and the Rips complexes offered no topological guarantees of the underline
space. We took a step back and reexamined the work by using Delaunay triangulation and
Alpha complexes, this leads to the work described in Chapter 5.

Contributions. This thesis is about separating features from noise using techniques in
statistics and persistent homology. We start with a statistical measure that describes fea-
tures of graphs. We then study statistics on the expected total persistence, for functions
defined on the triangulation of 1- and 2-manifold and general topological spaces. Subse-
quently, we shift our attention to the world of persistent homology alone and investigate
the elevation function on the triangulation of protein surfaces. Finally, we combine both
statistics and persistence to describe features of point cloud data. We now discuss the four
contributions individually.

Spatial scan statistics introduced by Kulldorff [69] is commonly used to find anoma-
lous clusters of point sets in two or higher dimension. Points in the region with the largest
spatial scan statistic are most likely to be generated by a different distribution than points
outside the region. In Chapter 2, We generalize spatial scan statistics from point sets to
graphs and introduce a measure, the Poisson discrepancy, for the detection and inference
of statistically anomalous clusters of a graph. We discuss the important properties of this
statistic and its relation to modularity [98] and Bregman divergences [14]. We then imple-
ment two simple greedy algorithms which seek to locally maximize the measure. Finally
we illustrate the algorithm by showing its results on real-world data sets.

Continuing with the statistical scheme, in Chapter 3, we develop some theorems on
total persistence. We study constant functions defined on triangulation of manifold with
bounded Gaussian noise. We give upper bounds on the total persistence, in expectation, as
a function of sampling parameters and properties of the triangulation.
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We move to a pure persistence regime and study elevation function in Chapter 4. The
elevation function on a smoothly embedded 2-manifold in R3 reflects the multiscale topog-
raphy of cavities and protrusions as local maxima. The experimental study in [112] shows
that using the local maxima is effective in finding initial positions during protein docking
that can then be refined by local optimization. We develop a new algorithm whose worse-
case running time is the same as the algorithm in [6], through its performance is roughly
ten-thousand times faster for triangulated surfaces approximating smooth surfaces that we
typically find in practice. We cast light on this improvement by relating the running time
to the total absolute Gaussian curvature of the 2-manifold.

In Chapter 5, combining both statistics and persistence, we address the problem in
manifold learning where the underlining space contains singularities . Specifically, we are
interested in clustering points sampled from a stratified space into clusters that correspond
to different components of strata. We prove a strata inference theorem such that under
some geometrical and topological constraints, two points are considered similar at a given
scale level. We further provide sample complexity estimates on the number of points
needed to infer stratified structure with high probability. We then provide an algorithm
assigning similarity measure for pairs of points and test it on synthetic data.

4



Chapter 2
Spatial Scan Statistics
for Graph Clustering

We start the thesis by separating features from noise in graphs. By features, we mean
densely connected groups of vertices. By noise, we mean the connections between these
groups that interfere with the clustering process. For example, if a given graph represents
a social network where its vertices are people and its edges are human relationships, then
the clusters represent different social communities, and the noise come from interactions
between people in different groups.

2.1 Introduction
Many networks, commonly represented as graphs, are found to exhibit modular structure,
including social networks, gene regulatory network, metabolic network and the world wide
web. The problem of detecting such modular structure in graphs remains outstanding. Sta-
tistical analysis has revealed some global summary statistics about these graphs, including
degree distribution [15], and existence of small motifs [10]. One important approach is
called graph clustering, that is, the detection and characterization of densely connected
groups of vertices.

Prior Work. Clustering is well-established as an important method of information ex-
traction from large data sets. Hard clustering divides data into disjoint clusters while soft
clustering allows data elements to belong to more than one cluster. Existing techniques
include MCL [109], Ncut [106], graclus [46], MCODE [11], iterative scan [16], k-clique-
community [97], spectral clustering [95, 86], simulated annealing [75], or partitioning
using network flow [94], edge centrality [56] and functional dependencies [115].

In addition, several statistically motivated graph clustering techniques exist [66, 105,
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68]. Itzkovitz et. al. discussed distributions of subgraphs in random networks with arbi-
trary degree sequence, which have implications for detecting network motifs [66]. Sharan
et. al. introduced a probabilistic model for protein complexes taking conservation of pro-
tein sequences into consideration [105]. Koyuturk et. al. identified clusters by employing
a min-cut algorithm where a subgraph was considered to be statistically significant if its
size exceeded a probabilistic estimation based on a piecewise degree distribution model
[68]. These techniques are all different from our approach as our model detects statisti-
cally significant clusters that are most likely to be generated by a different distribution than
the baseline distribution, as this becomes clear later.

A general clustering framework using Bregman divergences as optimization functions
has been proposed by Banerjee et. al. [47, 13, 14]. This approach is of note because the
optimization function we use can be interpreted as a Bregman divergence, although our
theoretical and algorithmic approaches are completely different.

Numerous techniques have been proposed for identifying clusters in large networks,
but it has proven difficult to meaningfully and quantitatively assess them, especially from
real-world data whose clustering structure is a priori unknown. One of the key chal-
lenges encountered by previous clustering methods is rating or evaluating the results. In
large networks, manual evaluation of the results is not feasible, and previous studies have
thus turned to artificially created graphs with known structure as a test set. However,
many methods, especially those in which the number of clusters must be specified in ad-
vance, give very poor results when applied to real-world graphs, which often have a highly
skewed degree distribution and overlapping, complex clustering structure [56, 90].

The problem of assessment was partially solved by the introduction of modularity [33],
a global objective function that evaluates clusters by rewarding existing internal edges
and penalizing missing internal edges. Non-overlapping clusters, or partitions of a graph,
are obtained by maximizing the distance from a random graph model, either by extremal
optimization [48], fast greedy hierarchical algorithms [85, 97], simulated annealing [98]
or spectral clustering [86].

However, modularity cannot directly assess how unexpected and thus significant in-
dividual clusters are. Additionally, it cannot distinguish between clusterings of different
granularity on the same network. For example, comparable overall modularities were
reported for hard clusterings of the same scientific citation graph into 44, 324, and 647
clusters [97], results which are clearly of varying usefulness depending on the application.

scan statistic [57] measure densities of data points for a sliding window on ordered
data. The densest regions under a fixed size window are considered the most anoma-
lous. This notion of a sliding window has been generalized to neighborhoods on directed
graphs [96] where the neighborhood of a vertex is restricted to vertices within some con-
stant number of edges in the graph. The number of neighbors is then compared to an
expected number of neighbors based on previous data in a time-marked series.

Spatial scan statistics were introduced by Kulldorff [69] to find anomalous clusters of
points in 2 or greater dimensions without fixing a window size. These statistics measure
the surprise of observing a particular region by computing the log-likelihood of the most
likely model for a cluster versus the probability of the most likely model for no cluster.
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Kulldorff argues that the region with the largest spatial scan statistic is the most likely
to be generated by a different distribution, and thus is most anomalous. This test was
shown to be the most powerful test [72] for finding a region which demonstrates that the
data set is not generated from a single distribution. Kulldorff [69] derived expressions
for the spatial scan statistic under a Poisson and Bernoulli model. Agarwal et. al. [5]
generalized this derivation to 1-parameter exponential families, and Kulldorff has studied
various (see [71]) other forms of this statistic. Many techniques exist for computing the
statistic quickly for anomaly detection for point sets [83, 70, 4]. Recent work by Neil et.
al. [83] searched for the rectangular region with the highest density among O(N4) grids
and computed its significance by randomization. They improved the naive algorithm of
O(N4) to O((N logN)2) time by partitioning the points into partially overlapping regions
using a novel overlap-kd tree data structure.

Contribution. In this chapter, we generalize spatial scan statistics from point sets to
graphs. The main contributions are:

• We present a measure for the detection and inference of statistically anomalous clus-
ters of a graph. We give a measure that determines how significant the clusters are
using a normalized measure of likelihood.

• We discuss some important properties of this measure and its relation to modularity
and Bregman divergences.

• We implement two simple greedy algorithms which seek to locally maximize the
measure. We apply these algorithms to a variety of real-world data sets, and we
illustrate its ability to identify statistically significant clusters of selected granularity.

2.2 Preliminaries
In this section, we introduce the mathematical and statistical background needed to under-
stand spatial scan statistics for graph clustering. We begin with mathematical definition of
graphs. Then we describe Poisson processes and Poisson distributions from a statistical
point of view. We move on to consider Poisson random graph models which provide the
foundation for our description of the graph scan statistics. We also touch base on likeli-
hood function and hypothesis testing for non-specialists. The Poisson process definitions
are from [100]. The basics on hypothesis testing are found in standard textbook [24].

Graphs. Let G = (V,E) be an undirected graph allowing loops and multiple edges
between a pair of vertices. V = {v1, v2, ..., v|V |} is the vertex set where |V | is its size.
[V ]2 = {{vi, vj}|vi, vj ∈ V } is the set of 2-element multisets called edges, that is, the
two endpoints of an edge are not necessarily different. E is a multiset of edges in [V ]2

and c(V ) = |E| is its size. Let c0(x) be the multiplicity of the edge x ∈ [V ]2 in E.
d = {d1, d2, ..., d|V |} is the degree sequence for V , where di is the degree of a vertex vi,
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that is, the number of edges in E that contain vi. A loop at vi is counted twice in the
degree. dU =

∑
vi∈U di is the total degree of a subset U of the vertex set.

A cluster is a subset of vertices W ⊆ V . W induces a subgraph G(W ) = (W,E(W ))
with E(W ) containing all edges x = {vi, vj} ∈ E with vi, vj ∈ W . The collection of
all clusters W ⊆ V is denoted as W . Define c(W ) as the number of edges in G(W ),
c(W ) = |E(W )| =

∑
x∈[W ]2 c0(x).

sd(U,W ) is the size of the symmetric difference between U,W ⊆ V , sd(U,W ) =
|U |+ |W |−2|U ∩W |. Lk(U) is the link of a vertex set U ⊆ V defined as Lk(U) = {vj ∈
V \ U | {vi, vj} ∈ E and vi ∈ U}.

Poisson process and Poisson distribution. The Poisson process is a counting process
with a set of random variables {N(t), t ≥ 0}, where N(t) counts the number of events
occur up to time t, for 0 ≤ t <∞. It has the following properties [100]:

• N(0) = 0.

• (Independent increments) N(t)−N(s) and N(u)−N(v) are independent for non-
overlapping intervals (s, t] and (v, u].

• (Stationary increments) The distribution of N(t)−N(s) only depends on the length
of the interval (s, t].

• No counted occurrences are simultaneous.

As a consequence of the above definition, the probability distribution of N(t) is a
Poisson distribution with parameter λ. Here, λ is the expected number of events that occur
during an interval of length t. Let X be a random variable denoting the number of events
that occur during that interval, that is, X = N(t + s) − N(s) = N(t) − N(0) = N(t).
Then

Pr (X = k) =
e−λλk

k!
.

We say X is distributed as a Poisson random variable with intensity λ, X ∼ Poi (λ).
If a random variable X is Poisson distributed with parameter λ, it has the following

basic properties.

(1)
∑

k 6=0 Pr (X = k) = 1.

(2) X has mean λ.

(3) X has variance λ and standard deviation
√
λ.

(4) Implied by (3), if a random selection is made from a Poisson process with intensity
λ such that each event is selected with probability p, independently of the others, the
resulting process is a Poisson process with intensity pλ [111]. p is referred to as the
random selection rate.
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(5) If Xi ∼ Poi (λi), i = 1, ..., N where Xi are independent, then Y =
∑N

i=1Xi ∼
Poi (

∑N
i=1 λi).

(6) The Poisson distribution is the limit of a binomial distribution for which the num-
ber of trials, n, approaches infinity and the probability of success on each trial, p,
approaches 0 in such a way that λ = np [99]. The details are shown below.

We have

Pr (X = k) =

(
n

k

)
pk(1− p)n−k.

Setting λ = np,

Pr (X = k) =
n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=
λk

k!

n!

(n− k)!nk

(
1− λ

n

)n(
1− λ

n

)−k
.

As n → ∞, n!
(n−k)!nk → 1,

(
1− λ

n

)n → e−λ,
(
1− λ

n

)−k → 1. Substituting the lim-
its in the expression for the binomial distribution gives the Poisson frequency function,
Pr (X = k) = e−λλk/k!.

For the rest of this chapter, we say a random variable X is Poisson distributed, that is,
X ∼ Poi (λ), if its distribution is approximated by the Poisson distribution with λ in the
limit as n goes to ∞.

Poisson random graph model. Many large real-world graphs have diverse and non-
uniform degree distributions [15, 8, 7] that are not accurately described by the classic
Erdös and Rényi random graph models [53]. We consider a Poisson random graph model
here that captures some main characteristics of real-world graphs, specifically, allowing
vertices to have different expected degrees. Notice that this model is different from models
used in [30, 33].

We are given a graph G = (V,E) with a vertex set V degree sequence d. The total
degree of vertices in G is dV =

∑
vi∈V di. The number of edges in G is m = c(V ) =

|E| = dV /2.
We first describe a binomial random graph model which generates random graphs

with the above two parameters V and d. In the limit, it becomes the Poisson random
graph model. It chooses a total of m pairs of vertices as edges through m steps, with
replacement. At each step, each of the two end-points of an edge is chosen among all
vertices with probability proportional to their degrees.

A random graph generated under the model has the following properties:

(1) The number of edges is m (by definition).

(2) The expected degree of vertex vi is di (by construction), m(di/2m+ di/2m) = di.

9



(3) The probability that a single draw generates the edge x = {vi, vj} is

p(x) =

{
didj/2m

2 i 6= j
d2
i /4m

2 i = j

(4) The expected multiplicity of the edge x = {vi, vj} after m draws is therefore

µ0(x) = mp(x) =

{
didj/2m i 6= j
d2
i /4m i = j

(5) For a cluster W ⊆ V , the expected number of edges connecting vertex pairs in [W ]2

is,
µ(W ) =

∑
x∈[W ]2

µ0(x) = d2
W/4m.

Note that when W = V , we get µ(V ) = d2
V /4m = m, which is consistent with (1).

It is important to note that the binomial random graph model chooses exactly m edges.
Let N (x) be a random variable describing the multiplicity of the edge x = {vi, vj}. By
construction, Pr (X = k) =

(
m
k

)
p(x)k(1 − p(x))m−k. As shown previously, in the limit,

as m→∞, p(x) → 0 such that µ0(x) = mp(x), N (x) becomes Poission distributed with
parameter µ0(x).

We now introduce the Poisson random graph model which is equivalent to the lim-
iting behavior of the Binomial random graph model. It generated random graph with
graph Poisson process. For the rest of the chapter, we use this model to derive our spatial
scan statistics. The Poisson random graph model chooses m edges in expectation. More
precisely, for each pair of vertices x, the number of edges between them is drawn from
a Poisson distribution of parameter µ0(x). Therefore, a graph generated by the Poisson
random graph model has the following properties,

(1) The expected number of edges is m.

(2) The expected degree of vertex i is
∑

j 6=i didj/2m+ 2d2
i /4m = di, given

∑
j 6=i dj =

2m− di.

(3) By definition, let N (x) be a random variable describing the multiplicity of the edge
x = {vi, vj},

N (x) ∼ Poi (µ0(x)).

The expected value of N (x) is µ0(x).

(4) Let N (W ) be a random variable describing the number of edges connecting vertex
paris in [W ]2, N (W ) =

∑
x∈[W ]2 N (x) and,

N (W ) ∼ Poi (µ(W )).

Note that when W = V , we get N (V ) ∼ Poi (µ(V )) = Poi (m), that is, the
expected number of edges in the graph is m, consistent with (1).
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FIGURE 2.1: Example of a cluster and its various measures.

Correspondingly, if a random selection rate p is associated with a graph Poisson pro-
cess of intensity λ, then we have a graph Poisson process with intensity pλ.

A simple example is shown in Figure 2.1, where cluster W = {v1, v2, v3, v4}. The
total number of edges is c(V ) = 10. The number of edges in the cluster W is c(W ) = 6.
The number of edges between vertex pairs are c0({v1, v1}) = 0, c0({v1, v2}) = 1. The
total number of expected edges is µ(V ) = 10. The number of expected edges in W is
µ(W ) = 169/40. The number of expected edges between vertex pairs are µ0({v1, v1}) =
3×3/(4×10) = 9/40, µ0({v1, v2}) = 3×3/(2×10) = 9/20. Notice that in this example
c(W ) 6= µ(W ).

Bipartite extensions. Many data sets which are applicable to the Poisson random graph
model are bipartite graphs. Thus we derive here the bipartite extensions to our definitions.

An undirected graph G = (V,E) is bipartite if there is a partition V = X ∪ Y , with
X and Y disjoint, and E is a multiset of edges in [XY ], where [XY ] = {{vi, vj}|vi ∈
X, vj ∈ Y }. An element x = {vi, vj} ∈ [XY ] is defined as an edge. G does not allow
loops but allows multiple edges between a pair of distinct vertices. A cluster is a subset
of vertices W ⊆ V , where W = XW ∪ YW , XW ⊆ X and YW ⊆ Y . [XWYW ] =
{{vi, vj}|vi ∈ XW , vj ∈ YW}. W induces a subgraph G(W ) = (W,E(W )).

Let m be the total number of edges in the bipartite graph, m =
∑

vi∈X di =
∑

vj∈Y dj .
The bipartite binomial random graph model differs from the previous model that it does
not allow edges between vertices in the same partition. A graph generated by the model
has the following properties:

(1) The number of edges is m (by definition).

(2) The expected degree of vertex vi is di (by construction), that is, m(di/m) = di.

(3) The probability that we draw the edge x = {vi, vj}, vi ∈ X , vj ∈ Y is

p(x) = didj/m
2.

(4) The expected multiplicity of the edge x = {vi, vj} is

µ0(x) = mp(x) = didj/m.
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FIGURE 2.2: Intuitive understanding of likelihood and probability.

(5) For a cluster W ⊆ V , the expected number of edges connecting vertex pairs in
[XWYW ] is

µ(W ) =
∑

x∈[XWYW ]

µ0(x) = dXdY /m.

Notice that for W = V , this gives µ(V ) = m.

We derive the bipartite Poisson random graph model similarly as the limit of the binomial
model.

Likelihood function and maximum likelihood estimator. In statistical inference, a
likelihood function (or likelihood) is a function of the parameters of a statistical model that
allows estimation of unknown parameters based on known outcomes. For a discussion, see
[17]. It is important to understand the distinction between “likelihood” and “probability”
as the latter is used to predict unknown outcomes based on known parameters. Formally,
let f(x|θ) denote the probability density function of the random variable X . That is, over
any range R, Pr (X ∈ R) =

∫
x∈R f(x|θ)dx, based on a known parameter θ. Then, the

function of θ defined by

L (θ|x) = f(x|θ)

is call the likelihood function ([24], page 290). L (θ|x) is viewed as a function of θ with
x fixed, while f(x|θ) is viewed as a function of x with θ fixed. Intuitively, see Figure 2.2.
We are given a two parameter function F (x, θ), if we fix θ, we obtain probability density
function f(x|θ); if we fix x, we obtain likelihood function L(θ|x). Both are visualized as
“slices” of F (x, θ). When both slices intersect, that is when L (θ|x) = f(x|θ).

It is important to note that L (θ|x) does not imply a conditional on x, to be consistent
with literature, L (θ|x) is sometimes denoted as L (θ;x). However, here we adapt the
former notation used in [24].

Another concept closely related to the likelihood function is the maximum likelihood
estimator defined below.
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Definition 2.2.1 (Definition 7.2.4 in [24]). For sample point x, let θ̂(x) be a parameter
value at which L (θ|x) obtains its maximum as a function of θ with x fixed. A maximum
likelihood estimator (MLE) of the parameter θ based on a sample X is θ̂(X).

Hypothesis testing and likelihood ratio test. For non-specialist, we review an impor-
tant frequentists’ inference method, called hypothesis testing. The rest of this section is
standard textbook definitions from [24].

Definition 2.2.2 (Definition 8.1.1, 8.1.2 and 8.1.3 in [24]). A hypothesis is a statement
about a population parameter. The two complementary hypotheses in hypothesis testing
are called the null hypothesis and the alternative hypothesis, denoted by H0 and H1, re-
spectively. A hypothesis testing is a rule that specifies: 1) For which sample values the
decision is made to accept H0 as true; 2) For which sample values H0 is rejected and H1

is accepted as true.

If θ denotes a population parameter, the general format of the null and alternative
hypothesis is H0 : θ ∈ Θ0, H1 : θ ∈ Θc

0, where Θ0 is some subset of the parameter space
Θ and Θc

0 is its complement ([24], page 373). The subset of the sample space for which
H0 is rejected is called the rejection region or critical region. A hypothesis test is usually
specified in terms of a test statistic, which is a function of the sample. The likelihood ratio
test statistic for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc

0 is defined as follows, which
equals the ratio of the maximum likelihood values,

λ(x) =
supΘ0

L (θ|x)
supΘ L (θ|x)

=
L (θ̂0|x)
L (θ̂|x)

.

A likelihood ratio test (LRT) is any test that has a critical region of the form {x : λ(x) ≤ c}
for some 0 ≤ c ≤ 1. It has the following properties [107],

• 0 ≤ λ(x) ≤ 1;

• When θ̂ is far away from θ̂0, λ(x) is small, then H0 should be rejected.

It is important to note that sometimes the reciprocal is used as the definition, as we will
see in the case of spatial scan statistic. The alternative definition of the LRT statistic is,

λ(x) =
L (θ̂|x)
L (θ̂0|x)

,

where λ(x) ≥ 1, when λ(x) is large, H0 should be rejected.

Uniformly most powerful test. A hypothesis test might make one of two types of errors.
Let R be the rejection region for a test. If θ ∈ Θ0 but the test incorrectly decides to
reject H0, it makes the Type I Error, the probability of making Type I error is denoted as
Pθ(X ∈ R), which is commonly known as the false positive rate. If θ ∈ Θc

0 but the test
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FIGURE 2.3: Type I and Type II error.

incorrectly decides to accept H0, it makes the Type II Error, the probability of making
Type II error is denoted as Pθ(X ∈ Rc) = 1 − Pθ(X ∈ R) [24], which is commonly
known as the false negative rate. Both Type I and Type II error are shown in Figure 2.3.

The power function of a hypothesis test with rejection region R is the function of θ
defined by β(θ) = Pθ(X ∈ R) [24]. For θ ∈ Θ0, it equals the probability of a Type I
Error. For θ ∈ Θc

0, it equals one minus the probability of a Type II Error. The power of a
test is the probability that the test will not make Type II error. In practice, a good test has
power function near 0 for most θ ∈ Θ0 and near 1 for most θ ∈ Θc

0 [24].
For 0 ≤ α ≤ 1, a test with power function β(θ) is a level α test if supθ∈Θ0

β(θ) ≤ α
[24]. α is called the significance level.

Definition 2.2.3 (Definition 8.3.11 in [24]). Let C be a class of tests for testingH0 : θ ∈ Θ0

versus H1 : θ ∈ Θc
0. A test in class C with power function β(θ), is a uniformly most

powerful (UMP) class C test if β(θ) ≥ β′(θ) for every θ ∈ Θc
0 and every β′(θ) that is a

power function of a test in class C.

Simply put, a test is UMP if it has a smaller Type II error than all other tests in the
same class. In short, level α test controls the probability of a Type I Error while UMP
controls that of a Type II Error.

Individually most powerful test. As noted by Kulldorff, we cannot expect to find a
UMP test except for the special case when there is only one cluster in the alternative
hypothesis. He then defines individually most powerful (IMP) test as follows [69]. In-
tuitively, when a test is compared to any other test with the same Type I error and same
rejection region R except for a subset Rk ⊂ R, it is IMP if it has a smaller Type II error in
Rk.

The parameter space Θc
0 is partitioned into a countable number of subsets {Aj}. Like-

wise using the same index, the critical region R is partitioned into subsets {Rj}. Let R′

denote an alternative critical region with corresponding disjoint subsets, {R′
j}.
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Definition 2.2.4. A test is individually most powerful with respect to a partition {Aj} of
the parameter space Θc

0, and a partition {Rj} of the critical region R, if for each Ak there
are no sets R′ and {R′

j} such that: assuming a significance level α,

• β(θ) = β′(θ) if θ /∈ Ak.

• β(θ) < β′(θ) if θ ∈ Ak.

This is illustrated in Figure 2.3.
This means, if we fix the critical region except for its subset Rk, then the test is uni-

formly most powerful compared to all remaining choices of the critical region and with
respect to all parameters θ ∈ Ak.

2.3 Graph Scan Statistic
In this section we generalize the notion of a spatial scan statistic [69] from point sets to
graphs, we call our measure the graph scan statistic. We highlight some important prop-
erties of this statistic, as well as its relation to local modularity and Bregman divergences.
It is this graph scan statistic that we use to provide quantitative assessment of significant
clusters.

Overview. We are given a graph G = (V,E) with vertex set V and degree sequence d.
Here we consider two graph Poisson processes based on these two parameters, V and d.

For a fixed cluster W ⊆ V , a graph Poisson process generates a random graph with
parameters V , d and two random selection rates p and q, such that edges in the graph
are generated with rate p and edges outside are generated with rate q. The first process
requires that p = q and generates a random graph G0 = (V,E0). Let X0 be the random
variable describing the number of edges in G0, X0 ∼ Poi (pµ(V )). The second process
requires p > q and generates a random graphG1 = (V,E1). LetX1 be the random variable
describing the number of edges in G1, X1 ∼ Poi (pµ(W ) + q(µ(V )− µ(W ))).

The graph scan statistic is a likelihood ratio test statistic. The null hypothesis H0

assumes thatG = G0. That is, all edges inG are generated at the same rate. The alternative
hypothesis H1 assumes that G = G1. That is, the edges in the cluster are generated at a
higher rate than those outside. Since we are interested in detecting dense clusters, we
ignore the part of parameter space where p < q.

Our null hypothesis H0 and alternative H1 hypothesis are,

• H0 : p = q.

• H1 : p > q.

For a fixed W , the likelihood function under H0 and H1 are L0 = L(p, q|G = G0) and
L1 = L(p, q|G = G1), respectively. L0 obtains its maximum with its maximum likelihood
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estimators p̂, q̂, let L̂0 = L(p̂, q̂|G = G0). Similarly, let L̂1 = L(p̂, q̂|G = G1). We obtain
the maximum likelihood function L̂ = L(p, q|G) over the entire parameter space as,

L̂ =

{
L̂1 if p̂ > q̂,

L̂0 otherwise.

The likelihood ratio test statistic for a fixed W is

λ =
L̂

L̂0

=

{
L̂1

L̂0
if p̂ > q̂,

1 otherwise.

As we vary W , the LRT statistic is a function of W . Specifically, L̂ is a function of W .
That is, λ = λ(W ) = L̂(W )

L̂0
. Our graph scan statistic is defined as,

Λ = max
W∈W

λ(W ).

Derivation. We start our derivation with λ(W ) for a fixed W . Under H0, since p = q,
we compute L0 = L(p, q|G = G0) = L(p|G = G0). The probability of c(V ) edges being
observed inG0 is Pr (X0 = c(V )), whereX0 ∼ Poi (pµ(V )). The probability that a single
draw generates the edge x is f(x) = µ0(x)

µ(V )
. Let ξ be the number of orderings of edges in

G0 (to be exact, the number of permutations of a multiset). Therefore,

L0 = Pr(X0 = c(V ))ξ
∏
x∈G0

f(x)

=
e−pµ(V )(pµ(V ))c(V )

c(V )!
ξ
∏
x∈G0

µ0(x)

µ(V )

=
e−pµ(V )pc(V )

c(V )!
ξ
∏
x∈G0

µ0(x).

We compute a MLE of p as p̂ = c(V )
µ(V )

= 1. The maximized L0 is

L̂0 =
e−c(V )

c(V )!
ξ
∏
x∈G0

µ0(x).

Under H1, we compute L1 = L(p, q|G = G1). The probability of c(V ) edges being
observed in G1 is Pr(X1 = c(V )), where X1 ∼ Poi (pµ(W ) + q(µ(V )− µ(W ))). The
probability that a single draw generates the edge x is,

f(x) =

{
pµ0(x)

pµ(W )+q(µ(V )−µ(W ))
x ∈ E1(W ),

qµ0(x)
pµ(W )+q(µ(V )−µ(W ))

x ∈ E1 \ E1(W ).
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Therefore, for a fixed W ,

L1(W ) = Pr(X1 = c(V ))ξ
∏

x∈E1(W )

f(x)
∏

x∈E1\E1(W )

f(x)

=
e−pµ(W )−q(µ(V )−µ(W ))

c(V )!
(pµ(W ) + q(µ(W )− µ(W )))c(V )

· ξ
∏

x∈E1(W )

pµ0(x)

pµ(W ) + q(µ(V )− µ(W ))

∏
x∈E1\E1(W )

qµ0(x)

pµ(W ) + q(µ(V )− µ(W ))

=
e−pµ(W )−q(µ(V )−µ(W ))

c(V )!
pc(W )qc(V )−c(W )ξ

∏
x∈E1

µ0(x).

For a fixed W , L1 takes its maximum at p̂ = c(W )
µ(W )

, q̂ = c(V )−c(W )
µ(V )−µ(W )

, and

L̂1(W ) =
e−c(V )

c(V )!

(
c(W )

µ(W )

)c(W )(
c(V )− c(W )

µ(V )− µ(W )

)c(V )−c(W )

ξ
∏
x∈E

µ0(x).

The likelihood function of the entire parameter space with its MLEs is,

L̂(W ) =

{
L̂1(W ) if c(W )

µ(W )
> c(V )−c(W )

µ(V )−µ(W )
,

L̂0 otherwise.

Given W ∈ W , we define the likelihood ratio λ(W ) as

λ(W ) =
L̂(W )

L̂0

.

The graph scan statistic, Λ, is the maximum likelihood ratio over all clusters W ∈ W ,

Λ = max
W∈W

λ(W ).

If there is at least one cluster W ∈ W such that c(W )
µ(W )

> c(V )−c(W )
µ(V )−µ(W )

, we define

Λ = max
W∈W

(
c(W )

µ(W )

)c(W )(
c(V )− c(W )

µ(V )− µ(W )

)c(V )−c(W )

,

otherwise, Λ = 1.

Simplification. Let r(W ) = c(W )
c(V )

and b(W ) = µ(W )
µ(V )

. Notice that c(V ) = µ(V ). We
define the Poisson discrepancy, dP , as

dP (W ) = r(W ) log
r(W )

b(W )
+ (1− r(W )) log

1− r(W )

1− b(W )
.
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Intuitively, r(W ) is the observed edge ratio and b(W ) is the baseline edge ratio in G(W )
and G.

Since log Λ = c(V ) maxW∈W dP (W ) = maxW∈W log λ(W ), for the cluster W that
maximizes dP , dP (W ) constitutes the graph scan statistic Λ. This means that the likelihood
test based on maxW∈W dP (W ) is identical to one based on Λ.

Since 0 < r(W ), b(W ) ≤ 1, from this point on, for computational purpose, we eval-
uate clusters based on the Poisson discrepancy. dP determines how surprising r(W ) is
compared to the rest of the distribution. Thus clusters with larger values of dP are more
likely to be inherently different from the rest of the data.

Significance of a Cluster. Although we can consider all clusters W ∈ W and deter-
mine the one that is most anomalous by calculating the Poisson discrepancy, this does not
determine whether this value is significant. Even a graph generated according to a Pois-
son random graph model will have some cluster which is most anomalous. For a graph
G = (V,E) with degree sequence d and for a particular clusterW we can compare dP (W )
to the distribution of the values of the most anomalous clusters found in a large set of (say
1000) random data graphs. To create a random data graph, we fix V ; then we randomly
select c(V ) edges according to a Poisson random graph model with expected degree se-
quence d. If the Poisson discrepancy for the original cluster is greater than all but a α
fraction of the most anomalous clusters from the random data sets, then we say it has a
p-value of α, i.e. α = 0.05. The lower the p-value, the more significantly anomalous the
range is. These high discrepancy clusters are most significant because they are the most
unlikely compared to what is expected from our random graph model.

2.3.1 Properties of Graph Scan Statistics
Kulldorff has proved some optimal properties for the likelihood ratio test statistic for point
sets [69, 72]. In the context of graphs, we describe those properties essential for detecting
statistically anomalous clusters in terms of dP . For details and proofs, see Appendix A.
As direct consequences of Theorem 1 and 2 in [69], we have

Theorem 2.3.1. Let X = {xi|xi ∈ E}c(V )
i=1 be the set of edges in G = (V,E) where Ŵ is

the most likely cluster. Let X ′ = {x′i|x′i ∈ [V ]2}c(V )
i=1 be an alternative configuration of a

graph G′ = (V,E ′) where ∀xi ∈ E(Ŵ ), x′i = xi. If the null hypothesis is rejected under
X , then it is also rejected under X ′.

Intuitively, as long as the edges within the subgraph constituting the most likely cluster
are fixed, the null hypothesis is rejected no matter how the rest of the edges are shuffled
around.

This theorem implies that:

1. dP (W ) does not change as long as its internal structure and the total number of
reported edges outside W remains the same. Intuitively, clusters defined by other
vertex subsets do not affect the discrepancy on W . Formally, dP (W ) is independent
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of the value of c0(x) for any edge x ∈ E \ E(W ), as long as c(V )− c(W ) remains
unchanged.

2. If the null hypothesis is rejected by dP , then we can identify a specific cluster that is
significant and implies this rejection. This distinguishes between saying “there exist
significant clusters” and “the cluster W is a significant cluster,” where dP can do the
latter.

Theorem 2.3.2. dP is individually most powerful for finding a single significant cluster:
for a fixed false positive rate and for a given set of subgraphs tested, it is more likely to
detect over-density than any other test statistic [83].

This is paramount for effective cluster detection. It implies that:

3. We can determine the single edge x ∈ [V ]2 (or set of edges) that will most increase
the Poisson discrepancy of a cluster, and thus most decrease its p-value.

2.3.2 Graph Scan Statistics and Local Modularity
Several local versions of modularity have been used to discover local community structure
[32, 81]. Specifically, local modularity introduced in [98] is used to find the community
structure around a given node. The local modularity of W ⊆ V measures the differ-
ence between the number of observed edges among vertex pairs in [W ]2 and the number
expected, µ(V ),

Qγ(W ) = c(W )− γµ(W ).

One approach to clustering is to find the cluster W that locally maximizes Qγ . The γ pa-
rameter with default value 1, is a user specified knob [98] that scales the expected number
of edges among vertex pairs in [W ]2 under a Poisson random graph model. We observe
that it effectively tunes the size of the clusters which optimize Qγ(W ). For a fixed cluster
W , Qγ can be treated as a linear function of γ, where its intersection with the Y -axis is
c(W ), and its slope is −µ(W ). Qγ for all W ∈ W forms a family of linear functions
whose upper envelope corresponds to clusters that maximize Q as γ varies. It can be ob-
served that as γ increases, c(W ) is non-increasing and µ(W ) is non-decreasing for the
cluster W that maximizes Qγ . When γ = 1, we denote Q = Q1.

It is important to distinguish Q from dP . While Q measures the edge distance from
the expected random graph, dP measures the difference in how likely the total number of
edges are to occur in a general random graph and how likely they are to occur in cluster
W and its complement as separate random graph models. To summarize, Q calculates the
distance, and spatial scan statistics measure how unexpected this distance is, given W .

Using some machinery developed by Agarwal et. al. [5] we can create an ε-approximation
of dP with O(1

ε
log2 |V |) linear functions with parameters r(V ) and b(V ), in the sense that

the upper envelope of this set of linear functions will be within ε of dP . We can interpret
Qγ as a linear function whose slope is controlled by the value of γ. Figure 2.4 shows
how Q1 and Q2, respectively, approximate dP . Thus we can find the optimal cluster for
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FIGURE 2.4: Comparison of dP (gridded) to 1
mQ1 (transparent, left panel) and 1

mQ2 (transparent,
right panel) over (r(W ), b(W )) ∈ [0, 1]2 such that r(W ) > b(W ). Recall that r(W ) and b(W ) are
the actual and expected fraction of a graph’s edges which lie in a particular cluster; for applications
to large networks, a range of say (0, 0.2)2 is most pertinent to clustering. For this range, Q2 is
shown to approximate dP more closely than Q1.

O(1
ε
log2 |V |) values of γ and let W be the corresponding cluster from this set which has

the largest value of dP (W ). Let Ŵ be the cluster that has the largest value of dP (Ŵ )
among all possible clusters. Then dP (W ) + ε ≥ dP (Ŵ ).

However, a further study of Agarwal et. al. [4] showed that a single linear function
(which would be equivalent to γ = 2 for Qγ) approximated dP on average to within about
95% for a problem using point sets. Note in Figure 2.4 how Q2 seems to approximate dP
better than Q1, at least for a large portion of the domain containing smaller clusters.

Heuristic measure dP,γ . Several properties are also shared between dP and Q. The
tuning knob γ can be used in Poisson discrepancy to scale the expected number of edges
among vertex pairs in [W ]2.

dP,γ(W ) = r(W ) log
r(W )

γb(W )
+ (1− r(W )) log

(
1− r(W )

1− b(W )

)
Technically, the function dP,γ describes the effect of scaling by γ the expected number of
edges among vertex pairs in [W ]2 (but not outside the cluster), while not allowing q, the
parameter to model the random graph outside this cluster, to reflect γ. Thus in the same
way as with Qγ for large γ, clusters need to have significantly more edges than expected
to have a positive dP value. The following lemma highlights this relationship.

Lemma 2.3.3. Consider two clustersW1 andW2 such that dP,γ(W1) = dP,γ(W2) and that
c(W1) > c(W2). Then for any δ > 0 we know dP,γ+δ(W1) < dP,γ+δ(W2).

The same property holds for Qγ and µ in place of dP,γ and c, respectively. That is,
consider two clustersW1 and W2 such thatQγ(W1) = Qγ(W2) and that µ(W1) > µ(W2).
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Then for any δ > 0 we know Qγ+δ(W1) < Qγ+δ(W2).

Proof. We can write
dP,γ(W ) = dP (W )− r(W ) log γ,

thus as γ increases dP,γ(W1) will decrease faster than dP,γ(W2).
We can also write

Qγ(W ) = c(V )(r(W )− γb(W )) = Q1(W )− c(V )(γ − 1)b(W ).

Thus the same argument applies.

This implies that for the discrepancy measure, we should expect the size of the optimal
clusters to be smaller as we increase γ, as is empirically demonstrated in Section 2.5.

2.3.3 Graph Scan Statistics and Bregman Divergences
Many Bregman divergences, including the KL-divergence, can be interpreted as spatial
scan statistics. The KL-divergence is a measure of the difference between two probability
distributions α, β ∈ Rd such that DKL(α, β) =

∑d
i=1 αi logαi/βi. The KL-divergence

between two 2-point distributions is equivalent to dP up to a constant factor.
Banerjee et. al. use Bregman divergences in a different way than does this chapter. In

the context of graph bi-clustering, Bregman hard clustering finds a bi-partitioning and a
representative for each of the partitions such that the expected Bregman divergence of the
data points (edges) from their representatives is minimized. For details and derivations,
see [14].

The basic idea is as follows. Given a graph G = (V,E) and a random cluster W .
W induces a bipartition of edges in G. We compute a “center” edge for each partition.
Then we reassign each edge to its “closest” center where the closeness is measured by
KL-divergence. We iterate this process until the centers converge. Therefore we obtain a
bipartition of the graph.

More precisely, given a graph G = (V,E), let n be the number of potential edges in
G, n = c(V )2. Set [V ]2 = {x1, x2, ..., xn} has probability measure µ0. We start with
a random cluster W ⊆ V which induces a bi-partitioning of edges in G. That is, for
each xi ∈ [W ]2, we set ηi = ηW . For each xi ∈ [V ]2 \ [W ]2, we set ηi = ηŴ . Let
µ(W ) and µ(W̄ ) = µ(V ) − µ(W ) be the induced measures on the partitions, where
µ(W ) =

∑
xi∈[W ]2 µ0(xi). Let ηW and ηW̄ denote the partition representative values (the

“centers”).

ηW =
∑

xi∈[W ]2

µ0(xi)

µ(W )
c0(xi)

ηW̄ =
∑

xi∈X\[W ]2

µ0(xi)

µ(W̄ )
c0(xi)
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After computing ηW and ηW̄ , we reassign xi toW (set ηi = ηW ), ifDKL(µ(xi), ηW ) <
DKL(µ(xi), ηW̄ ), otherwise ηi = ηW̄ . Then recompute ηW and ηW̄ . Repeat until conver-
gence.

The Bregman clustering seeks to minimize the divergence between the two n-point
distributions

{〈c0(x1), c0(x2), . . . , c0(xn)〉, 〈η1, η2, . . . ηn〉}
We, on the other hand, maximize the KL-divergence between the two 2-point distri-

butions
{〈r(W ), 1− r(W )〉, 〈b(W ), 1− b(W )〉}.

But the methods do not conflict with each other. Their ηW and ηW̄ variables are akin to p
and q in the derivation of the scan statistic. By minimizing their Bregman divergence, they
are trying to allow ηW and ηW̄ to be as close to variables they represent as possible (i.e.
ηW should be close to each c0(xi) for xi defined in clusterW ); and by maximizing our dis-
crepancy we are separating p and q as much as possible, thus probabilistically representing
the cluster edges and non-cluster edges more accurately with these ratios, respectively.

However, the Bregman divergence used by Banerjee et. al. [13, 14] typically assumes
a less informative, uniform random graph model where µ0(xi) = µ0(xj) for all i and j.
Also when minimizing the KL-divergence, no edge at xi would imply c0(xi) = 0, thus
implying that the corresponding term of the KL-divergence, c0(xi) log c0(xi)

ηi
, is undefined.

In their Bregman divergence model most similar to ours, this poses a problem as c0(xi)
can be 0 in our model; thus we do not compare the performance of these algorithms.

2.4 Algorithms
In this section, we describe two bottom-up, greedy clustering algorithms. For a graph
G = (V,E) there are 2|V | possible clusters, That is, |W| ≤ 2|V |. Clearly it is intractable
to calculate discrepancy for every possible cluster through exhaustive search, as is often
done with spatial scan statistics. We can, however, hope to find a locally optimal cluster.
For an objective function Ψ : 2|V | → R, define a local maximum as a subset U ⊆ V such
that adding or removing any vertex will decrease Ψ(U). For some objective function Ψ
and two vertex sets U and W , define

∂Ψ(U,W ) =

{
Ψ(U ∪W )−Ψ(U) W ⊂ V \ U
Ψ(U \W )−Ψ(U) W ⊂ U

where Ψ(W ) = dP (W ) for W ⊆ W . Let U+ (resp. U−) be the set of vertices in Lk(U)
(resp. U ) such that ∂Ψ(U, v) > 0 for each vertex v in Lk(U) (resp. U ). U+

F (resp. U−
F )

denotes the subset of U+ (resp. U−) that contains the fraction F of vertices with the largest
∂Ψ(U, v) values. We now are set to describe two algorithms for refining a given subset U
to find a local maximum in Ψ. Notice that both algorithms can be used to locally optimize
any objective function, not limited to the Poisson discrepancy used here. They are similar
to simple forms of simulated annealing where one fixes the temperature of the system
while the other reduced temperature over time.
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Greedy Nibble. The Greedy Nibble algorithm (Algorithm 1) alternates between an ex-
pansion phase and a contraction phase until the objective function cannot be improved.
During expansion (resp. contraction) we iteratively add (resp. remove) the vertex that
most improves the objective function until this phase can no longer improve the objective
function.

Algorithm 1 Greedy-Nibble(U)
repeat

expand = FALSE; contract = FALSE

v+ = arg maxv∈Lk(U) ∂Ψ(U, v).
while ∂Ψ(U, v+) > 0 do

expand = TRUE

U = U ∪ v+.
v+ = arg maxv∈Lk(U) ∂Ψ(U, v).

end while
v− = arg maxv∈U ∂Ψ(U, v).
while ∂Ψ(U, v−) > 0 do

contract = TRUE

U = U \ v−.
v− = arg maxv∈U ∂Ψ(U, v).

end while
until expand = FALSE and contract = FALSE

Greedy Chomp. The Greedy Chomp algorithm (Algorithm 2) is a more aggressive and
faster version of the Greedy Nibble algorithm. Each phase adds a fraction F of the vertices
which individually increase the Ψ value. If adding these F |U+| vertices simultaneously
does not increase the overall Ψ value, then the fraction F is halved, unless F |U+| ≤ 1.
Similar to simulated annealing, this algorithm makes very large changes to the subset at
the beginning but becomes more gradual as it approaches a local optimum.

Theorem 2.4.1. Both the Greedy Nibble algorithm and the Greedy Chomp algorithm con-
verge to a local maximum for Ψ.

Proof. The algorithms increase the value of Ψ at each step, and there is a finite number of
subsets, so they must terminate. By definition the result of termination is a local maximum.

Variations. There are many possible heuristic variations on the above algorithms. More
advanced simulated annealing can be used to direct the random walks in the graph, i.e.
by selecting vertices with probability proportional to their contribution to the objective
function.

In terms of initial seed selection, when time is not an issue, we recommend using each
vertex as a seed. This ensures that every interesting cluster contains at least one seed.
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Algorithm 2 Greedy-Chomp(U)
repeat

expand = FALSE; F = 1
Calculate U+

F

while
(
∂Ψ(U,U+

F ) < 0 and F |U+| ≥ 1
)

do
F = F/2; Update U+

F

end while
while

(
∂Ψ(U,U+

F ) > 0
)

do
expand = TRUE

U = U ∪ U+
F .

Calculate U+
F ; F = 1

while
(
∂Ψ(U,U+

F ) < 0 and F |U+| ≥ 1
)

do
F = F/2; Update U+

F

end while
end while
contract = FALSE; F = 1
Calculate U−

F

while
(
∂Ψ(U,U−

F ) < 0 and F |U−| ≥ 1
)

do
F = F/2; Update U−

F

end while
while

(
∂Ψ(U,U−

F ) > 0
)

do
contract = TRUE

U = U \ U−
F .

Calculate U−
F ; F = 1

while
(
∂Ψ(U,U−

F ) < 0 and F |U−| ≥ 1
)

do
F = F/2; Update U−

F

end while
end while

until (expand = FALSE and contract = FALSE)

For larger graphs, randomly sampling some vertices as seeds should work comparably
[98]. Clusters tend to be larger in this case, so most of them will still contain some seed.
Alternatively, we could run another clustering algorithm to generate an initial seed and just
use our greedy algorithms as a refinement.

In general, we use dP as the objective function, but it is more prone to getting stuck
in local maxima than is Q. Thus we enhance each initial seed by running the expansion
phase of the algorithm with Q2 since it closely approximates dP as shown in Figure 2.4.
We emphasize the importance of this variation in Appendix B.

Since our emphasis is on the discrepancy measurement rather than clustering tech-
nique, we focus on illustrating that these simple clustering techniques based on Poisson
discrepancy find locally significant clusters.
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Complexity It is difficult to analyze our algorithms precisely because they may alternate
between the expansion and contraction phases many times. But Theorem 2.4.1 shows that
this process is finite, and we notice that relatively few contraction steps are ever performed.
Hence we focus on analyzing the worst case of the expansion phase in both algorithms.

Both algorithms are output dependent, where the runtime depends on the size of the
final subset |W | and the size of its neighborhood |Lk(W )|.

For Greedy Nibble we can maintain Lk(W ) and calculate v+ in O(|Lk(W )|) time.
Thus the algorithm takes O(|W | · |Lk(W )|) time for each seed since v+ needs to be cal-
culated each iteration.

The Greedy Chomp algorithm could revert to the Greedy Nibble algorithm if F is
immediately reduced to 1/|U+| at every iteration. So worst case it is no faster than Greedy
Nibble. In fact, each iteration takes O(|Lk(W )| log |Lk(W )|) time because the ∂Ψ(U, v)
values are sorted for all v ∈ U+. However, in practice, a much smaller number of iterations
are required because a large fraction of vertices are added at each iteration. If F were
fixed throughout the algorithm, then we can loosely bound the runtime as O(log |W | ·
|Lk(W )| log |Lk(W )|). Since F is generally large when most of the vertices are added,
this is a fair estimate of the asymptotics.

This analysis is further evaluated empirically in Section 2.5.

2.5 Analysis
This section focuses on empirically exploring four aspects of this work. First, we investi-
gate the power and runtime of our algorithms. Second, we use Poisson discrepancy as a
tool to evaluate and compare different clustering algorithms. Third, we investigate proper-
ties of the clusters found by our algorithms maximizing Poisson discrepancy. Fourth, we
show that varying the γ parameter can give reliable estimates of the size of clusters and we
examine cases when distinct relevant clusters overlap. Finally, throughout this analysis we
demonstrate that maximizing Poisson discrepancy reveals interesting and relevant clusters
in real-world graphs.

Runtime on Real-world Datasets We demonstrate the effectiveness of our algorithm
on a variety of real world datasets, the sizes of which are summarized in Table 2.1.

The DBR dataset describes connections between threads (the set X) and users (the set
Y ) of the Duke Basketball Report message board from 2.18.07 to 2.21.07. Other datasets
include Web1 which links websites and users, Firm which links AP articles and business
firms, Movie which links reviewers and movies through positive reviews, and Gene which
links genes and PubMed articles. In each case, high discrepancy clusters can be used to
either provide advertising focus onto a social group or insight into the structure of the
dataset.

1 We thank Neilsen//Netratings, Inc., who provided the WEB dataset to us, for permission to use its data in
this investigation.
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Dataset |X| |Y | |E| Nibble Chomp
DBR 68 97 410 0.025 0.018
Web 1023 1008 4230 0.179 0.049
Firm 4950 7355 30168 9.377 0.251

Movie 1556 57153 1270473 - 32.91
Gene 6806 595036 1578537 - 242.7

TABLE 2.1: Sizes of real-world datasets and the average runtime in seconds for the Greedy Nibble
and Greedy Chomp algorithms starting with singleton seeds. Runtimes for Web and Firm were
generated with 100 random samples. Runtimes for Movie and Gene were generated with 50
random samples.

Power tests. Recall that the power of the test is the probability that the test statistic ex-
ceeds a critical value under some alternative hypothesis compared to some null hypothesis
[57]. To calculate the power of our algorithm, we synthetically insert significant clusters
into 100 random graphs and report the fraction of these graphs where our algorithm found
the injected cluster.

In particular, we generate bipartite graphs using the Poisson random graph model such
that |X| = |Y | = 100 and |E| = 500 where the expected degrees of vertices vary between
3 and 7. To inject a significant cluster, we choose a random set of vertices W = XW ∪
YW , where XW ⊂ X , YW ⊂ Y , and |XW | = |YW | = 15. We increase the probability
that an edge is chosen between two vertices in XW and YW by a factor of ρ. We scale
the probabilities on the other pairs of vertices in the graph so that each vertex retains its
original expected degree. By choosing an appropriate value of ρ, we can generate graphs
with the same expected degree sequence and whose injected cluster is expected to be
significant. We repeat this process until we generate 100 graphs whose injected clusters
have a p-value less than 0.05.

We run Greedy Nibble and Greedy Chomp using each vertex as a seed. We say that we
successfully found the injected clusterW if the algorithm returns a cluster Ŵ = XŴ ∪YŴ
such that sd(XŴ , XW ) ≤ |XW | and d(YŴ , YW ) ≤ |YW | and it either has p-value less than
0.05 or is among the top 5 clusters found.

We report the power of the algorithms in Table 2.2. It shows that 85% of the time
Greedy Chomp locates the injected clusters. Note that we have used a relaxed criteria to
determine when an injected cluster is found by our algorithm; a tighter qualification would
reduce this power measurement.

Algorithm Nibble Chomp
Power 0.83 0.85

TABLE 2.2: Power for Greedy Nibble and Greedy Chomp tested on graphs of size 100× 100 with
an injected cluster of size 15× 15 with p-value at most 0.05.

Algorithm Comparison. Poisson discrepancy provides an absolute measure of cluster
significance. This allows comparison between different clustering of the same graph. We
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can evaluate the effectiveness of existing clustering algorithms by calculating the discrep-
ancy of the clusters they find. Furthermore, we can enhance these clusters using Greedy
Nibble or Greedy Chomp to maximize their discrepancy and evaluate how far from the
local optimum these clusters used to be. We illustrate this by running the MCL algorithm
[109] and the Ncut algorithm [106] on DBR. MCL generated 35 clusters and we fixed the
number of clusters in Ncut to be 10. We report the top 4 clusters with the highest dP value
in Table 2.3. Ncut seems to find clusters with higher discrepancy. We then use clusters
found by MCL and DBR as seed sets in the Greedy Chomp, further refining them in terms
of their discrepancy. Ncut tends to do better than MCL in finding clusters within closer
proximity of discrepancy local maxima.

MCL 0.0376 0.0248 0.0223 0.0211
MCL+Chomp 0.0667 0.0790 0.0620 0.0698

Ncut 0.0692 0.0529 0.0527 0.0473
Ncut+Chomp 0.0757 0.0688 0.0635 0.0713

TABLE 2.3: dP values of top 4 clusters found with MCL and Ncut on DBR and the dP values after
their refinement with Greedy Chomp.

Cluster Overlap Analysis Many graph clustering methods partition the data into dis-
joint subsets, essentially making each a cluster. Our approach finds clusters which may
overlap, and it considers the rest of the graph uninteresting instead of forcing it to be a
cluster. We examine the top 6 clusters found from Greedy Nibble on DBR in an overlap
matrix (Table 2.4). We use each vertex in X as a singleton seed set. The 1st, 2nd, 3rd and
5th clusters are very similar, representing a consistent set of about 13 threads on topics
discussing the performance of players and strategy. The 4th cluster contains 14 threads
which were posted by users who seem more interested in the site as a community and are
more gossiping than analyzing. The 6th cluster contains an overlap of the above two types
of topics and users: users who are interested in the community, but also take part in the
analysis. The rest of the threads (about 60) deal with a wider and less focused array of
topics.

C 1 2 3 4 5 6 dP p-value
1 13 12 12 1 12 8 0.0783 0.009
2 12 12 11 1 12 8 0.0764 0.019
3 12 11 14 0 11 7 0.0754 0.020
4 1 1 0 14 1 6 0.0749 0.020
5 12 12 11 1 13 8 0.0718 0.022
6 8 8 7 6 8 16 0.0703 0.077

TABLE 2.4: Overlap of threads among the top 6 clusters for DBR with their dP and p-values found
with the Greedy Nibble algorithm.
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FIGURE 2.5: Plot of 1/γ vs. average cluster size on Web (top left), Firm (top right), Movie
(bottom left), and Gene (bottom right).

Discussion on dP,γ In the heuristic measure dP,γ , γ serves as a resolution scale. For our
algorithm, as γ varies, we observe an inverse linear correlation between γ and the average
cluster size (Figure 2.5). We also show that as γ varies, our algorithm locates clusters that
are statistically significant on different scales, and that their contents remain meaningful.

This near-linear correlation makes γ a reliable resolution scale for our clustering algo-
rithm. As γ goes to 0, the algorithm produces the whole graph as a cluster. As γ goes to
infinity, the algorithm produces trivial singletons. The flexibility to modify γ allows a user
to balance the importance of the statistical significance of the clusters found, maximized
by dP,γ , and their preferred size weighted by γ. This helps resolve issues (previously noted
about modularity by [54]) about the preferred size of clusters which optimize dP . For in-
stance when searching for more focused clusters of smaller size, a reasonable γ weight
can be easily inferred.

Manual evaluation of the results show that the contents of the clusters remain mean-
ingful and useful as γ is varied. For example, the top clusters found on the Movie dataset
with γ = 200 are shown to be popular box office movies in the 90’s as they are consistently
reviewed favorably by various reviewers. The top two clusters found on the Gene dataset
with γ = 200 are genes in the UDP glucuronosyltransferase 1 and 2 family. The 4th ranked
cluster consists of genes such as MLH and PMS, both are related to DNA mismatch repair.
The 8th ranked cluster for γ = 200 persists as the top ranked cluster when γ = 600; it
consists of several genes for the zona pellucida glycoprotein, i.e ZP1 and ZP3A.

As γ increases, the nontrivial clusters with a high dP,γ-discrepancy should generally
be much denser internally, since the ratio between the actual internal edges and expected
edges should be greater than a given γ. On the other hand, clusters which persist as the top
ranked clusters as γ increases are those that are most statistical significant in a dynamic
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FIGURE 2.6: Web: cluster rank vs. cluster discrepancy with each X vertex used as a singleton
seed set, γ = 4 (top left), γ = 6 (top right), γ = 8 (bottom left), γ = 10 (bottom right). Top ranked
clusters appear at the bottom right of each figure.

setting. As γ increases, we would expect the number of such extremely anomalous clusters
to decrease. For example, as shown in Figure 2.6 for the Web data set, as γ increases, the
number of outlier clusters with comparatively very large discrepancy decreases. For γ = 4,
many clusters seem to be significantly larger than the large component, while with γ = 6
and γ = 8 there are very few. Finally, with γ = 10 all clusters are basically in the same
component.

The identification of clusters of varying size but consistently high statistical signif-
icance suggests that real-world networks are characterized by many different levels of
granularity. This result is consistent with, e.g, the contrasting findings of [97] and [85],
where clusters of vastly different sizes but comparable modularities are detected in the
same data set. This finding calls into question the wide variety of clustering methods
which are only designed to detect one cluster for a given region or group of nodes, and a
further study would be of interest.

2.6 Conclusions
The main contribution of this chapter is the introduction of a quantitative and meaningful
measure, Poisson discrepancy, for clusters in graphs, derived from spatial scan statistics
on point sets. According to our definition, the higher the discrepancy, the better the clus-
ter. We identify interesting relations between Poisson discrepancy, local modularity, and
Bregman divergences.

To illustrate the usefulness of this statistic, we describe and demonstrate two simple
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algorithms which find local optima with respect to the spatial scan statistic. In the context
of real-world and synthetic datasets that are naturally represented as bipartite graphs, this
method has identified individual clusters of vertices that are statistically the most signifi-
cant. These clusters are the least likely to occur under a random graph model and thus best
identify closely-related groups within the network. Our model places no restrictions on
overlapping of clusters, thus allowing a data point to be classified into two or more groups
to which it belongs. As our greedy algorithms are the simplest and most intuitive approach,
it remains an open problem to find more effective algorithms to explore the space of po-
tential subgraphs to maximize the Poisson discrepancy. Notice that Poisson discrepancy
can also detect regions that are significantly under-populated by requiring p < q in the
alternative hypothesis.

Similarly the spatial scan statistic Bernoulli model for graph clustering can be derived
from the corresponding model for point sets. However, this model requires that each
potential edge be chosen with equal probabilities, regardless of the degree of a vertex.
Also, under this model each pair of vertices can have at most one edge.

For large graphs, what are the efficient ways to sample the different regions such that
we get a good estimate of the significant clusters? Is there a similar construction as an
overlap-kd tree in [83]? The spatial scan statistics is first introduced in a frequentest set-
ting where we compute the p-values of a cluster through randomization; recent work by
Neill et. al. [84] introduced the Bayesian spatial scan statistics by computing posterior
probabilities of each potential cluster in close form and avoided randomization test. An
interesting question is whether there are computational tractable Bayesian spatial scan
statistics for graph clustering.

In summary, we argue that a graph cluster should be statistically justifiable, and a
quantitative justification comes from a generalization of spatial scan statistics on graphs,
such as the Poisson discrepancy.
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Appendix to Chapter 2

A Proofs for the Properties of Graph Scan Statistic
The proof for Theorem 2.3.1 is as follows.

Proof. Since Ŵ ∈ V is the cluster that rejectsH0 under X , we need to prove that the same
cluster Ŵ rejects H0 under X ′.

Let c(Ŵ ) be the number of edges in G(Ŵ ). Let c′(Ŵ ) be the number of edges in
G′(Ŵ ). Since ∀xi ∈ E(Ŵ ), x′i = xi, edges are “shuffled around” (reassigned) in X ′

comparing to X by fixing edges in E(Ŵ ). We have c(Ŵ ) ≤ c′(Ŵ ).
Let Λ and Λ′ denote the test statistic for the two datasets X and X ′. Since both X and

X ′ have the same number of edges, the likelihood functions L0 under H0 are the same.
The theorem is trivially true if Λ = 1.

If Λ > 1, that is, H0 is rejected under X , we just need to prove that Λ′ ≥ Λ under X ′.

Let C = c(V )
µ(V )

−c(V )
, we have,

Λ = max
W

C
(
c(W )

µ(W )

)c(W )(
c(V )− c(W )

µ(V )− µ(W )

)c(V )−c(W )

= C

(
c(Ŵ )

µ(Ŵ )

)c(Ŵ )(
c(V )− c(Ŵ )

µ(V )− µ(Ŵ )

)c(V )−c(Ŵ )

≤ C

(
c′(Ŵ )

µ(Ŵ )

)c′(Ŵ )(
c(V )− c′(Ŵ )

µ(V )− µ(Ŵ )

)c(V )−c′(Ŵ )

≤ max
W

C
(
c′(W )

µ(W )

)c′(W )(
c(V )− c′(W )

µ(V )− µ(W )

)c(V )−c′(W )

= Λ′

The first inequality holds since for constants β, γ, τ , the function g(x) = (βx)x(γ(τ −
x))τ−x is an increasing funciton of x when βx > γ(τ − x).

We now present the proof for Theorem 2.3.2.

Proof. For an arbitrary W , let Rk denote the intersection of the critical region R and
the subset of the sample space in which W is the most likely cluster. Let R′

k denote the
intersection of the critical region R′ and the subset of the sample space in which W is the
most likely cluster. Let Ak = {(W, p, q)|p > q}.

We need to prove that Λ forms an individually most powerful test. We prove that if the
first two statements in the definition is true, then the third statement does not hold. This is
equivalent to prove the following:

• For any θ ∈ Ak, β′k(θ) ≤ βk(θ).
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To prove β′k(θ) ≤ βk(θ), for any θ ∈ Ak, it is equivalent to prove the following:

β′k(θ)− βk(θ)

=Pθ(X ∈ R′
k)− Pθ(X ∈ Rk)

=Pr (X ∈ R′
k|θ)− Pr (X ∈ Rk|θ)

≤0.

For an arbitrary W , define,

D− = {x|x ∈ Rk, x /∈ R′
k}

D+ = {x|x ∈ R′
k, x /∈ Rk}

We define

M = sup
x∈D+

L (θ|x)
L (θ0|x)

,

where θ ∈ Θ and θ0 ∈ Θ0.
By definition ofD+ andD−, sinceRk is defined byW , which is the most likely cluster

in a subset of the sample space, we have that each x in D− has a higher likelihood ratio
than any x in D+, that is,

M = sup
x∈D+

L (θ|x)
L (θ0|x)

≤ inf
x∈D−

L (θ|x)
L (θ0|x)

To prove the inequality, for any θ ∈ Ak
Pr (X ∈ R′

k|θ)− Pr (X ∈ Rk|θ)
=Pr (X ∈ D+|θ)− Pr (X ∈ D−|θ)

=

∫
x∈D+

f(x|θ)dx−
∫
x∈D−

f(x|θ)dx

=

∫
x∈D+

L (θ|x)dx−
∫
x∈D−

L (θ|x)dx

=

∫
x∈D+

L (θ|x)
L (θ0|x)

L (θ0|x)dx−
∫
x∈D−

L (θ|x)
L (θ0|x)

L (θ0|x)dx

≤
∫
x∈D+

ML (θ0|x)dx−
∫
x∈D−

ML (θ0|x)dx

=M

(∫
x∈D+

L (θ0|x)dx−
∫
x∈D−

L (θ0|x)dx
)

=M

(∫
x∈D+

f(x|θ0)dx−
∫
x∈D−

f(x|θ0)dx

)
=M (Pr (X ∈ D+|θ0)− Pr (X ∈ D−|θ0))

=M (Pr (X ∈ R′
k|θ0)− Pr (X ∈ Rk|θ0))

=M (Pr (X ∈ R′|θ0)− Pr (X ∈ R|θ0)) = 0
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FIGURE 2.7: DBR: dP values for all clusters running the algorithm seeded with each vertex from
|X| and using either Q1, Q2, and dP as the objective function, represented as M-1 (red x), M-2
(blue square), and SSS (green circle), respectively.

B Approximation of dP
To demonstrate the propensity that our algorithm with dP gets stuck in local minima, we
ran our core algorithm with dP , Q1, and Q2 as objective functions. Then we report the dP
value of each cluster found, even when it was found using Q1 or Q2. One would expect
the clusters found with dP to have the highest Poisson discrepancy, but this was not the
case. Q1 usually and Q2 always outperformed dP . In fact, the worst 20 clusters found
using dP had Poisson discrepancy values less than half the value of the worst clusters for
Q1 andQ2. We suspect that because dP is “shallower” thanQ1 andQ2 for low discrepancy
subsets, the algorithm is more likely to get stuck in local minima.

p-value Test for DBR To calculate the p-value of a cluster S, we compare the cluster
discrepancy dP (rS, bS) to the distribution of the highest discrepancy clusters from 1000
random graphs. The graphs are created under the Poisson fitted model. A cluster which
has higher discrepancy than all but 50 random graphs has a p-value of 50/1000 = .05.
This indicates that only 5% of random graphs have a cluster as unexpected as the cluster
found in our data set. Clusters with low p-values (usually less than .05) are said to be
statistically significant, relative to dP and our algorithm.

For the DBR data set, we rank clusters by their discrepancy and plot the p-values ob-
tained by each, as shown in Figure 2.8, after removing duplicate clusters. The top 5 ranked
clusters are statistically significant, with p-values between 0.009 and 0.022. We do not ex-
pect all the clusters found by our algorithm to display such high level of anomalousness.
Since our core algorithm is based on seeds generated by Q2, we also plot the p-values of
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FIGURE 2.8: DBR: p-values for all clusters (yellow circle) and p-values for all seeds generated
by Q2 (blue plus). The top 5 ranked clusters with p-values between 0.009 and 0.022, are most
statistically significant (follow arrow). The figure indicates that running our core algorithm with
dP further improves the discrepancy of our clusters.

the seeds, indicating the level of discrepancy improvement as a result of the core algorithm.
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Chapter 3
Persistence in Expectation

This chapter is about the effect of “noise” on persistence diagrams as well as other statis-
tical summaries relevant to persistence. The underlying motivation is to understand how
the persistence-based statistics of a function with additive noise vary and to characterize
expectations or averages of these variations. One goal of this is to denoise the function,
subtract the persistence characteristics of the noise so that the persistence statistics of the
function remain. Specifically, we study the statistical behavior of persistence diagrams,
for constant functions with Gaussian noise defined on triangulations of topological spaces.
The key quantities we study are pairing probabilities and the total persistence in expecta-
tion.

3.1 Introduction
Motivation. Given topological spaces and functions on them, persistent homology stud-
ies multi-scale features of the given data. It gives a notion of relative importance for
features, in terms of the amount of change necessary to eliminate them [34]. Specifically,
persistence diagrams capture this importance in a quantitative manner. In the case of noisy
data, possibly due to measurement inaccuracies or insufficient samplings, our goal is to
quantify its uncertainty and further proceed with data denoising and smoothing. A first
step towards this direction is to use total persistence computed from a persistence diagram
as our summary statistics, and obtain a crude quantification of data uncertainty.

Prior work. Our work is driven by the objective to bring a statistical flavor to persis-
tence, in aid of studying the topological properties of spaces with uncertainty. The stability
of persistence diagrams lays a solid foundation for studying topological behaviors of func-
tions under controlled perturbations [34, 36]. It provides a topological tool to understand
how noise influences distances between persistence diagrams.
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There has been related work that looks at persistent homology through the statistical
lens. Niyogi, Smale and Weinberger combine homology and statistics and consider the
case where a point cloud is drawn from a probability distribution that has support on or near
a submanifold of Rk [88]. They provide estimates on how many data points are needed to
recover the homology of the submanifold from the point cloud with high confidence.

Bubenik and Kim compute the persistent homology of an unknown probability distri-
bution that is assumed to belong to a parametric family of distributions [23]. Assuming
a finite set of sampled points from the distribution, they demostrate that using statistical
estimators, the persistent homology of the unknown distribution can be recovered from the
persistent homology of the simplicial complex constructed from the point sample. They
also prove an upper bound on the expected distance between their persistence diagrams.
Recent work by Bubenik et. al. gives an upper bound on the expected bottleneck distance
between the persistence diagrams of the estimated function and that of the true function,
under a nonparametric regression model [22].

Adler et. al. discuss manifold learning from random point cloud data and consider
distributional properties of the barcodes of random field excursion sets [3]. Kahle studies
the expectation and variance of the Betti numbers from C̆ech and Rips complexes built on
randomly sampled points in Rk [67].

Contribution. The main contributions of this chapter to the theory of persistence are
centered around four theorems.

• We derive combinatorially, the persistence pairing probabilities between vertices,
for random piecewise-linear (PL) functions defined on a triangulation of S1.

• We derive the expected total persistence, as a linear function in the size of the trian-
gulation, for random PL functions defined on a triangulation of S1.

• We give an upper bound on the expected total persistence, for random PL functions
defined on a triangulation of a general topological space.

• We also give an upper bound on the expected change in total persistence, for PL
functions with Gaussian perturbations, defined on a triangulation of a general topo-
logical space.

3.2 Preliminaries
In this section, we give a brief introduction to topological and statistical background
needed to understand our main theorems. For details in persistent homology, see [50].

Triangulation and PL function. Let K be a triangulation of a triangulable topological
space. It is defined as a finite simplicial complex together with a homeomorphism from
the underlying space of the complex to the space. We define a function f : V → R at
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all vertices V of K, where |V | = n. We assume f is generic, that is, all vertices have
distinct function values. We obtain a piecewise-linear (PL) function f : |K| → R using
linear extension over the simplices. It is defined by f(x) =

∑
i bi(x)f(ui), where the ui

are vertices of K and the bi(x) are barycentric coordinates of x [50].

Lower star filtration. Given a generic function f : |K| → R, we can order the vertices
by increasing function values as f(u1) < f(u2) < . . . < f(un). We then define Ki as the
full sub-complex defined by the first i vertices, that is, a simplex σ belongs to Ki iff each
vertex uj of σ satisfies j ≤ i. Recall the star Stui of a vertex ui is the set of simplices that
contain it, and the lower star St−ui is the subset of simplicies for which ui is the vertex
with the maximum function value:

Stui = {σ ∈ K | ui ∈ σ};
St−ui = {σ ∈ Stui | x ∈ σ ⇒ f(x) ≤ f(ui)}.

Ki is in fact the union of the first i lower stars. In other words, if a1 < a2 < ... < an are the
function values of the vertices in K and a0 = −∞, then Ki = K(ai) =

⋃
u∈V,f(u)≤ai

St−u
for each i [50]. We therefore arrange an increasing sequence of complexes called the lower
star filtration of f :

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.

It is shown in [50] that for f(ui) ≤ a < f(ui+1), the sublevel set |K|a = f−1(−∞, a] is
homotopy equivalent to Ki.

PL critical points. Recall the link Lk vi of a vertex vi consists of all faces of simplices in
the star that do not belong to the star, and the lower link Lk−vi is the subset of simplicies
in the link with smaller function values:

Lk vi = {τ ⊆ σ ∈ St vi | τ 6∈ St vi};
Lk−vi = {σ ∈ Lk vi | x ∈ σ ⇒ f(x) < f(vi)}.

When we go from Ki−1 to Ki, we attach the closed lower star of ui along its lower link
to the complex Ki−1. We define ui as PL regular if its lower link is contractible, and PL
critical, otherwise. We can classify the vertices using the reduced Betti numbers of their
lower links [50]. Recall that β̃0 is one less than β0, except for empty lower link, where
β̃0 = β0 = 0 and β−1 = 1. This is shown in Table 3.1 [50]. Equivalently, a minimum is
characterized by Lk−vi = ∅ and a maximum by Lk−vi = Lk vi. We call ui a k-fold saddle
if its lower link consists of k+ 1 ≥ 2 paths, and we call ui a simple saddle if k = 1. Some
examples are shown in Figure 3.1.

Persistence. Given the lower star filtration, for each i ≤ j, the inclusion map Ki → Kj

induces homomorphisms between homology groups, f i,jp : Hp(Ki) → Hp(Kj), for dimen-
sion p. The sequence of homology groups connected by homomorphisms is therefore,

0 = Hp(K0) → Hp(K1) → . . .→ Hp(Kn) = Hp(K).
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β̃−1 β̃0 β̃1

regular 0 0 0
minimum 1 0 0
saddle 0 1 0
maximum 0 0 1

TABLE 3.1: Classification of the vertices in a PL function on a 2-manifold.

FIGURE 3.1: From left to right, in a 2-manifold: the lower star and lower link of a regular vertex,
a minimum, a saddle and a maximum [50]. The shaded regions illustrate the underlying spaces of
the lower star, while the thick solid lines illustrate the underlying spaces of the lower link.

The p-th persistent homology groups are defined as Hi,j
p = im f i,jp for 0 ≤ i, j ≤ n. We

have a birth at Ki if the map f i−1,i
p is not surjective and a death at Kj is the map f j−1,j

p is
not injective. Furthermore, if γ is born at Ki, then it dies entering Kj if it merges with an
older class as we go from Kj−1 to Kj , that is, f i,j−1

p (γ) /∈ Hi−1,j−1
p and f i,jp (γ) ∈ Hi−1,j

p

[50]. If γ is born at Ki and dies entering Kj , its persistence is defined as aj − ai.
The corresponding simplex σi entering Ki is then paired with the simplex σj entering

Kj , representing the birth and death of the homology class γ. By running the ordinary
persistence algorithm [51], we obtain the pairings of simplicies in K. If two simplicies
in the same lower-star are paired they therefore represent the homology class that dies
immediately after birth. Only pairings between simplicies in different lower stars carry
significance. Some simplices remain unpaired as they create homology classes that never
dies, so-called essential simplices. They are paired by the extended persistence algorithm
[35]. In subsequent sections, we use ordinary persistence only when discussing pairing
probabilities. Otherwise, we use extended persistence.

It is convenient to use a piecewise constant approximation f̄ : K → R of f : |K| → R
with f̄(σ) = maxx∈σ f(x). Suppose f is generic, then ordering simplices by their values
under f̄ and breaking the ties by dimension gives the lower star filtration of f [79]. This
implies that f̄ and f give the same persistence diagrams. Therefore we replace the two
simplices (σi, σj) that are paired, with their unique highest vertices and speak of pairings
between vertices (vi, vj), where f̄(σi) = vi, f̄(σj) = vj . Since f̄ and f agree on vertices
and give the same persistence diagrams, unless otherwise specified, when we say vertices
are paired by running persistence algorithm on f , it is understood that we use a piecewise
constant approximation.

We construct the p-th persistence diagram Dgmp(f) as a multiset of points in the
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extended plane, where each point represents the birth and death of a p-dimensional ho-
mology class. For each pair of vertices (vi, vj) which represent the birth and death of a
p-dimensional homology class, the diagram contains the point x = (f(vi), f(vj)), whose
persistence is pers(x) = f(vj) − f(vi). Points in the diagrams can have non-negative
integer multiplicities.

We define the total persistence of f as the sum of the persistence of all points in
Dgmp(f), for all dimensions. That is,

Pers(f) =
∑
p

∑
x∈Dgmp(f)

pers(x),

where a point contributes as many times as it occurs.
We define the multiplicity k of a vertex u ∈ K as the number of critical vertices that are

paired with u during the persistence pairing. If u is regular, k = 0. If u is a local minimum,
a local maximum or a simple saddle, k = 1. If u is a k-fold saddle, its multiplicity is k. u
can be paired with k1 local minima (and/or saddles) and k2 local maxima (and/or saddles)
at the same time, where k1, k2 ≥ 0 and k1 + k2 ≤ k.

Counting. To prove our main theorem, we use a simple formula in counting. Given an
ordered list with a items, x1, x2, ..., xa, we insert b unordered items, y1, y2, ..., yb. Then
the number of possible outcomes of this process is (a+b)!

a!
.

To obtain the formula, we can insert y1 before x1 or after xa, or between xi and xi+1,
for 1 ≤ i ≤ a− 1. There are a+ 1 possible locations. To insert y2 after inserting y1, there
are a + 2 possible locations. To insert yb, there are a + b possible locations. In summary,
we have (a+ 1)(a+ 2)...(a+ b) = (a+b)!

a!
possible orderings.

Normal distribution. Several properties of the normal distribution are key ingredient in
proving our theorems [62, 91, 64].

Let X be a random variable drawn from N(0, σ2), that is, X ∼ N(0, σ2). Let Y = |X|.
Then Y is half-normal distributed, and E[Y ] =

√
2
π
σ.

Let X̄ = {X1, X2, ..., Xd, Xd+1} (d ≥ 2) be random variables drawn independently
and identically (i.i.d.) from N(0, 1), that is, X̄ i.i.d.∼ N(0, 1). We obtain the order statistics
by sorting,

X1:d+1 ≥ X2:d+1 ≥ ... ≥ Xd:d+1 ≥ Xd+1:d+1,

where Xi:d+1 is the i-th largest value in X̄ . Define Si:d+1 = E[Xi:d+1]−E[Xi+1:d+1] as the
expected spacing, 1 ≤ i ≤ d. We obtain a set of spacings S = {S1:d+1, S2:d+1, ..., Sd:d+1}.
We have the following properties associated with the order statistics:

• (Expected order statistics are symmetric) E[Xi:d+1] = −E[Xd−i+2:d+1];

• (Spacings are symmetric) Si:d+1 = Sd−i+1:d+1.

• S1:d+1 > S2:d+1 > ... > Sb d+1
2
c:d+1.
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• S1:d+1 > S1:d+2.

Specifically, let X1, X2 and X3 be random variables drawn i.i.d. from N(0, 1). We obtain
the order statistics, X1:3 ≥ X2:3 ≥ X3:3. Define C0 = 1

3
(S1:3 + S2:3) = 1

3
(E[X1:3] −

E[X3:3]). It has been shown that, E[X1:3] ≈ 0.84628, E[X2:3] ≈ 0.00000, E[X3:3] ≈
−0.84628 [62]. Therefore, C0 ≈ 0.56419.

3.3 Pairing Probabilities
We are interested in the pairing structure by running the ordinary persistence algorithm
on a PL function. Our first theorem, Theorem 3.3.1, gives a combinatorial formula for
the persistence pairing probabilities between vertices, for random PL functions defined on
a triangulation of S1. Specifically, we look at the class of functions f whose values are
drawn i.i.d. from some distributions.

Theorem 3.3.1 (Pairing Probabilities). Let K be a triangulation of S1 with vertex set
V = {u1, u2, ..., un}, ordered counter-clockwise, while ui = ui+n. Let f : V → R be
a function defined on V such that f(ui) is drawn i.i.d. from some distribution. Assume
f is generic. We obtain a PL function f : |K| → R using linear extension over the
simplices. Let Q(i, j) denote the probability that ui and uj are paired by running the
ordinary persistence algorithm on f , where ui and uj correspond to the birth and death of
a homology class respectively. Then for any integer c > 0,

Q(i, i+ c) =
n−c−2∑
j=1

j(j + c− 2)!

(j + c+ 2)!
+

c−2∑
k=1

k(k + n− c− 2)!

(k + n− c+ 2)!
.

Meanwhile, Q(i, j) = Q(i, n+ 2− j), Q(i, j) = Q(j, i).

Proof. Let Q(i, i+ c) denote the probability that ui and ui+c are paired, where ui and ui+c
correspond to the birth and death of a homology class. This implies f(ui) < f(ui+c).

We refer to the counter-clockwise ordering of the ui as the index ordering. We refer to
the ordering of the ui by increasing function values as the height ordering.

Suppose all points are drawn from some distribution and that all values are distinct.
All n! possible height orderings occur with equal probability.

To compute Q(i, i+ c), we count the index orderings (or height orderings) in which ui
and ui+c are paired. The key to our proof is as follows. Suppose ui and ui+c are paired.
We consider the process of inserting c − 1 vertices into the gap between ui and ui+c, and
the remaining vertices between ui+c and ui, counterclockwise in the index ordering. We
add constraints to the heights of the inserted vertices, so that their insertions do not affect
the (ui, ui+c) pair. Q(i, i+ c) is the total number of possible orderings divided by n!.

There are two cases, as shown in Figure 3.2.

(a) Vertices inserted between ui and ui+c form pairs among themselves, with persistence
smaller than |f(ui)− f(ui+c)|.
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FIGURE 3.2: Two cases in the proof of Theorem 3.3.1.

(b) Vertices inserted between ui+c and ui form pairs among themselves, with persistence
smaller than |f(ui)− f(ui+c)|.

Case (a): Suppose ui and ui+c remain paired as we insert vertices between them. There
exist vertices ui−a and ui+b that gives an index ordering,

ui−a, ..., ui, ..., ui+c, ..., ui+b, (3.1)

and a height ordering,
ui+b, ..., ui, ..., ui+c, ..., ui−a, (3.2)

where ui−a is the first vertex to the left of ui s.t. f(ui−a) > f(ui+c), and ui+b is the first
vertex to the right of ui+c s.t. f(ui+b) < f(ui). For ui−a and ui+b to exist, we have a ≥ 1,
b ≥ c+ 1 and a+ b+ 1 ≤ n.

We look at all possible insertions into the index ordering (3.1) s.t. ui and ui+c remain
paired. We proceed as follows:

(i) insert a − 1 vertices between ui−a and ui s.t. for each inserted vertex x, f(ui) <
f(x) < f(ui+c);

(ii) insert c − 1 vertices between ui and ui+c s.t. for each inserted vertex x, f(ui) <
f(x) < f(ui+c);

(iii) insert b − c − 1 vertices between ui+c and ui+b s.t. for each inserted vertex x,
f(ui) < f(x) < f(ui+c);

(iv) insert n− a− b− 1 vertices between ui+b and ui−a.

Equivalently the above procedure can be viewed in terms of insertions into the height
ordering (3.2):

(1) insert a+ b− 3 vertices between ui and ui+c which gives a height ordering

ui+b, ui, x1, x2, , xa+b−3, ui+c, ui−a, (3.3)

this is done by combining cases (i), (ii) and (iii);
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FIGURE 3.3: (a) Rotation, (b) reflection, (c) re-indexing by replacing c with n− c.

(2) insert n− a− b− 1 vertices into the height ordering (3.3).

For fixed a and b, step (1) gives (a + b − 3)! orderings, and step (2) gives n!
(a+b+1)!

orderings. Step (1) and (2) combined gives (a+ b− 3)! n!
(a+b+1)!

orderings.
The total number of orderings counted in case (a) is∑

a,b

(a+ b− 3)!
n!

(a+ b+ 1)!
,

where a ≥ 1, b ≥ c+ 1 and a+ b+ 1 ≤ n. This can be further simplified to

n!
n−c−2∑
j=1

j(j + c− 2)!

(j + c+ 2)!
. (3.4)

Case (b): by symmetry, as shown in Figure 3.3, replacing c in equation 3.4 with n− c
gives the total number of orderings,

n!
c−2∑
k=1

k(k + n− c− 2)!

(k + n− c+ 2)!
. (3.5)

Therefore, equation 3.4 and equation 3.5 combined gives the number of height order-
ings where ui and ui+c remain paired. It is then divided by n! to give Q(i, i+ c).

Some examples of paring probabilities when n = 3, 4, 5, 6, 7 are shown in Table 3.3,
where Q(1, :) includes all pairing probabilities between vertex u1 and all other vertices,
that is, Q(1, 1), Q(1, 2),... Q(1, n).
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n Q(1, :)
3 [0, 0, 0]/3!
4 [0, 1, 0, 1]/4!
5 [0, 7, 1, 1, 7]/5!
6 [0, 48, 104, 10, 48]/6!
7 [0, 360, 88, 32, 32, 88, 360]/7!

TABLE 3.2: Examples of Q.

3.4 Expected Total Persistence
The remaining three theorems involve various forms of the total persistence in expectation.
Theorem 3.4.1 gives a close-form formula for the expected total persistence for random
PL functions defined on a triangulation of S1. Theorem 3.4.3 generalizes the result to a
triangulation of a general topological space, by giving an upper bound for the expected
total persistence. Theorem 3.5.1 (proved in a subsequence section) gives the expected
difference, between the total persistence of a PL function, and that of the PL function with
Gaussian perturbations.

Theorem 3.4.1 (Expected Total Persistence for S1). Let K be a triangulation of S1 with
n vertices, V = {u1, u2, ..., un}. Let f : V → R be a function defined on V such that,
{f(u1), f(u2), ..., f(un)}

i.i.d.∼ N(0, 1). We then obtain by linear extension a PL function
f : |K| → R. Vertices in K are paired by running the extended persistence algorithm on
f . Then,

E[Pers(f)] = C0 · n,

where C0 = 1
3
(S1:3 + S2:3) ≈ 0.56419.

To prove Theorem 3.4.1, we start by proving the following lemma that takes a close
look at the persistence pairing structure. The lemma holds for general simplicial com-
plexes and we will apply the result for triangulations of S1 and general topological spaces.

Lemma 3.4.2. Let K be a simplicial complex where dmax is the maximum degree of its
vertices. Let f, g : V → R be functions defined on V such that f = g except for a vertex
u ∈ K such that f(u) = a and g(u) = b, while b > a. We then obtain by linear extentions
PL functions f, g : |K| → R. Then,

Pers(g)− Pers(f) ≤ dmax(b− a).

Proof. As we continuously change the function value at u from a to b, this corresponds
to a number of transpositions of consecutive vertices involving u in the ordering defining
the lower-star filtration. During a transposition of two consecutive vertices, the pairs can
switch vertices only at moments when these vertices have the same value [38].
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Let f0(u) = a, f1(u) = b. Suppose that we continuously change the function value at
u through a straight-line homotopy,

fλ(u) = (1− λ)f0(u) + λf1(u).

There are m values of λ for which fλ is not injective. These are the values when transpo-
sitions happen between vertex u and vertex v, where fλ(u) = f(v). Adding λ0 = 0 and
λm+1 = 1, we get the following ordered list of these values: λ0 < λ1 < ... < λm < λm+1.

First, we consider two values without transposition between them, λi < r < s < λi+1.
The persistence pairing is the same for fr and for fs. Let k be the multiplicity of u. k is
the same for fr and fs as well. We have four cases,

• Case 1. If u is a local minimum (k = 1), then (u, v) is a member of the pairing for
both fr and fs. Since fr(v) = fs(v), the change in total persistence from r to s is
fr(u)− fs(u), which is negative.

• Case 2. If u is a local maximum (k = 1), then (w, u) is a member of the pairing for
both fr and fs. Since fr(w) = fs(w), the change in total persistence from r to s is
fs(u)− fr(u), which is positive.

• Case 3. If u is regular (k = 0), then the change in total persistence is 0.

• Case 4. If u is a k-fold saddle (k ≥ 1), u can be paired with k1 local minima (and/or
saddles) and k2 local maxima (add/or saddles) at the same time, where k1, k2 ≥ 0
and k1 + k2 ≤ k. Then (w1, u), (w2, u), ..., (wk1 , u) and (u, v1), (u, v2), ..., (u, vk2)
are members of the pairing for both fr and fs. The change in total persistence from
r to s is

k1(fs(u)− fr(u)) + k2(fr(u)− fs(u)) = (k1 − k2)(fs(u)− fr(u))

≤ k(fs(u)− fr(u))

≤ dmax(fs(u)− fr(u)).

In summary, all four cases above give a change in total persistence less than or equal
to dmax(fs(u)− fr(u)).

Second, a transposition changes the matching of vertices but does not change the total
persistence.

As we change the function value at u through the straight-line homotopy,

Pers(g)− Pers(f) ≤
m∑
j=0

dmax(fλj+1
(u)− fλj

(u))

= dmax(f1(u)− f0(u))

= dmax(b− a).
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FIGURE 3.4: Sort vertices in the lower link of u by increasing function value.

We now prove Theorem 3.4.1, based on cases discussed in the previous lemma.

Proof. For a random vertex u ∈ K, define its contribution to the total persistence as ∆.
We would like to prove that E[∆] = C0.

Since K is a triangulation of S1, u has two vertices in its link, u1 and u2. We order
them by increasing function value. Without loss of generality, we assume f(u1) < f(u2).
f(u1) and f(u2) partition R into 3 intervals, I1 = (−∞, f(u1)), I2 = [f(u1), f(u2)) and
I3 = [f(u2),+∞), as shown in Figure 3.4.

The probability that f(u) falls in any interval is, Pr[f(u) ∈ Ii] = 1
3
, for 1 ≤ i ≤ 3.

When f(u) ∈ Ii, we define ∆i as its contribution to the total persistence. We have E[∆] =
1
3

∑3
i=1 E[∆i].

Suppose that u is inserted into the triangulation, with function value f(u), where
f(u) ∈ Ii. We would like to compute its contribution to the total persistence due to
the insertion. We carefully define functions at u, f0(u) and f1(u), such that u at f0(u) has
0 contribution to the total persistence, and f1(u) = f(u). We then define a straight-line
homotopy at u by continuously changing its function value from f0(u) to f1(u), that is,

fλ(u) = (1− λ)f0(u) + λf1(u).

This corresponds to a number of transpositions of consecutive vertices involving u in the
ordering defining the lower-star filtration. As a result, the pairing and the total persistence
might change as well. The homotopy from f0 to f1 offers a proper framework to track
the accumulation of contributions to the total persistence. We have the same four cases
discussed in Lemma 3.4.2.

We compute E[∆i] as follows,

(1) If f(u) ∈ I2, u is regular, ∆2 = 0.

(2) If f(u) ∈ I1, u is a local minimum. Let f0(u) = f(u1), f1(u) = f(u).

∆1 =
m∑
j=0

fλj
(u)− fλj+1

(u) = f(u1)− f(u),

E[∆1] = E[f(u1)− f(u)] = E[X2:3]− E[X3:3] = S2:3.
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FIGURE 3.5: Sort vertices in the lower link of u by increasing function value.

(3) If f(u) ∈ I3, u is a local maximum. Let f0(u) = f(u2), f1(u) = f(u).

∆3 =
m∑
i=0

fλj+1
(u)− fλj

(u) = f(u)− f(u2),

E[∆3] = E[f(u)− f(u2)] = E[X1:3]− E[X2:3] = S1:3.

Therefore,

E[∆] =
1

3

3∑
i=1

E[∆i] =
1

3
(S1:3 + S2:3) = C0

Next, we extend the above result to a triangulation of a general topological space, and
prove the more complicated upper bound on total persistence in Theorem 3.4.3.

Theorem 3.4.3 (Expected Total Persistence for a General Topological Space). Let K be
a triangulation of a general topological space with n vertices. Let dmin and dmax be the
minimum and maximum degree of its vertices. Vertices in K are paired by running the
extended persistence algorithm on f . Then,

E[Pers(f)] ≤ C1 · n,

where C1 = 1
3
· S1:dmin+1 · bdmax

2
c(bdmax

2
c+ 1).

Proof. For a random vertex u ∈ K, define ∆ as its contribution to the total persistence.
We would like to prove that E[∆] ≤ C1.

Let the degree of u be d. We order vertices in its link by increasing function value,
w.l.o.g., assume f(u1) < f(u2) < ... < f(ud). As shown in Figure 3.5, the f(ui) par-
titions R into d + 1 intervals, where I1 = (−∞, f(u1)), Id+1 = [f(ud),+∞), Ii =
[f(ui−1), f(ui)) for 2 ≤ i ≤ d. The probability that f(u) falls in any interval is

Pr[f(u) ∈ Ii] =
1

d+ 1
.

When f(u) ∈ Ii, we define ∆i as its contribution to the total persistence. We need to
compute

E[∆] =
1

d+ 1

d+1∑
i=1

E[∆i].
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FIGURE 3.6: Relative multiplicities between intervals.

Suppose that we continuously change the function value at u through a straight-line
homotopy from f0(u) to f1(u). Again, we have the same four cases discussed in Lemma
3.4.2.

We compute E[∆i] as follows.

(1) If f(u) ∈ I2 or f(u) ∈ Id, u is regular, ∆2 = ∆d = 0.

(2) If f(u) ∈ I1, u is a local minimum. Let f0(u) = f(u1), f1(u) = f(u).

∆1 =
m∑
j=0

fλj
(u)− fλj+1

(u) = f(u1)− f(u),

E[∆1] = E[f(u1)− f0(u)] = E[Xd:d+1]− E[Xd+1:d+1] = Sd:d+1 = S1:d+1.

(3) If f(u) ∈ Id+1, u is a local maximum. Let f0(u) = f(ud), f1(u) = f(u).

∆d+1 =
m∑
i=0

fλj+1
(u)− fλj

(u) = f(u)− f(ud),

E[∆d+1] = E[f(u)− f(ud+1)] = E[X1:d+1]− E[X2:d+1] = S1:d+1.

(4) If f(u) ∈ Ii, where 3 ≤ i ≤ bd
2
c + 1, let f0(u) = f(u2), f1(u) = f(u). Define the

multiplicity of u as kl when fλi
(u) ∈ Il, for 3 ≤ l ≤ i. We have, as illustrated in Figure

3.6,

∆i ≤ k3(f(u3)− f(u2)) + k4(f(u4)− f(u3)) + ...+ ki(f(u)− f(ui−1)).

Since k3, k4, ..., ki ≤ i− 2,

∆i ≤ (i− 2)(f(u)− f(u2)).
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Then,

E[∆i] ≤ (i− 2)(E[f(u)]− E[f(u2)])

= (i− 2)(E[Xd−i+2:d+1]− E[Xd:d+1])

= (i− 2)(E[X2:d+1]− E[Xi:d+1])

= (i− 2)(S2:d+1 + S3:d+1 + ...+ Si−1:d+1).

Since S1:d+1 > S2:d+1 > ... > Si−1:d+1,

E[∆i] ≤ (i− 2)((i− 2)S2:d+1)

= (i− 2)2S2:d+1

≤ (i− 2)2S1:d+1.

(5) By symmetry, If f(u) ∈ Ii, where bd
2
c+ 1 ≤ i ≤ d− 1, E[∆i] = E[∆d+2−i].

Summary. Let p = bd
2
c, We have,

E[∆] =
1

d+ 1

d+1∑
i=1

E[∆i]

≤ 1

d+ 1
(2S1:d+1 + 2S1:d+1

p+1∑
i=3

(i− 2)2)

=
2S1:d+1

d+ 1
(1 +

p−1∑
i=1

i2)

≤ 2S1:d+1

d+ 1

p∑
i=1

i2

=
2S1:d+1

d+ 1
· p(p+ 1)(2p+ 1)

6

=
1

3
· S1:d+1 ·

p(p+ 1)(2p+ 1)

d+ 1
.

If d is even, d = 2p, then

E[∆] ≤ 1

3
· S1:d+1 ·

p(p+ 1)(2p+ 1)

2p+ 1

=
1

3
· S1:d+1 · p(p+ 1).
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If d is odd, d = 2p+ 1, then

E[∆] ≤ 1

3
· S1:d+1 ·

p(p+ 1)(d)

d+ 1

≤ 1

3
· S1:d+1 ·

p(p+ 1)(d+ 1)

d+ 1

=
1

3
· S1:d+1 · p(p+ 1).

In summary, for any u ∈ K, its expected contribution to total persistence is,

E[∆] ≤ 1

3
· S1:d+1 · b

d

2
c(bd

2
c+ 1)

≤ 1

3
· S1:dmin+1 · b

dmax
2
c(bdmax

2
c+ 1)

= C1.

It is interesting to note that, when K is a triangulation of S1, where dmin = dmax = 2,
C0 ≈ C1. In other words, the bound in Theorem 3.4.3 is tight.

3.5 Change in Total Persistence
In this section, we prove Theorem 3.5.1.

Theorem 3.5.1 (Change in Total Persistence). Let K be a triangulation of a general topo-
logical space with n vertices. Let f, g : V → R be functions defined on V , such that for
each vertex ui ∈ V , g(u) = f(u) + εi, where {ε1, ε2, ..., εn}

i.i.d.∼ N(0, σ2). We then obtain
by linear extensions PL functions f, g : |K| → R. Then

E[Pers(g)]− E[Pers(f)] ≤ C · n,

where dmax is the maximum degree of vertices in K, and C =
√

2
π
σdmax.

Proof. For a vertex u ∈ K, define ∆ as its contribution to the change in total persistence
as its function value changes from f(u) to g(u). The main step is to prove that E[∆] ≤ C,

where C =
√

2
π
σdmax. Since there are n vertices, then E[Pers(g)]− E[Pers(f)] ≤ C · n.

To compute the change in total persistence from f to g, suppose that we change the
function f : K → R in multiple steps:

f = f0 → f1 → ...→ fi → ...→ fn = g,
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where fi : K → R is defined by fi(uj) = g(uj) for 1 ≤ j ≤ i, and fi(uj) = f(uj) for
i + 1 ≤ j ≤ n. Therefore, according to Lemma 3.4.2, at each step i, when the function
changes from fi−1 to fi, the change in total persistence is

Pers(fi)− Pers(fi−1) ≤ dmax|g(ui)− f(ui)|.

Then

E[Pers(fi)]− E[Pers(fi−1)]

≤ dmaxE[|g(ui)− f(ui)|]

= dmax

√
2

π
σ.

Sum over all vertices,

E[Pers(g)]− E[Pers(f)]

=
n∑
i=0

E[Pers(fi)]− E[Pers(fi−1)]

≤ (dmax

√
2

π
σ)n

= Cn.

Comparison. Now we’ve proved both Theorem 3.4.3 and Theorem 3.5.1 that are related
to the total persistence in expectation. Set σ = 1 and f = 0 in the latter. We are curious
about which theorem gives a tighter bound. In fact, this depends on the choice of dmin
and dmax. For example, for a triangulation of S2 where dmin = 3 and dmax = 6, C1 =
4S1:4 ≈ 4 × 0.73237 = 2.92948. Meanwhile, C ≈ 4.78731. That is, C1 < C. On the
other hand, for a triangulation of a topological space where dmin = 3 and dmax = 12, then
C1 = 14S1:4 ≈ 14× 0.73237 = 10.25318, while C ≈ 9.57461. That is, C < C1.

3.6 Discussion
There is much to discuss here. We focus on a few topics:

1. We notice that when running the extended persistence algorithm on a function de-
fined on a triangulation of a general topological space, there are certain “simplicity”
assumption for the underline space. Namely, we assume that in the persistence di-
agram, only points off the diagonal represent topological features. However, things
become complicated for the triangulation of the projective plane where a simplex
can pair with itself. This leads to a point on the diagonal in the persistence dia-
gram which represents an important topological feature, even though its persistence
is 0. We will need to extend the definition of extended persistence to capture such
topological features.
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2. The pairing probabilities given in Theorem 3.3.1 involve vertices from a triangula-
tion of S1. Are there similar results for vertices from a triangulation of S2?

3. We assume throughout this chapter that function values are sampled i.i.d. from a
Normal distribution. Theorem 3.4.1 shows that the total persistence in expectation is
linear in the number of vertices in the triangulation. Are there other sampling models
that give sub-linear relations? What if we assume local dependencies, for example,
suppose the function values are m-dependent, identically distributed? Deriving the
upper bound on total persistence is much harder and remains an open problem.

4. Theorem 3.5.1 gives an upper bound on the expected change in total persistence
for functions with Gaussian noise defined on triangulations of general topological
spaces. We can apply the theorem to estimate the total persistence in expectation for
functions without noise. Can we prove tighter bounds?

5. Theorem 3.4.3 gives an upper bound on the total persistence in expectation. Suppose
we know the expected multiplicities of vertices in a triangulation, it may be possible
to derive a lower bound.

6. Under a similar setting from Theorem 3.5.1, can we compute a notion of “average
persistence diagram” based on g?
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Chapter 4
Elevation

After studying the total persistence on some general triangulation, we now talk about
triangulated surfaces in R3 and the volume they bound. Specifically, we use persistence to
study features of triangulated protein surfaces. By features, we mean the protrusions and
cavities on the surface of the protein which are relevant to forming complexes with other
proteins during rigid-body docking.

4.1 Introduction
Motivation. The elevation function on a smoothly embedded 2-manifold in R3 reflects
the multiscale topography of cavities and protrusions as local maxima. Introduced by
Agarwal et al. [6], the function has been useful in identifying coarse docking configura-
tions for protein pairs. The approach identifies protrusions (knobs) and cavities (wells)
on the two surfaces and matches them up. This idea goes back to Connolly [42] who
used a function that maps each point of the protein surface to the fraction of a fixed-radius
sphere centered at the point that lies outside the protein volume. As shown by Cazals et al.
[25], this function resembles the mean curvature at the point in the limit, when the radius
approaches zero. The fixed radius makes a choice of the scale the function reflects.

In contrast to Connolly’s function, the elevation function is scale independent and
marks small as well as large protrusions of varying shape and direction. Its construc-
tion is based on the persistence structure of the 2-parameter family of height functions, as
explained in the next section. The task at hand is then the computation of all local max-
ima for two proteins and the use of the type, size, and location of the marked topographic
features to identify promising positions for interaction. The experimental study in [112]
shows that this approach is effective in finding initial positions that can then be refined
by local optimization. The computationally most expensive step in this study is the de-
termination of the elevation maxima. Using the algorithm in [6], the running time for a
triangulated 2-manifold with m edges is proportional to m5 log2m. Since typical proteins

52



give rise to surfaces with hundreds of thousands of edges, the quintic dependence on m
limits the practical deployment of the method. Our goal is to compute local maxima faster
in practice.

Results. In this chapter, we transport the concept of elevation function from the smooth
to the piecewise linear category, and study its application in practice. Our main contribu-
tions are,

• We give a new algorithm for finding all local maxima. While its worse-case running
time is the same as the algorithm used in [6], its performance is roughly ten-thousand
times faster for triangulated surfaces approximating smooth surfaces that we typi-
cally find in practice.

• We cast light on this improvement by relating the running time to the total abso-
lute Gaussian curvature of the 2-manifold and, to a lesser extent, to the number of
vertices in the approximating triangulation.

All our experiments use molecular skin surfaces [49] as the triangulation. They are
characterized by having dihedral angles at edges that are close to half the full angle. Since
we incorporate the surface complexity in terms of total absolute Gaussian curvature into
the analysis of the algorithm, it is worth mentioning that there is a large literature on the
notion of curvatures for triangulated surfaces. For example, several differential operator
estimates for mean curvature, Gaussian curvature and principle curvature are derived for
triangulated 2-manifolds in [77]. We refer to [12, 39, 80] for details.

4.2 Preliminaries
In this section, we introduce the geometric and topological background need to understand
the elevation function and our algorithm for computing its local maxima. We begin with
the mathematically cleaner smooth case, which we use as the guiding intuition in our
subsequent treatment of the computationally more useful piecewise linear case.

The Smooth Case
We begin with a brief introduction of Morse functions and persistent homology, then use
these concepts to define the elevation function. Finally, we discuss the Gaussian curvature
of the 2-manifold.

Morse functions. The class of smooth, real-valued functions is a challenging object
that simplifies considerably if we add genericity as a requirement. Since we will need
to measure distance along the manifold, we assume M is a 2-manifold with Riemannian
metric defined on it. Letting f : M → R be a smooth function on the 2-manifold, a point
x ∈ M is critical if the derivative at x equals zero. The value of f at a critical point is a
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FIGURE 4.1: From left to right: a minimum, a saddle, and a maximum of the vertical height
function.

critical value. All other points are regular points and all other values are regular values
of f . A critical point is non-degenerate if the Hessian, that is, the matrix of second partial
derivatives at the point is invertible. In the 2-dimensional case, we have a 2-by-2 Hessian,
and if it is non-degenerate, then the matrix has two non-zero eigenvalues, λ1 6= λ2. Define
the index of the corresponding non-degenerate critical point as the number of negative
eigenvalues. A non-degenerate critical point of index 0 is a minimum, of index 1 is a
saddle, and of index 2 is a maximum, see Figure 4.1. Finally, f is a Morse function if all
its critical points are non-degenerate and its values at the critical points are distinct.

Given a value a ∈ R, the corresponding sublevel set consists of all points with value at
most a; that is, Ma = f−1(−∞, a]. Sweeping the manifold in the direction of increasing
function value, we get a 1-parameter family of sublevel sets. The topology of the sublevel
set changes precisely when the sweep passes through a critical point. Let t1 < t2 < ... < tn
be the ordered sequence of critical values and −∞ = s0 < s1 < ... < sn = ∞ a sequence
of interleaved values, that is, si < ti+1 < si+1, for all i. By assumption of f being Morse,
we get from the sublevel set at si to the one at si+1 by passing exactly one non-degenerate
critical point. The change can be characterized in terms of the dimension of the handle
we attach to go from Msi

to Msi+1
. For index 0, we add a 0-handle, that is, an isolated

point which we then thicken to a disk. For index 1, we add a 1-handle, that is an interval
attached to the boundary of the sublevel set at its endpoints which we then thicken to a
strip. Finally, for index 2, we add a 2-handle, that is, a disk attached to the boundary of the
sublevel set along its boundary circle.

Persistent homology. Looking at the homology groups [82] of the sequence of sublevel
sets, we use the concept of persistence to measure the lengths of the intervals along which
homology classes exist [51]. Since sublevel sets between two contiguous critical values
are homologically indistinguishable, we may consider the finite sequence

∅ = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M,

where we simplify notation by setting Mi = Msi
. Fixing a dimension p (p ≥ 0), each

sublevel set has a p-th homology group and the sequence is connected from left to right
by homomorphisms induced by inclusion, which we denote as f i,jp : Hp(Mi) → Hp(Mj).
We have a birth at Mi if the map f i−1,i

p is not surjective, and we have a death at Mj if
the map f j−1,j

p is not injective. Furthermore, the death at Mj corresponds to the birth at
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Mi if there is homology class γ in Hp(Mi) that is not in the image of f i−1,i
p , its image in

Hp(Mj−1) is still not in the image of f i−1,j−1
p , but its image in Hp(Mj) is in the image

of f i−1,j
p . We call f(tj) − f(ti) the persistence of this birth-death pair. As explained

in [34], this method gives a pairing between births and deaths that has many interesting
properties. Each death corresponds to a unique birth but not every birth corresponds to a
death. Missing the death is sometimes a problem because we can not get a measure for
the critical point giving birth, like we can for all other critical points. This is especially
true for the definition of the elevation function for which we need measurements of all
critical points. To remedy this shortcoming, we extend the sequence of homology groups
for extended persistence as described in [35]. Writing Ma = f−1[a,∞) for the superlevel
set of a, we go up with absolute homology groups of sublevel sets, as before, and we come
back down with relative homology groups,

0 = Hp(M0) → Hp(M1) → . . .→ Hp(Mn)

→ Hp(M,Mn) → . . .→ Hp(M,M0) = 0,

where we simplify notation by setting Mi = Msi , M0 = M and Mn = ∅. We call this
the extended filtration and the resulting birth-death pairing the extended persistence of the
function. Now every birth corresponds to a death. In fact, we have two events at every
critical point, one going up and one coming down, but duality implies that we just get
each pair twice, see [35]. As a consequence of duality, the birth-death pairs we get for the
negative function, −f , are the same. This turns out to be important in the definition of the
elevation function.

For 2-manifolds, there is a more elementary way to introduce extended persistence
using the Reeb graph of the function. Instead of giving details, we refer to [6] and we
mention that this approach leads to a fast algorithm. It consists of constructing the Reeb
graph in a sweep [40] followed by deconstructing it in another sweep using cutting and
linking trees [6, 55].

Elevation. To define elevation, we assume the 2-manifold M is smoothly embedded in
R3. For a direction u ∈ S2, we consider the height function hu : M → R defined by
hu(x) = 〈x, u〉. Generically, hu is a Morse function, but for some directions u it is not,
either because a critical point is degenerate or because two or more critical points map to
the same height value. Considering the entire sphere of directions, we get a 2-parameter
family of height functions.

For each u ∈ S2, we pair up births with deaths using the extended sequence of homol-
ogy groups defined by the sublevel and the superlevel sets of hu. In the Morse function
case, each birth-death pair identifies two critical points, x and y, one giving birth and
the other giving death, and we define the elevation at these two points as their persis-
tence or, equivalently, the absolute height difference in the direction u, E(x) = E(y) =
|hu(x) − hu(y)|. Each point of M is critical in two directions, u and −u, and is thus
assigned two values, the absolute height difference to the paired critical point in the two
directions. Since h−u = −hu, the paired point is the same, so we get a unique value at
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FIGURE 4.2: Example of an elevation function defined in the vertical height direction. The pairing
of critical points are shown on the right.

every point. This is the elevation function of the 2-manifold, E : M → R. See Figure 4.2
for an example.

To get a feeling for this function, we consider a protrusion (a mountain) of the 2-
manifold. To measure the height of the mountain, we measure from the top down, to the
first saddle that separates it from an even higher mountain. We can do this in various
directions, so we do it to maximize the height. This might be in a direction along which
the first saddle is ambiguous. Perhaps there are three such saddles at the same height value
in this direction, similar to the third type in Figure 4.3 in which we have a degenerate
monkey saddle with the same height difference to three minima. In this direction, we have
two violations of genericity required for Morse functions, because there are three critical
points with the same height value. Indeed, local maxima of E tend to arise along non-
generic directions. An exception is the 1-legged maximum defined by only two critical
points (with one leg between them). Besides this case, we have 2-legged maxima defined
by three critical points, and 3- and 4-legged maxima defined by four critical points each;
see Figure 4.3.

Curvature. We will later discover that the running time of our algorithm for finding
all local maxima relates to the total absolute curvature of the surface. We introduce this
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FIGURE 4.3: The four generic types of local maxima of the elevation function. From left to right:
the 1-, 2-, 3- and 4-legged maximum.

concept using the Gauss map, N : M → S2, defined by mapping a point x of M to the
outer unit normal, N(x), at x. Assuming M is smoothly embedded in R3, the Gauss map
is continuous and surjective but not necessarily injective. Indeed, the preimage of u ∈ S2

consists of all critical points of hu with outer normal u, as opposed to−u. The multiplicity
of N at u and −u together is thus the number of critical points of hu. We will see shortly
that the total coverage of S2 is exactly the total absolute Gaussian curvature of M.

Letting x be a point of M and r > 0 a radius, we define the absolute Gaussian cur-
vature at x by taking the limit of a fraction of areas, g(x) = limr→0

Area(N(Ar))
Area(Ar)

, where
Ar is the neighborhood of points at distance at most r from x on M. The total absolute
Gaussian curvature is the integral of the local quantity, G(M) =

∫
x∈M g(x)dx. It should

be clear that G(M) is the area of the total coverage of S2, taking multiplicity into account.
For a given direction, the multiplicity is |N−1(u)|. Hence, G(M) =

∫
u∈S2 |N−1(u)|du.

Writing cavg for the average number of critical points of the height functions, we thus have
the total absolute Gaussian curvature equal to one half times the area of the sphere times
that average, G(M) = 2πcavg. This integral geometry formula for the curvature will come
handy in the analysis of our algorithm. For more information on the integral geometry
formulation of curvature see Santaló [103].

The PL Case
We do all computations on a piecewise linear approximation of the smooth 2-manifold.
To transport the smooth concepts to the PL category, we think of the PL surface as being
approximated by a smooth surface. Tightening the approximation, we get a series and take
the limit. This is the general intuition we have in the background guiding the formulation
of definitions in the PL case.

Triangulated surfaces. A triangulation of a 2-manifold M is a simplicial complex, K,
whose underlying space is homeomorphic to M: |K| ≈ M. It consists of vertices, edges,
and triangles. To put K into R3, it suffices to map each vertex to a point; the edges
and triangles are the convex hulls (of the images) of their vertices. This is a geometric
realization if the triangles meet in shared edges and vertices but not otherwise. We call the
result a triangulated surface, implicitly assuming that it is geometrically realized in R3.

57



Here we recall some definitions that have appeared in Chapter 3. The star of a vertex is
the set of simplices that contain it, and the link consists of all faces of simplices in the star
that do not belong to the star:

St vi = {σ ∈ K | vi ∈ σ};

Lk vi = {τ ⊆ σ ∈ St vi | τ 6∈ St vi}.

A PL function f : |K| → R is determined by its values at the vertices. Assuming f(vi) 6=
f(vj) whenever i 6= j, we define the lower link as the subset of simplices in the link where
f is smaller than at the vertex; and the lower star as the subset of simplicies for which vi
is the vertex with the maximum function value:

Lk−vi = {σ ∈ Lk vi | x ∈ σ ⇒ f(x) < f(vi)},

St−vi = {σ ∈ St vi | x ∈ σ ⇒ f(x) ≤ f(vi)}.

Note that there are partial simpliceices where f(x) > f(vi) at some points, and f(x) <
f(vi) at others. Finally, vi is regular vertex if its lower link is contractible, and critical
vertex, otherwise. Since K triangulates a 2-manifold, every link is a circle and the only
contractible closed subsets are points and closed paths.

The lower link of a regular vertex is thus a single vertex or a path connecting two
vertices. A minimum is characterized by Lk−vi = ∅ and a maximum by Lk−vi = Lk vi.
In the remaining case, the lower link consists of k + 1 ≥ 2 paths and we call vi a k-fold
saddle, or a simple saddle if k = 1 (see examples in Figure 3.1, Chapter 3). Recall that we
can then classify the vertices using the reduced Betti numbers of their lower link (Table
3.1, Chapter 3).

In contrast to the smooth case, it is not possible to turn a k-fold into a simple saddle by
a small perturbation. We therefore treat them directly, without reduction to simple cases.
As an example, consider the Euler-Poincaré Theorem which relates the topology of the
2-manifold with the critical point structure of its functions. Denote the index of a simple
critical point by index (vi),

index (vi) =


0 if vi is a minimum;
1 if vi is a simple saddle;
2 if vi is a maximum.

Notice that this PL version of index is one more than the dimension of the unique non-
zero reduced Betti number of the lower link. It is also consistence with the corresponding
definition in the smooth case. Assuming K is connected, it is characterized by its genus
and we have

2− 2 · genus = n−m+ l =
∑
i

(−1)index (vi),

where n, m, l are the number of vertices, edges, triangles in K and a k-fold saddle is
represented by k simple saddles in the sum.
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Critical regions. Another significant complication we encounter in the PL case is that a
vertex is generally critical for an entire region of directions. Letting hu : |K| → R be the
height function defined by hu(x) = 〈x, u〉, the critical region of a vertex is the closure of
the set of directions along which vi is critical,

Ri = cl {u ∈ S2 | vi is critical point of hu}.

We construct it from the closed polygonal curve defined by the star of vi. Specifically, we
map each triangle in the star to its outer normal direction, a point on S2, and we connect
the directions of two neighboring triangles by the shorter of the two connecting great-
circle arcs. This gives a closed polygonal curve, πi, which may or may not have self-
intersections. To cope with self-intersections, we orient πi and define the winding number
of a direction u ∈ S2 not on the curve as the number of times the curve goes around the
directed line defined by u. Viewed along u, we count a counterclockwise turn as +1 and
a clockwise turn as −1. Taking the sum we get the winding number, which we denote as
w(u, πi). For a detailed study of the Gauss map for polyhedral surfaces, refer to [9]. The
winding number of u relates to the type of the vertex in the height function defined by
u. Specifically, if vi is regular then the winding number of u is 0, if vi is a simple critical
point then the winding number is (−1)index (vi), and if vi is a k-fold saddle then the winding
number is −k. Examples are shown in Figure 4.4 where a monkey saddle has the winding
number −2.

Curvature. Thinking of a vertex as a tiny region in an approximating smooth surface,
we define its Gaussian curvature as the area of its critical region weighted by the winding
number. More useful in this chapter is its absolute Gaussian curvature defined as the area
weighted by the absolute winding number, g(vi) =

∫
u∈S2 |w(u, πi)|du. The total absolute

Gaussian curvature is then the sum over all vertices, G(K) =
∑

i g(vi). Equivalently, it is
the area of the sphere times half the average number of critical vertices, taking multiplic-
ities into account, as usual. The average is taken over all height functions, and we count
half the critical vertices because vi is critical for u ∈ S2 as well as −u ∈ S2.

4.3 Computation
In this section, we describe how we compute the elevation maxima for a given triangulated
surface in R3. The algorithm is straightforward and the new insight relative to prior work
is in the analysis, relating the running time with the total absolute Gaussian curvature of
the surface.

Types and filters. Recall that there are four types of elevation maxima for a generic
smooth surface, as illustrated in Figure 4.3. We have the same four cases for a generic
triangulated surface K in R3. Each maximum is given by a set of two, three, or four
points. We consider the case in which all these points are vertices of K. The cases in
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FIGURE 4.4: Left: for a direction u with winding number +1 the corresponding vertex appears
either as a maximum or a minimum. Right: for winding number −1 we have a simple saddle and
for −2 we have a 2-fold or monkey saddle for the height function defined by the corresponding
direction.

which some of the points in V lie on edges of K are similar. Let V be a set of vertices. A
necessary requirement for V to define an elevation maximum is that its vertices are critical
for a common height function. More specifically, we need them critical in a particular
direction that is determined by V . This direction, uV = (y − x)/||y − x||, is slightly
different for each type.

1-legged case, V = {x, y}. Here, uV is the direction defined by the two points.

2-legged case, V = {x, y1, y2}. Letting y be the orthogonal projection of x onto the line
passing through y1 and y2, uV = (y − x)/||y − x||, if y lies between y1 and y2.

3-legged case, V = {x, y1, y2, y3}. Letting y be the orthogonal projection of x onto the
plane passing through y1, y2, y3, uV = (y−x)/||y−x||, if y lies in the triangle they
span.

4-legged case, V = {x1, x2, y1, y2}. Letting x and y be the feet of the shortest line
segment connecting the line passing through x1 and x2 with the line passing through
y1 and y2, uV = (y− x)/||y− x||, if x lies between x1 and x2 and y lies between y1

and y2.

With the definition of uV , now we are ready to introduce one of the two filters, the
projection filter, which is useful in eliminating the collection of point sets with empty
common critical regions.

PROJECTION FILTER. The direction uV defined by the points in V is defined and
belongs to the common intersection of critical regions, uV ∈

⋂
vi∈V Ri.

Notice that the four cases discussed so far are “vertex-only”, that it, each V contains
only points located on the vertices. There are other cases where V contains points that
lie on edges of K, which potentially form elevation local maxima. These mixed sets can
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be generated by substituting edges connecting adjacent vertices in vertex-only sets. For
example, the four vertices of a 4-legged case may give rise to a mixed set containing two
vertices and one edge, specifying a 2-legged case, or a set of two edges, specifying a
1-legged case.

Note that the non-empty intersection of the critical regions is a necessary but not a suf-
ficient condition for the set V to pass the Projection Filter. In turn, passing the Projection
Filter is a necessary but not sufficient condition for the direction uV to be an elevation max-
imum. For that, the set needs to satisfy another condition. To describe it, we write x0 for x.

PERSISTENCE FILTER. For each pair xi and yj in V , there is an arbitrarily small
perturbation u of uV such that xi, yj is a birth-death pair for the height function hu.

Algorithm. We compute the elevation maxima in three steps, starting with 2-, 3-, 4-
tuplets V whose points have pairwise overlapping critical regions. The next two steps
narrow down the selection using first the Projection and second the Persistence Filter.

STEP 0. Compute the critical regions of the vertices of K. Letting the critical regions be
the nodes of the intersection graph, R, we draw an arc if the two regions have a
non-empty common intersection. For k = 2, 3, 4, let Qk be the set of k-cliques, that
is, the k-tuplets of nodes connected by all

(
k
2

)
arcs. Let S0 =

⋃4
k=2Qk.

STEP 1. Subject each pair, triplet, and quadruplet in S0 to the Projection Filter and let
S1 ⊆ S0 be the collection of sets in S0 that passes the filter.

STEP 2. Subject each pair, triplet, and quadruplet in S1 to the Persistence Filter and let
S2 ⊆ S1 be the collection of sets in S1 that passes the filter.

Steps 1 and 2 are the same as in [6], so we focus on the implementation of Step 0 in which
we compute the 2-, 3-, 4-tuplets with pairwise intersecting critical regions.

Implementation. We decompose Step 0 into three smaller steps, constructing the critical
regions, finding the intersecting pairs, and computing the cliques of size 2, 3, 4 in the
intersection graph. Implementation is done with Perl, C and CGAL [2]. All computations
are exact except estimating the area and the bounding box of a critical region.

STEP 0.1. Recall that each critical region, Ri, is given by a closed polygon with mi edges
on the sphere. Recall that mi is the number of edges incident to vertex vi in the
triangulation. Those edges may intersect, and we take time O(m2

i ) to construct the
decomposition of the sphere [43], including winding numbers for all subregions.
Reflecting Ri centrally through the origin in R3, we get the region −Ri of inward
normals along which vi is critical. Constructing all critical regions takes time pro-
portional to

∑
im

2
i .
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STEP 0.2. We found experimentally that most critical regions are small and simple. This
suggests we use a bounding volume approach to find the intersecting pairs. Specifi-
cally, we find an axis-parallel box Bi in R3 that encloses the region Ri on S2 ⊆ R3.
We do this in two steps, first computing the smallest enclosing sphere of Ri and
second the smallest axis-aligned box that contains the sphere. Assuming that Ri fits
inside a hemisphere of S2, the smallest enclosing sphere of its vertices also encloses
Ri. To compensate for round-off errors, we increase the sphere slightly and compute
the box Bi to enclose the enlarged sphere. Computing the smallest enclosing sphere
of Ri takes randomized time O(mi), see [114]. Given the boxes Bi, we find the
overlapping pairs using the segment-tree streaming algorithm as described in [116].
Writing bi for the number of boxes that overlap Bi, we have a total of b = 1

2

∑
i bi of

overlapping pairs. The streaming algorithm takes time proportional to n log3
2 n + b

to find them. For each pair of overlapping boxes, we check whether or not the
critical region they enclose have a non-empty intersection. Standard computational
geometry methods allow us to determine whether or not Ri and Rj intersect in time
O(mij logmij), where mij = m2

i +m2
j [43].

STEP 0.3. The result of Steps 0.1 and 0.2 is a graphR. Its n nodes are the critical regions,
and its q arcs are the pairs of critical regions with non-empty overlap. Writing
q = 1

2

∑
i qi, where qi is the degree of the i-th node, we compute the cliques of

size 2, 3, 4 by checking all pairs and triplets of neighbors. Finding the cliques that
include the i-th node, Ri, thus takes time O(

(
qi
1

)
+
(
qi
2

)
+
(
qi
3

)
).

Analysis. The time for Step 0 is dominated by the requirement for Step 0.2, which is
some constant times Tnew =

∑
i

(
qi
1

)
+
(
qi
2

)
+
(
qi
3

)
. The time for Step 1 is some constant

times |S0| ≤ Tnew and that for Step 2 is some constant times T = |S1|n log2 n. This adds
up to some constant times Tnew+T , as compared to Told+T for the algorithm in [6], where
Told =

(
n
2

)
+
(
n
3

)
+
(
n
4

)
. Any improvement thus hinges on two properties, namely that Told

is significantly larger than Tnew as well as T . We now show that the first property holds
under grossly simplifying assumptions, and we provide evidence in the next section that
both properties hold for data we encounter in practice. Here is the simplifying assumption
we use:

CAP ASSUMPTION. The critical regions are spherical caps, all of the same size, and
their centers are uniformly distributed on S2.

Recall that the areas of the critical regions add up to the total absolute Gaussian curva-
ture,

∑
i Area(Ri) = G(K). This sum is also half the area of the sphere times the average

number of critical points of the height functions, G(K) = 2πcavg. It follows the area of
a single critical region is Area(Ri) = 2πcavg/n, and because the cap is smaller than the
flat disk of the same radius, its radius squared is ρ2 > 2cavg/n. Two caps overlap if and
only if the center of one is contained in the cap of radius 2ρ around the center of the other.
The area of the enlarged cap is less than four times Area(Ri). Hence the probability for a
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region Rj to overlap Ri is Pr (Ri ∩Rj 6= ∅) ≤ 4Area(Ri)/4π = 2cavg/n. Since expecta-
tions are additive even if the events are not independent, the expected number of k-tuplets
of neighbors is Exp[

(
qi
k

)
] ≤

(
n−1
k

)
Area(Ri)

k/πk ≤ 2kckavg/k!. Adding the expectations
for k = 1, 2, 3 and all 1 ≤ i ≤ n gives

Exp[Tnew] ≤ n · (2cavg + 2c2avg +
4

3
c3avg).

Recall that cavg = G(K)/2π. It follows the average number of k-tuplets of critical regions
overlapping a given one depends on the shape of the smooth surface and not on the size
of the approximating triangulated surface. Similarly, the time for Step 0 depends on the
shape and otherwise only linearly on the number of vertices in the triangulation.

4.4 Experiments
In this section, we present the results of our computational experiments. Running our
software on triangulated surfaces representing biomolecular structures, we gather statistics
on critical regions, pairwise intersections, and elevation maxima. We use these statistics
as evidence that the Cap Assumption is a reasonable approximation of the reality for our
data and that the new algorithm runs about four orders of magnitude faster than the old
one.

Input data. We use two types of triangulated surfaces approximating smooth models of
biomolecular structures all listed in Table 4.1. The first type is the molecular skin which
uses hyperboloid and concave sphere patches to blend between the spheres that represent
the atoms of a molecule [49]. An algorithm that constructs an approximating triangulated
surface with guaranteed bounds on two- and three-dimensional angles is described in [29]
and software written by Ho-lun Cheng is available at [1]. For a representative of our data
set, see Figure 4.5. The second type is the molecular surfaces generated by Chimera [92].
The MSMS algorithm used in Chimera [102] constructs a triangulation of the solvent
excluded surfaces initially computed by Connolly [41]. We compute local maxima for
the skin surfaces only as they tend to have finer triangulations with smaller percentage
of non-simple critical vertices compared with the Chimera surfaces. We suspect that the
algorithm speed-up might be sensitive to the quality of the triangulation, specifically to
large average size of the critical regions, which might give rise to larger set of candidates
of local maxima.

Critical point statistics. For each data set, we estimate the minimum, average, and max-
imum number of critical points of the height functions, which we sample at one thousand
directions chosen from S2. The results are shown in Table 4.2, left. Comparing the esti-
mated with the actual average, which we get using cavg = G(K)/2π =

∑
i Area(Ri)/2π,

we see that the error is small. For example, for data set 4, the estimated cavg is 29.92 while
the actual average is 29.94. Since all our skin triangulations approximate a smooth surface
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id name n m l

0 1BRS-5to6 1,370 4,104 2,736
1 1CLU-DBG 3,149 9,441 6,294
2 1BRS-A-5to10 4,248 12,738 8,492
3 1BRS-A-30to40 6,114 18,336 12,224
4 1BRS-A-17to25 7,799 23,391 15,594
5 1BRS-A-5to10 836 2,502 1,668
6 1BRS-A-30to40 1,372 4,110 2,740
7 1BRS-A-17to25 1,595 4,119 3,186

TABLE 4.1: The triangulated surfaces used in our computational experiments together with their
numbers of vertices, edges, and triangles. Top: five molecular skin surfaces. Bottom: those molec-
ular Chimera surfaces.

FIGURE 4.5: Representative of our data sets, a triangulated surface approximating a peptide within
the 1BRS protein.

to about the same accuracy, for different surfaces, the average number of critical points
scales linearly with n. Indeed, cavg/n is between 0.003 and 0.005 for all our skin data sets.

As mentioned earlier, each vertex of K is critical for a region of directions, in fact two
antipodal regions. Most of these regions are simple, that is, defined by a polygon without
self-intersections. As shown in Table 4.2 right, the percentage of non-simple polygons is
indeed rather small. Besides checking for self-intersections, we measure the complexity
of a critical region by counting the triangles we need to triangulate it on the sphere. The
minimum, average, and maximum of this number are given in Table 4.2 middle.

Intersection statistics. The following statistics were collected for the finer molecular
skin surfaces only. Recall that we compute the pairs of intersecting critical regions in
two steps, first finding the intersections among the bounding boxes and second among the
critical regions. Table 4.3, left, gives the statistics for both. Given a pair of intersecting
boxes, we test whether or not the corresponding critical regions intersect by checking
the overlap among the triangles in their triangulations. The average number of triangle-
triangle checks is consistently between 11 and 12, which justifies the use of this brute-force
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id cmin cavg cmax
cavg

n rmin ravg rmax %
0 2 6.41 16 0.0047 2 3.99 8 12
1 2 13.50 44 0.0043 2 4.01 12 15
2 6 17.07 34 0.0040 2 4.01 10 17
3 10 25.14 46 0.0041 2 4.01 10 16
4 12 29.92 64 0.0038 2 4.01 10 20
5 6 16.01 32 0.0192 2 4.08 11 29
6 10 27.13 46 0.0198 2 4.13 15 30
7 14 31.02 54 0.0194 2 4.09 10 33

TABLE 4.2: Left: estimated minimum, average, and maximum of the number of critical points
of the height functions. Middle: minimum, average, and maximum of the number of triangles
needed to triangulate the critical regions. Right: percentage of non-simple critical regions. Top:
five molecular skin surfaces. Bottom: those molecular Chimera surfaces.

id bmin bavg bmax
bavg

n qmin qavg qmax
qavg

n

0 12 94 207 0.069 9 40 97 0.029
1 27 204 626 0.065 11 82 250 0.026
2 52 236 556 0.056 20 92 201 0.022
3 95 243 859 0.040 29 134 330 0.022
4 99 423 1,276 0.054 35 160 543 0.021

TABLE 4.3: Left: the minimum, average, and maximum number of boxes intersecting a given box;
Right: the minimum, average, and maximum number of critical regions intersection a given critical
region.(Data computed for the five molecular skin surfaces only.)

over a more sophisticated method.
Similar to the number of critical points, we expect that the average number of boxes

intersecting a given box and the average number of critical regions intersecting a given
critical region to scale linearly with n. Indeed, bavg/n is between 0.04 and 0.07 and qavg/n
is between 0.02 and 0.03 for all our skin data sets. The latter is about six times the av-
erage number of critical points; compare this with the factor two we got under the Cap
Assumption. The observed relation between these two quantities is only about three times
as loose, which is reasonable considering that real data necessarily violates the Cap As-
sumption to some extent (due to irregular shapes and different orientations of the critical
regions). The new algorithm starts with Tnew tuplets. A back-of-the-envelope calculation
suggests that Tnew is roughly n

(
qavg

3

)
, which is roughly a factor of ten thousand smaller

than
(
n
4

)
, independent of the value of n. We thus might expect the new algorithm to run

about four orders of magnitude faster than the old one.

Running time. Recall that S0 is the set of cliques of size 2, 3, or 4 in the intersection
graph of the critical regions. The subset S1 ⊆ S0 contains all cliques that pass the Projec-
tion Filter, and the subset S2 ⊆ S1 contains all cliques that also pass the Persistence Filter.
The sizes of the first two sets are given in Table 4.4 left.
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id |S0|/103 |S1| Told/1010 Tnew/106 T/106

0 1,608 2,373 15 24 33
1 32,119 20,521 410 508 749
2 43,572 17,175 1,356 720 882
3 198,023 56,797 5,820 3,327 4,368
4 433,116 94,300 15,411 7,354 9,508

TABLE 4.4: Left: the number of cliques before and after the Projection Filter and the Persis-
tence Filter. Right: dominant terms in the running time of the old and the new algorithms. (Data
computed for the five molecular surfaces only.)

Most relevant to the running time of the algorithms for computing elevation maxima
is S1. Indeed, both the old and the new algorithm start with sets of 2-, 3-, and 4-tuplets
that contain the cliques in S0 and much more. As shown in Table 4.4 on the right, the
overestimate by the old algorithm is about ten thousand times that of the new algorithm.
Furthermore, in the new algorithm, the time for Step 0 and Steps 1 and 2 is fairly balanced.
This implies a speed-up of about four orders of magnitude, which is consistent with back-
of-the-envelope calculation mentioned above.

4.5 Conclusion and Discussion
The main result of this chapter is a new algorithm for computing all elevation maxima of
a triangulated surface in R3. We provide experimental evidence that for practical data, the
new algorithm runs about four orders of magnitude faster than the old one. The improve-
ment is achieved by making the running time dependent on the total absolute Gaussian
curvature of the surface and to a lesser extent on the number of vertices in the approximat-
ing triangulation. There are several open problems as follows.

1. Now, the total absolute Gaussian curvature has different definitions for smooth and
for piecewise linear surfaces. It appears thatG(K) approachesG(M) asK is refined
and forms a progressively more accurate approximation of the smooth surface M.
However, we do not have a proof and we do not know under what conditions this is
true.

2. There is room for performance improvement, one promising direction is to paral-
lelize the computations. It would also be interesting to sample the elevation maxima
if this can be done faster than computing all. For example, is it possible to com-
pute all elevation maxima larger than some threshold without spending the time to
determine (and discard) the elevation maxima that do not exceed that threshold?
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Chapter 5
Towards Stratification Learning through
Homology Inference

A topological approach to stratification learning is developed for point cloud data drawn
from a stratified space. The objective is, given the point cloud data, infer which points be-
long to the same strata. Topological conditions are given under which the point cloud can
be used to infer properties of the stratified space. Kernel and cokernel persistent homol-
ogy is used to state these conditions which characterize the local structure of points in the
sample. A geometric intuition for the topological conditions is provided. We state finite
sample bounds on the minimum number of points in the sample required to state with high
probability which points belong to the same strata. We present an algorithm that computes
which points belong to the same strata and prove the correctness of this algorithm. The
algorithm is applied to simulated data.

5.1 Introduction
A basic problem in geometry, topology, and statistical inference that has received attention
in the past is that of manifold learning: given a point cloud of data sampled from a man-
ifold in an ambient space Rk, infer the underlying manifold. A limitation of the problem
statement is that it does not apply to sets that are not manifolds. For example, we may con-
sider the more general class of stratified spaces that can be decomposed into strata, which
are manifolds of varying dimension, each of which fit together in some way uniformly
inside the higher dimensional space. In this chapter, we study the following problem in
stratification learning: given a point cloud sampled from a stratified space, which points
belong to a common stratum?

Consistency in manifold learning has been characterized as homology inference: as
the number of points in a point cloud goes to infinity, the inferred homology converges
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to the true homology of the underlying space. Results of this nature have been given for
manifolds [88, 89] and a large class of compact subsets of Euclidean space [27]. Stronger
results in homology inference for closed subsets of a metric space are given in [34].

Geometric approaches to stratification inference have been developed before. These
include inference of a mixture of linear subspaces [73], mixture models for general strati-
fied spaces [61], and generalized Principal Component Analysis (GPCA) [110] which was
developed for dimension reduction for mixtures of manifolds.

The study of stratified spaces has been a focus of pure mathematics [59, 113]. Compu-
tational and algorithmic work on this topic has been developed in the study of intersection
homology [58] and of persistence for intersection homology [19]. The problem of infer-
ence of local homology in a deterministic setting has been addressed in [20].

Results. In this chapter we propose an approach to stratification inference based on ho-
mology inference. The results in this chapter are,

• A topological characterization of two points belonging to the same stratum by as-
sessing the local structure of the points through kernel and cokernel persistent ho-
mology;

• Topological conditions on the point sample under which the topological characteri-
zation holds – we call this topological inference;

• A geometric intuition of these topological conditions based on geometric quantities
related to reach and the gradient of a distance function;

• Finite sample bounds for the minimum number of points in the sample required to
state with high probability which points belong to the same strata;

• An algorithm that computes which points belong to the same strata and a proof of
correctness of this algorithm.

5.2 Background
We review necessary background on persistence, homology and stratified spaces. The
treatment here is mostly adapted from [26]. We first develop persistence modules that
arise from maps between homology groups induced by inclusions of topological spaces.
We then discuss stratifications and their connection to the local homology groups of a
topological space. We assume basic knowledge of homology itself, referring the reader to
[82] or [63] or [50] for a more computationally oriented treatment.

5.2.1 Persistence Modules
In [26], the authors define persistence modules over an arbitrary commutative ring R with
unity. For simplicity, we restrict immediately to the case R = Z/2Z. Let A be some
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FIGURE 5.1: Persistence modules.

subset of R. Then a persistence module FA is a family {Fα}α∈A of Z/2Z-vector spaces,
together with a family {fβα : Fα → Fβ}α≤β∈A of linear maps such that α ≤ β ≤ γ implies
fγα = fγβ ◦ fβα . We will assume that the index set A is either R or R≥0 and not explicitly
state indices unless necessary.

A real number α is said to be a regular value of the persistence module F if there
exists some ε > 0 such that, for all δ < ε, the maps fα+δ

α−δ are all isomorphisms. Otherwise
we say that α is a critical value of the persistence module; if A = R≥0, then α = 0
will always be considered to be a critical value. We say that F is tame if it has a finite
number of critical values and if all the vector spaces Fα are of finite rank. If FR≥0

is tame
it has a smallest non-zero critical value ρ(F); we call this number the feature size of the
persistence module.

Assume F is tame and so we have a finite ordered list of critical values 0 = c0 <
c1 < . . . < cm. We choose regular values {ai}mi=0 such that ci−1 < ai−1 < ci < ai
for all 1 ≤ i ≤ m, and we adopt the shorthand notation Fi ≡ Fai

and f ji : Fi → Fj ,
for 0 ≤ i ≤ j ≤ m. A vector v ∈ Fi is said to be born at level i if v 6∈ im f ii−1, and
such a vector dies at level j if f ji (v) ∈ im f ji−1 but f j−1

i (v) 6∈ im f j−1
i−1 , here im stands for

image. We then define P i,j to be the vector space of vectors that are born at level i and
then subsequently die at level j, and βi,j denotes its rank. This is illustrated in Figure 5.1.

Persistence Diagrams
The information contained within a tame module F can be compactly represented by a
persistence diagram, Dgm(F). This diagram is a multi-set of points in the extended plane.
It contains βi,j copies of the points (ci, cj), as well as infinitely many copies of each point
along the major diagonal y = x. In Figure 5.3 the persistence diagrams for a curve and a
point cloud sampled from it are displayed.

A distance metric between persistence diagrams can be defined that has a stability
property, see Theorem 5.2.1 – if two persistence modules are “close” then the correspond-
ing persistence diagrams are “close”.

For any two points u = (x, y) and u′ = (x′, y′) in the extended plane, we define
||u− u′||∞ = max{|x− x′|, |y− y′|}. We define the bottleneck distance between any two
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FIGURE 5.2: Commuting diagrams for strongly interleaving persistence modules.

persistence diagrams D and D′ to be:

dB(D,D′) = inf
Γ:D→D′

sup
u∈D

||u− Γ(u)||∞,

where Γ ranges over all bijections from D to D′. Under certain conditions which we now
describe, persistence diagrams will be stable under the bottleneck distance.

Two persistence modules F and G are said to be strongly ε-interleaved if, for some
positive ε, there exist two families {ξα : Fα → Gα+ε}α and {ψα : Gα → Fα+ε} of linear
maps which commute with the module maps {fβα} and {gβα} in the appropriate manner.
More precisely, we require, for all α ≤ β, fβ+ε

α−ε = ψβ ◦ gβα ◦ ξα−ε and ψβ ◦ gβα = fβ+ε
α+ε ◦ψα,

as well as the two other equations obtained by exchanging the roles of f and g and ξ and
ψ. This is shown in Figure 5.2.

We can now state the diagram stability result ([26], Theorem 4.4), that we will need
later in this chapter.

Theorem 5.2.1 (Diagram Stability Theorem). Let F and G be tame persistence modules
and ε > 0. If F and G are strongly ε-interleaved, then

dB(Dgm(F),Dgm(G)) ≤ ε.

When we wish to compute the persistence diagram associated to a moduleF , it is often
covenient to substitute another module G, usually one defined in terms of simplicial com-
plexes or other computable objects. The following theorem ([50], p.159) gives a condition
under which this is possible.

Theorem 5.2.2 (Persistence Equivalence Theorem). Given two persistence modules F
and G, suppose there exist for each α isomorphisms Fα ∼= Gα which commute with the
module maps, then Dgm(F) = Dgm(G).
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FIGURE 5.3: Illustration of a point cloud and its persistence diagram. Top: X is the curve em-
bedded as shown in the plane and U is the point cloud. Bottom left: the persistence diagram of
Dgm1(dX); Bottom right: the persistence diagram of Dgm1(dU ).

That is, if all the vertical maps are isomorphisms and all squares commute in the fol-
lowing diagram, then Dgm(F) = Dgm(G).

. . .→Fα → Fβ → . . .

↑∼= ↑∼=
. . .→Gα → Gβ → . . .

(Co)Kernel Modules
Suppose now that we have two persistence modules F and G along with a family of maps
{φα : Fα → Gα} which commute with the module maps – for every pair α ≤ β, we have
gβα ◦ φα = φβ ◦ fβα . That is,

. . .→Fα
fβ

α−→ Fβ → . . .

↓ φα ↓ φβ

. . .→Gα
gβ

α−→ Gβ → . . .

For each α ≤ β, the restriction of fβα to kerφα maps into kerφβ, giving rise to a new
kernel persistence module, with persistence diagram denoted by Dgm(kerφ). That is,

...→ kerφα → kerφβ → ....

Similarly, we obtain a cokernel persistence module, with diagram Dgm(cokφ).
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5.2.2 Homology
Our main examples of persistence modules all come from homology groups, either abso-
lute or relative, and the various maps between them. Homology persistence modules can
arise from families of topological spaces {Xα}, along with inclusions Xα ↪→ Xβ for all
α ≤ β. Whenever we have such a family, the inclusions induce maps Hj(Xα) → Hj(Xβ),
for each homological dimension j ≥ 0, and hence we have persistence modules for each
j. Defining H(Xα) =

⊕
j Hj(Xα) and taking direct sums of maps in the obvious way, will

also give one large direct-sum persistence module {H(Xα)}.

Distance Functions
Here, the families of topological spaces will be produced by the sublevel sets of distance
functions. Given a topological space X embedded in some Euclidean space Rk, we define
dX as the distance function which maps each point in the ambient space to the distance
from its closest point in X. More formally, for each y ∈ Rk, dX(y) = infx∈X dist (x, y).
We let Xα denote the sublevel set d−1

X [0, α]; each sublevel set should be thought of a
thickening of X within the ambient space. As the thickening parameter increases, the
thickenings include one another, giving rise to the persistence module {H(Xα)}α∈R≥0; we
denote the persistence diagram of this module by Dgm(dX) and use Dgmj(dX) for the
diagrams of the individual modules for each homological dimension j.

In Figure 5.3, we see an example of such an X embedded in the plane, along with the
persistence diagram Dgm1(dX). We also have the persistence diagram Dgm1(dU), where
U is a dense point sample of X. Note that the two diagrams are quite close in bottleneck
distance. Indeed, we will always have dB(Dgm(dX),Dgm(dU)) ≤ ε,where ε = dH(X, U)
is the Hausdorff distance between the space and its sample; this follows from Theorem
5.2.1.

Persistence modules of relative homology groups arise from families of pairs of spaces,
as the next example shows. Referring to the left part of Figure 5.4, we let X be the space
drawn in solid lines and B the closed ball whose boundary is drawn as a dotted circle.
By restricting dX to B and also to ∂B, we produce pairs of sublevel sets (Xα ∩ B,Xα ∩
∂B). Using the maps induced by the inclusions of pairs, we obtain the persistence module
{H(Xα ∩ B,Xα ∩ ∂B)}α∈R≥0

of relative homology groups. The persistence diagram, for
homological dimension 1, appears on the right half of Figure 5.4.

5.2.3 Stratified Spaces
We assume that we have a topological space X embedded in some Euclidean space Rk. A
d-dimensional stratification of X is a decreasing sequence of closed subspaces

X = Xd ⊇ Xd−1 ⊇ . . .X0 ⊇ X−1 = ∅,

such that for each i, the i-dimensional stratum Si = Xi − Xi−1 is a (possibly empty)
i-manifold. The connected components of Si are called i-dimensional pieces. This is il-
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FIGURE 5.4: Left: The space X is in solid line and the closed ball B has dotted boundary. Right:
the persistence diagram for the module {H1(Xα ∩B, Xα ∩ ∂B)}.

= + + +

FIGURE 5.5: Example of the stratification of a pinched torus with a spanning disc stretched across
the hole.

lustrated in Figure 5.5, where the space X is a pinched torus with a spanning disc stretched
across the hole.

One usually also imposes a requirement to ensure that the various pieces fit together
uniformly. There are a number of different ways this can be done (see [65] for an extensive
survey). For example, one might assume that for each x ∈ Si, there exists a small enough
neighborhood N(x) ⊆ X and a (d− i− 1)-dimensional stratified space Lx such that N(x)
is stratum-presevering homeomorphic to the product of an i-ball and the cone on Lx; one
can then show that the space Lx depends only on the particular piece containing x. This
definition is illustrated in Figure 5.6, again the space X is a pinched torus with a spanning
disc stretched across the hole.

Since the topology on X is that inherited from the ambient space, this neighborhood
N(x) will take the form X ∩ Br(x), where Br(x) is a small enough ball around x in the
ambient space.
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FIGURE 5.6: A 2-dimensional stratified space. The cones c(Lx) and c(Ly), where x and y are
respectively in the 0-stratum and the 1-stratum, are highlighted.

Local Homology and Homology Stratifications
Recall ([82]) that the local homology groups of a space X at a point x ∈ X are the groups
Hi(X,X− x) in each homological dimension i. If X happens to be a d-manifold, or if x is
simply a point in the top-dimensional stratum of a d-dimensional stratification, then these
groups are rank one in dimension d and trivial in all other dimensions. On the other hand,
the local homology groups for lower-stratum points can be more interesting; for example
if x is the crossing point in Figure 5.7, then H1(X,X− x) has rank three.

If x and y are close enough points in a particular piece of the same stratum, then there
is a natural isomorphism between their local homology groups H(X,X− x) ∼= H(X,X−
y), which can be understood in the following manner. Taking a small enough radii r
and using excision, we see that the two local homology groups in question are in fact
just H(X ∩ Br(x),X ∩ ∂Br(x)) and H(X ∩ Br(y),X ∩ ∂Br(y)). Both of these groups
will then map, via intersection of chains, isomorphically into the group H(X ∩ Br(x) ∩
Br(y), ∂(Br(x)∩Br(y)), and the isomorphism above is then derived from these two maps.
See the points in Figure 5.7 for an illustration of this idea.

In [101], the authors define the concept of a homology stratification of a space X.
Briefly, they require a decomposition of X into pieces such that the locally homology
groups are locally constant across each piece; more precisely, that the maps discussed
above be isomorphisms for each pair of close enough points in each piece. This is inter-
esting because in computations we will not be able to distinguish anything finer.

Whitney Stratification and Stratified Morse Theory
Let Si and Sj be two pieces of a stratification of X. A stratification is called a Whit-
ney stratification if for every pair of Si and Sj with Si ⊂ clSj , the following Whitney
conditions A and B hold [59, 76]. Suppose that two sequences of points {yk} ∈ Si and
{xk} ∈ Sj converges to y ∈ Si. Suppose that the secant lines xkyk converge to some
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limiting line l, and that the tangent spaces at xk to Sj , Txk
Sj , converge to some limiting

space T (called generalized tangent space at y). Then,

A. TySi ⊂ T

B. l ⊂ T

Condition B implies condition A [74]. Any triangulable stratified space is Whitney and
any Whitney stratified space can be triangulated [59].

Let X be a d-dimensional Whitney stratified space embedded in some smooth manifold
M. Let f̄ : M → R be a smooth function. The restriction f of f̄ to X is critical at a point
x ∈ X iff it is critical when restricted to the particular manifold piece which contains x
[19]. A critical value of f is its value at a critical point. f is a Stratified Morse function iff
[19],

1. f is a Morse function when restricted to each manifold piece.

2. All critical values of f are distinct.

3. The differential of f at a critical point x ∈ Si does not annihilate any generalized
tangent space to x other than TxSi.

We now state without proof the first fundamental theorem of Stratified Morse Theory. This
will be useful in proving Lemma 5.4.2.

Theorem 5.2.3 (First Fundamental Theorem of Stratified Morse Theory). Let X be a Whit-
ney stratified space and f a real-valued Stratified Morse function on it. Suppose the inter-
val [a, b] contains no critical values of f . Then the sublevel set f−1(−∞, b] deformation
retracts, preserving strata, onto f−1(−∞, a]. In particular, the sets have the same homol-
ogy.

5.3 Topological Inference Theorem
A result of the relationship between local homology groups and stratification is that any
stratification of a topological space will also be a homology stratification. The converse
is unfortunately false. However, we can build a useful analytical tool based on the con-
trapositive: given two points in a point cloud we can state based on their local homology
groups, and the maps between them that the two points should not be placed in the same
piece of any stratification. To do this, we first adapt the definition of these local homology
maps into a more multi-scale and robust framework. This involves the introduction of a
radius parameter r and defining a notion of local equivalence at different scales, values of
r. There are two main results in this section. The first is an equivalence relation between
two points x, y ∈ X. The second uses this equivalence relation to stratify a point cloud U
sampled from X.
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FIGURE 5.7: Left: x ∼r y, y �r z. Right: the 1-dim persistence diagram, for the kernel of the
map going from the z ball into its intersection with the y ball. A number, i.e., #2, labeling a point
in the persistence diagram indicates its multiplicity.

5.3.1 Local Equivalence
We assume that we are given some topological space X embedded in some Euclidean
space in Rk. For each radius r ≥ 0, and for each pair of points p, q ∈ X, we define the
following homology map:

φX(p, q, r) : H(X ∩Br(p),X ∩ ∂Br(p)) → H(X ∩Br(p) ∩Br(q),X ∩ ∂(Br(p) ∩Br(q))).
(5.1)

Intuitively, this map can be understood as taking a chain, throwing away the parts that
lie outside the smaller range, and then modding out the new boundary. Alternatively, one
may think of it as being induced by a combination of inclusion and excision. A formal
definition is given in Appendix A.

Using these maps, we impose the following equivalence relation on X.

Definition 5.3.1 (Local equivalence). Two points x and y are said to have equivalent local
structure at radius r, denoted x ∼r y, iff there exists a chain of points x = x0, x1, . . . , xm =
y from X such that, for each 1 ≤ i ≤ m, the maps φX(xi−1, xi, r) and φX(xi, xi−1, r) are
both isomorphisms.

In other words, x and y have the same local structure at this radius iff they can be
connected by a chain of points which are pairwise close enough and whose local homology
groups at radius r map into each other via intersection. Different choices of r will of course
lead to different equivalence classes. For example, consider the space X drawn in the plane
as shown in the left half of Figure 5.7. At the radius drawn, point z is equivalent to the
cross point and is not equivalent to either the point x or y. On the other hand, a smaller
choice of radius would result in x, y, z belonging to the same class.

(Co)Kernel Persistence
We define a multi-scale version of φX(p, q, r) by thickening the space X. Let dX : Rk → R
denote the function which maps each point in the ambient space to the distance to its
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closest point on X. For each α ≥ 0, we define Xα = d−1
X [0, α]. Fixing p and q, we write

φX
α for φX

α(p, q, r), using the above notation in map 5.1 substituting Xα for X. Note of
course that φX = φX

0 .
In the remainder of this chapter, we adapt the following shorthand,

BX
p (α) = Xα ∩Br(p),

∂BX
p (α) = Xα ∩ ∂Br(p),

BX
pq(α) = Xα ∩Br(p) ∩Br(q),

∂BX
pq(α) = Xα ∩ ∂(Br(p) ∩Br(q)).

When α = 0, we write BX
p = BX

p (0), BX
pq = BX

pq(0).
For any pair of non-negative real values α < β the inclusion Xα ↪→ Xβ gives rise to

the following commutative diagram:

H(BX
p (α), ∂BX

p (α))
φX

α−→ H(BX
pq(α), ∂BX

pq(α))

↓ ↓

H(BX
p (β), ∂BX

p (β))
φX

β−→ H(BX
pq(β), ∂BX

pq(β)) (5.2)

Hence there are maps kerφX
α → kerφX

β and cokφX
α → cokφX

β . Allowing α to increase
from 0 to ∞ gives rise to two persistence modules, {kerφX

α} and {cokφX
α}, with diagrams

Dgm(kerφX) and Dgm(cokφX). Recall that a homomorphism is an isomorphism iff its
kernel and cokernel are both zero. In our context, the map φX is an isomorphism iff neither
Dgm(kerφX) nor Dgm(cokφX) contain any points on the y-axis above 0.

Example. As shown in the left part of Figure 5.7, x, y and z are points sampled from
the underling space (which is a cross). Let p = z and q = y. The right part of the figure
displays Dgm1(kerφ

X), which we now explain in some detail. The group H1(B
X
p , ∂B

X
p )

has rank three; as a possible basis we might take the three classes represented by the
horizontal line across the ball, the vertical line across the ball, and the two short segments
defining the northeast-facing right angle. Under the intersection map φX = φX

0 , the first
of these classes maps to the generator of H1(B

X
pq, ∂B

X
pq), while the other two map to zero.

Hence kerφX
0 has rank two. Both classes in this kernel eventually die, one at the α value

which fills in the northeast corner of the larger ball, and the other at the α value which fills
in the entire right half, which happens at the same time. At this latter value, the map φX

α is
an isomorphism and it remains so until the intersection of the two balls fills in completely.
This gives birth to a new kernel class which subsequently dies when the larger ball finally
fills in. The diagram Dgm1(kerφ

X) thus contains three points; the leftmost two show that
the map φX is not an isomorphism.

5.3.2 Inference Theorem
Given a point cloud U sampled from X consider the following question: for a radius r,
how can we infer whether or not any given pair of points in U has the same local structure
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at this radius? In this subsection, we prove a theorem which describes the circumstances
under which we can make the above inference. This requires using of U to infer whether
or not the maps φX(p, q, r) are isomorphisms. The basic idea is that if U is a dense enough
sample of X, then the (co)kernel diagrams defined by U will be good approximations of
the diagrams defined by X.

(Co)Kernel Stability
Fix p, q, and r, and remember that φX = φX(p, q, r). If the y-axes of Dgm(kerφX) and
Dgm(cokφX) are empty above 0, then φX is an isomorphism. We are not given the space
X but are given a point cloud U which we use to approximate these diagrams. For each
α ≥ 0, we let Uα = d−1

U [0, α]. We consider φUα = φUα (p, q, r), defined by setting X = Uα
in map 5.1. Running α from 0 to ∞, we obtain two more persistence modules, {kerφUα}
and {cokφUα}, with diagrams Dgm(kerφU) and Dgm(cokφU).

If U is a dense enough sample of X, then the (co)kernel diagrams defined by U will be
good approximations of the diagrams defined by X. More precisely, we have the following
corollary of Theorem 5.2.1:

Theorem 5.3.2 ((Co)Kernel Diagram Stability). For the map φU the following stability
properties hold:

dB(Dgm(kerφU),Dgm(kerφX)) ≤ dH(U,X),

dB(Dgm(cokφU),Dgm(cokφX)) ≤ dH(U,X).

Proof. We prove the first inequality; the proof of the second is identical. Put ε = dH(U,X).
Then, for each α ≥ 0, the inclusions Uα ↪→ Xα+ε and Xα ↪→ Uα+ε induce maps kerφUα →
kerφX

α+ε and kerφX
α → kerφUα+ε. These maps clearly commute with the module maps

in the needed way, and hence we have the required ε-interleaving and can thus appeal to
Theorem 5.2.1.

Main Inference Result
Suppose that the point cloud U is a good representation of the space X. Specifically the
Hausdorff distance betwennU and X is small, dH(U,X) ≤ ε, we callU an ε-approximation
of X. We compute diagrams Dgm(kerφU) and Dgm(cokφU) from U , we provide an al-
gorithm for this in Section 5.6. Consider two points p, q ∈ U and a fixed radius r, our
objective is to state conditions under which we can determine whether p ∼r q based
on Dgm(kerφU) and Dgm(cokφU). From the definition of local equivalence, Definition
5.3.1, this translates into checking whether the map φX is an isomorphism.

We first define some relevant quantities and then we state the first main theorem of
this section. Given any persistence diagram D and two positive real numbers a < b,

78



ε3

ε
ε2

0
ε ε ε30 2

FIGURE 5.8: The point in the X-diagrams lie either along the solid black line or in the darkly
shaded region. Adding the lightly shaded regions, we get the region of possible points in the U -
diagrams.

we let D(a, b) denote the multi-set of points of D which lie in the portion of the ex-
tended plane which lies above y = b and to the left of x = a; note that these points
correspond to classes which are born no later than a and die no earlier than b. For a
fixed p, q, r, we consider two spaces: BX

p and ∂BX
pq. For each space, we imagine thick-

ening it and noting the first time at which some absolute or relative homological change
occurs. We then define ρ(p, q, r) to be the minimum of these two values. More pre-
cisely, there are two persistence modules: {H(BX

p (α), ∂BX
p )} and {H(BX

pq(α), ∂BX
pq)}. We

let σ(p, r) and σ(p, q, r) denote their respective feature sizes and then set ρ(p, q, r) to
their minimum, ρ(p, q, r) = min{σ(p, r), σ(p, q, r)}, and ρ(q, p, r) is defined similarly,
ρ(q, p, r) = min{σ(q, r), σ(p, q, r)}.

We now state the main theorem of this section. This theorem states that we can use
U to decide whether or not p and q have the same local structure at radius r, as long as
ρ(p, q, r) and ρ(q, p, r) are both large enough relative to the sampling density.

Theorem 5.3.3 (Topological Inference Theorem). Given a point sample U from X with
dH(U,X) ≤ ε, if for two points p, q ∈ U , ρ ≥ 3ε, then φX(p, q, r) is an isomorphism iff

Dgm(kerφU)(ε, 2ε) ∪Dgm(cokφU)(ε, 2ε) = ∅.

If both φX(p, q, r) and φX(q, p, r) are isomorphisms, then p ∼r q.

This is illustrated in Figure 5.9.

Proof. Assume ρ ≥ 3ε. To simplify exposition, we will refer to points in Dgm(kerφX) ∪
Dgm(cokφX) and Dgm(kerφU) ∪Dgm(cokφU) as X-points and U -points, respectively.

Whenever 0 < α < β < 3ε < ρ, the two vertical maps in diagram (5.2) will by
definition both be isomorphisms. Hence the maps kerφX

α → kerφX
β and cokφX

α → cokφX
β
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FIGURE 5.9: Empty rectangle in the ker/cok persistence diagrams.

must also be isomorphisms. As α increases from 0 to ∞, any element of the (co)kernel
of φX must live until at least 3ε, and any (co)kernel class which is born after 0 must in
fact be born after 3ε. In other words, any X-point must lie either to the right of the line
x = 3ε or along the y-axis and above the point (0, 3ε); see Figure 5.8. Recall that φX is
an isomorphism iff kerφX = 0 = cokφX. Thus φX is an isomorphism iff the black line in
Figure 5.8 contains no X-points.

On the other hand, Theorem 5.3.2 requires that every U -point must lie within ε of an
X-point. That is, all U -points are contained within the two lightly shaded regions drawn
in Figure 5.8. Since the right such region is more than ε away from the thick black line,
there will be a U -point in the left region iff there is an X-point on the thick black line.
But the U -points within the left region are exactly the members of Dgm(kerφU)(ε, 2ε) ∪
Dgm(cokφU)(ε, 2ε). Isomorphism of φX(p, q, r) and φX(q, p, r) implies the local equiva-
lence condition.

Recall that p ∼r q iff the maps φX(p, q, r) and φX(q, p, r) are both isomorphisms. The
theorem thus says that we can use U to decide whether or not p and q have the same local
structure at radius r, as long as ρ(p, q, r) and ρ(q, p, r) are both large enough relative to
the sampling density.

The following corollary clusters points according to strata and is a direct result of the
above theorem.

Corollary 5.3.4 (Strata clustering). Assume a point sample U from X with dH(U,X) ≤ ε
and ρ ≥ 3ε for all pairs of points p, q ∈ U . Each cluster Ci is the transitive closure of
points p, q ∈ U with the relation p ∼r q. Points in the same cluster belong to the same
stratum at resolution r.

Examples. Here we give two examples applying the topological inference theorem.
For the first example, suppose we know the space X as shown in Figure 5.10, where

ρ = 8.5. We compute the (co)kernel persistence diagrams by thickening the space X.
Then the given two points have the same local structure iff the y-axes of their (co)kernel
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FIGURE 5.10: Kernel persistence diagram of two local equivalent points, given X. X is drawn as a
solid line. Thickening the space X is illustrated by shaded regions.
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FIGURE 5.11: Kernel persistence diagram of two local equivalent points, given U . Thickening the
sample U is illustrated by shaded regions.

persistence diagrams contain no points above 0. In reality, we are only given sample U
instead of X, we then compute the (co)kernel persistence diagrams by thickening U , where
ε = 2.8 < ρ/3. Then two points have the same local structure iff the rectangles (ε, 2ε) in
the diagrams are empty. This is shown in Figure 5.11.

For the second example, suppose X is given where ρ = 7, shown in Figure 5.12. Then
two points have different local structure iff the y-axes contain points of the diagrams above
0. Correspondingly, if X is unknown but U is given, where ε = 2.3 < ρ/3, then two points
have different local structure iff the rectangles (ε, 2ε) in the diagrams are not empty. This
is shown in Figure 5.13.

5.4 Geometric Lower Bound
In this section we relate the topological conditions under which points could be assigned
to strata to geometric conditions. Most of the effort will involve lower bounding ρ(p, q, r)
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FIGURE 5.12: Kernel persistence diagram of two points that are not local equivalent, given X. X
is drawn as a solid cross. Thickening the space X is illustrated by shaded regions. A number, i.e.,
#2, labeling a point in the persistence diagram indicates its multiplicity.

with geometric features of X. Specifically, local versions of reach and a quantity related
to the gradient of dX.

For the geometric condition to make sense we will need to assume that X is in fact
a smooth manifold with boundary. We replace X with Xδ for some vanishingly small
thickening parameter δ, and smooth the corners, X ≡ Xδ.
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Not empty
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FIGURE 5.13: Kernel persistence diagram of two points that are not local equivalent, given U .
Thickening the sample U is illustrated by shaded regions.

82



5.4.1 Absolute Homology Modules
Before providing a geometric lower bound for ρ(p, q, r), we must first prove a technical
lemma using some simple algebraic topology. Recall that σ(p, r) is the feature size of
the relative homology persistence module {H(BX

p , ∂B
X
p )}. On the other hand, the same

thickening process also defines two absolute homology persistence modules, {H(BX
p )}

and {H(∂BX
p )}. We let σi(p, r) and σb(p, r) denote the feature sizes of these modules.

Similarly, we define σi(p, q, r) and σb(p, q, r), respectively, to be the feature sizes of the
absolute homology persistence modules {H(BX

pq)} and {H(∂BX
pq)}.

Theorem 5.4.1 (Relative/Absolute Lemma). The feature size of each relative module is at
least the minimum of those of its two associated absolute modules:

σ(p, r) ≥ min{σi(p, r), σb(p, r)},
σ(p, q, r) ≥ min{σi(p, q, r), σb(p, q, r)}.

Proof. We prove the first equality; the second can then be proven with only minor no-
tational adjustment. For any two non-negative reals α < β, and for each homological
dimension i ≥ 0, we then consider the following commutative diagram:

Hi(∂B
X
p (α)) → Hi(B

X
p (α)) → Hi(B

X
p (α), ∂BX

p (α)) → Hi−1(∂B
X
p (α)) → Hi−1(B

X
p (α))

↓ ↓ ↓ ↓ ↓
Hi(∂B

X
p (β)) → Hi(B

X
p (β)) → Hi(B

X
p (β), ∂BX

p (β)) → Hi−1(∂B
X
p (β)) → Hi−1(B

X
p (β))

(5.3)

where the vertical maps are induced by the inclusion Xα ↪→ Xβ and the two rows come
from the long exact sequences of the pairs (BX

p (α), ∂BX
p (α)) and (BX

p (β), ∂BX
p (β)) ([82]).

Suppose that the middle vertical map fails to be an isomorphism. Then the Five-
Lemma ([82], p.140) tells us that at least one of the other four vertical maps will also
fail to be an isomorphism. In other words, any change within the relative module must be
accompanied by a simultaneous change in at least one of the two absolute modules. The
inequality follows.

This theorem together with the definition of ρ(p, q, r) implies the following inequality

ρ(p, q, r) ≥ min{σi(p, r), σb(p, r), σi(p, q, r), σb(p, q, r)}. (5.4)

5.4.2 Geometric Lower Bounds
We now provide geometric lower bounds for σi(p, r), σb(p, r), σi(p, q, r), σb(p, q, r) which
results in the main theorem in this section.

We first define a few quantities. Recall that the medial axis M of an embedded space
X is the subset of the ambient space consisting of all points which have at least two nearest
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neighbors on X, and that the reach τ of X is defined by τ = infx∈X dist (x,M). The local
feature size of a point a ∈ X is the distance of a to the medial axis, that is, lfs (a) =
dist (a,M).

We fix notation for the following four intersections of M with different subsets of the
ambient space:

M(p, r) = M∩Br(p)

M0(p, r) = M∩ ∂Br(p)

M(p, q, r) = M∩Br(p) ∩Br(q)

M0(p, q, r) = M∩ ∂(Br(p) ∩Br(q))

We then define a notion of reach for each of the above quantities:

τ(p, r) = inf
x∈X

dist (x,M(p, r))

τ0(p, r) = inf
x∈X

dist (x,M0(p, r))

τ(p, q, r) = inf
x∈X

dist (x,M(p, q, r))

τ0(p, q, r) = inf
x∈X

dist (x,M0(p, q, r)).

Note that all four of these quantities are upper bounds on τ itself.
Letting ∇dX be shorthand for the gradient of dX, we define the following subset of

∂Br(p) :

G(p, r) = {y ∈ ∂Br(p) | ∇dX(y) ⊥ ∂Br(p)},

and then set η(p, r) = infx∈X dist (x,G(p, r)).We similarly defineG(p, q, r) and η(p, q, r),

G(p, q, r) = {y ∈ ∂(Br(p) ∩Br(q)) | ∇dX(y) ⊥ ∂(Br(p) ∩Br(q))},
η(p, q, r) = inf

x∈X
dist (x,G(p, q, r)).

Since we assume that X is a smooth manifold with boundary, the gradient at the corners
of the intersections of two balls are well-defined.

The following Lemma will be used to lower bound ρ.

Lemma 5.4.2 (Deformation Lemmas). The following four claims all hold for every small
enough δ > 0. In each of the claims, the homotopy equivalence is given by a deformation
retraction:

∀α < min{τ(p, r), η(p, r)}, (Xα ∩Br(p)) ' (Xδ ∩Br(p)),

∀α < min{τ0(p, q, r), η(p, r)}, (Xα ∩ ∂Br(p)) ' (Xδ ∩ ∂Br(p)),

∀α < min{τ(p, q, r), η(p, q, r)}, (Xα ∩Br(p) ∩Br(q)) ' (Xδ ∩Br(p) ∩Br(q)),

∀α < min{τ0(p, q, r), η(p, q, r)}, (Xα ∩ ∂(Br(p) ∩Br(q))) ' (Xδ ∩ ∂(Br(p) ∩Br(q))).
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Proof. All four claims follow from Stratified Morse Theory [59]. We prove only the first
claim; the other three can be proven with only slight modifications. Consider the stratifica-
tion ofBr(p) with singular set Σ = M(p, r)∪∂Br(p) and whatever further decomposition
of Σ is needed. Setting d = dX|Br(p) : Br(p) → R, we note that the sets Xα ∩ Br(p) are
simply the sublevel sets of d for various parameters α. Generically, d will be a Stratified
Morse function on Br(p) with its above stratification. Consider the set H of all critical
points of d which have positive d-value.

We claim H ⊂ (M(p, r) ∪ G(p, r)) : to see this, we suppose y ∈ H and we assume
first that y is in the interior of Br(p). Then y is also a critical point of the globally defined
function dX, and since d(x) = dX(x) > 0, we know that y ∈ M. Since y is also in
Br(p) by assumption, we know in fact that y ∈ M(p, r). On the other hand, suppose
that y ∈ ∂Br(p); we can also assume that y 6∈ M(p, r) or we are already done. Then by
definition y is a critical point of the restriction of dX to ∂Br(p). Since the gradient of this
latter function is simply the projection of∇dX onto ∂Br(p), we can conclude y ∈ G(p, r).

In other words, if α < {τ(p, r), η(p, r)}, then (Xα ∩ Br(p)) ∩ H = ∅, and hence
the interval [δ, α] contains no critical values of d. The claim then follows from the first
fundamental theorem of Stratified Morse Theory [59].

We now state the geometric lower bound on ρ(p, q, r).

Theorem 5.4.3 (Geometric lower bound). If we define

γ = γ(p, q, r) = min{τ(p, r), τ(p, q, r), η(p, r), η(p, q, r)},

then ρ(p, q, r) ≥ γ(p, q, r).

Proof. Note that τ(p, r) ≤ τ0(p, r) and τ(p, q, r) ≤ τ0(p, q, r) so we need not consider
τ0(p, r) and τ0(p, q, r).

Recall σi(p, r) and σb(p, r) were defined to be the feature sizes of the persistence mod-
ules {H(BX

p (α))} and {H(∂BX
p (α))}, respectively.

By the first and second of the Deformation Lemmas the following holds

σi(p, r), σb(p, r) ≥ min{τ(p, r), η(p, r)}.

For the same reason

σi(p, q, r), σb(p, q, r) ≥ min{τ(p, q, r), η(p, q, r)}.

These inequalities, together with (5.4)

ρ(p, q, r) ≥ min{σi(p, r), σb(p, r), σi(p, q, r), σb(p, q, r)},

proves the theorem, ρ(p, q, r) ≥ γ(p, q, r).

In Appendix B we provide more geometric intuitions relating the resolution r of the
balls with the reach τ of the topological space. By putting constraints on the resolution
parameter, that is, suppose r < τ , we are able to show that our geometric term, γ, is only
related to τ(p, r) and τ(p, q, r).
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5.5 Probabilistic Inference Theorem
The topological inference of Section 5.3 states conditions under which the point sample
U can be used to infer stratification properties of the space X. The basic condition is the
Hausdorff distance between the two is small. In this section, we state two probabilistic
models for generating the point sample U and provide an estimate of how large this point
sample should be, to infer stratification properties of the space X with a quantified measure
of confidence.

We will assume X to be compact. The stratified space X can contain singularities and
varying dimensions. This requires some care in the sampling design. Consider a sheet of
area one, punctured by a line of length one, sampling from a naively constructed uniform
measure on this space would result in no points being sampled from the line. This same
issue arose and was dealt with in [89], although in a slightly different approach than we
will develop.

The first sampling strategy is to remove the problems of singularities and varying di-
mension by replacing X by a slightly thickened version X ≡ Xδ. We assume that X is
embedded in Rk for some k. This new space is a smooth manifold with boundary and our
point sample is a set of n points drawn identically and independently from the uniform
measure µ(X) on X, U = {x1, ..., .xn}

i.i.d.∼ µ(X). This model can be thought of as placing
an appropriate measure on the highest dimensional strata to ensure that lower dimensional
strata will be sampled from. In the example of the sheet punched through with a line, the
thickened line and sheet will be three dimensional objects. We call this model M1.

The second sampling strategy is to deal with the problem of varying dimensions using
a mixture model. In the example of the sheet and line, a uniform measure would be placed
on the sheet, while another uniform measure would be placed on the line, and a probability
mixture would be placed on the two measures, for example, each measure can be drawn
with probability 1/2. We now formalize this approach. Consider each (non-empty) i-
dimensional stratum Si = Xi − Xi−1 of X. All strata that are included in the closure
of some higher-dimensional strata are not considered in the model. A uniform measure
is assigned to each stratum considered in the model, µi(Si), this is possible since each
stratum is compact. We assume a finite number of strata K and assign to each stratum a
probability pi = 1/K. This implies the following density

f(x) =
K∑
j=1

1

K
νi(X = x),

where νi is the density corresponding to measure µi. The point sample is generated from
the following model: U = {x1, ..., .xn}

i.i.d.∼ f(x). We call this model M2.
The first model replaces a stratified space with its thickened version, which enables

us to place a uniform measure on the thickened space. Although this replacement makes
it convenient for sampling, it does not sample directly from the actual space. The second
model samples from the actual space, however the sample is not uniform on X with respect
to Lebesgue measure.
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Our first main theorem is the probabilistic analogue of Theorem 5.3.3. An immediate
consequence of this theorem is that, for two points p, q ∈ U , we can infer whether p ∼r q
with probability 1−ξ. The confidence level 1−ξ will be a function of the size of the point
sample.

Theorem 5.5.1 (Local Probabilistic Sampling Theorem). Let U = {x1, x2, ..., xn} be
drawn from either model M1 or M2. For a fixed pair of points p, q ∈ U if

n ≥ 1

αnew

(
log

1

αnew
+ log

1

ξ

)
,

where αnew = infx∈X
vol (Bρ/24(x)∩X)

vol (X)
, with probability greater than 1 − ξ we can infer

whether p ∼r q.
The above is a consequence of the fact that U is an ε-approximation with ε ≤ ρ/3 with

probability 1− ξ, where ρ = min{ρ(p, q, r), ρ(q, p, r)}.

Proof. Let U be a finite collection of points x1, x2, ..., xn ∈ Rk. U is ε-dense with respect
to X if X ⊆ U ε or equivalently U is an ε-cover of X. Let C(ε) be the ε-covering number
of X, the minimum number of sets Bε ∩X that cover X, where Bε stand for balls of radius
ε. Let P (ε) be the ε-packing number of X, the maximum number of sets Bε ∩ X that can
be packed into X without overlap.

For any two points p, q ∈ X where ρ = min{ρ(p, q, r), ρ(q, p, r)} > 0, we consider a
cover of X by balls of radius ρ/12. If we have a sample point in each ρ/12-ball intersecting
X, we have a ε-approximation such that ε ≤ 4(ρ/12) = ρ/3. This satisfies the condition
of the topological inference theorem, therefore we can infer the local structure between p
and q.

The following two results from [88] will be useful in computing the number of points
n needed to be sampled to obtain an ε-approximation.

Lemma 5.5.2 (Lemma 5.1 in [88]). Let {A1, A2, ..., Al} be a finite collection of measur-
able sets with probability measure µ on ∪li=1Ai, such that for all Ai, µ(Ai) > α. Let
U = {x1, x2, ..., xn} be drawn i.i.d. according to µ. Then if n ≥ 1

α
(log l + log 1

ξ
), with

probability 1− ξ, ∀i, U ∩ Ai 6= ∅.

Lemma 5.5.3 (Lemma 5.2 in [88]). Let C(ε) be the covering number of an ε-cover of X
and P (ε) be the packing number of an ε-packing, then

P (2ε) ≤ C(2ε) ≤ P (ε).

We consider a cover of X by balls of radius ρ/12. Let {yi}li=1 ∈ X be the centers of
such balls that constitute a minimal cover. Let Ai = Bρ/12(yi) ∩ X. Applying Lemma
5.5.2, we obtain the estimate

n ≥ 1

α

(
log l + log

1

ξ

)
,
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where l is the ρ/12-covering number, and α = mini
vol (Ai)
vol (X)

= mini
vol (Bρ/12(yi)∩X)

vol (X)
. We

now focus on bounding parameters l and α.
Let αnew = infx∈X

vol (Bρ/24(x)∩X)

vol (X)
. Applying Lemma 5.5.3,

l = C(ρ/12) ≤ P (ρ/24) ≤ vol (X)

vol (Bρ/24 ∩ X)
≤ 1

αnew
.

On the other hand, since α ≥ αnew, we have

1

α
≤ 1

αnew
.

Bounding l and α with αnew proves the result.

To extend the local sampling theorem which holds for any two points p, q ∈ U , to a
global theorem over all pairs of points p, q ∈ U , we change the sampling resolution. Let
ρmin be the minimum ρ for all pairs of points p, q ∈ X (ρmin > 0). We cover the space
with ρmin/12-balls and the using the same proof we obtain the following global sampling
result.

Theorem 5.5.4 (Global Probabilistic Sampling Theorem). Let U = {x1, x2, ..., xn} be
drawn from either model M1 or M2. For all pairs of points p, q ∈ U if

n ≥ 1

αnew

(
log

1

αnew
+ log

1

ξ

)
,

where αnew = infx∈X
vol (Bρmin/24(x)∩X)

vol (X)
, with probability greater than 1 − ξ we can infer

whether p ∼r q, where ρmin = min∀p,q∈U(min{ρ(p, q, r), ρ(q, p, r)}).

5.6 Algorithm
Given a point cloud sampled from a stratified space we can use Corollary 5.3.4 to cluter
points belonging to a common stratum. That is, once we determine local equivalences
among all possible pairs of points in U according to Theorem 5.3.3, we can cluster points
into their common strata. Determining local equivalence of two nearby points p, q ∈ U
translates into computing the persistence diagrams Dgm(kerφU) and Dgm(cokφU), of
two persistence modules, {kerφUα} and {cokφUα}.

We first give a clustering strategy based on assigning weights in an adjacency graph in
Section 5.6.1. We then describe an algorithm to compute Dgm(kerφU) and Dgm(cokφU).
We substitute the homology map φU involving the point cloud with the homology map ψ
(described in Section 5.6.2) involving simplicial complexes, and compute Dgm(kerψ) and
Dgm(cokψ) instead. Finally, we give a theorem that demonstrates the correctness of the
above substitution in Section 5.6.3.
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5.6.1 Clustering
We give our clustering strategy as follows. Given a point cloud U sampled from X, fix-
ing radius r, we build a graph where each node in the graph corresponds to a point in U .
Two points p, q ∈ U (where ||p−q|| ≤ 2r) are connected by an edge if both φX(p, q, r) and
φX(q, p, r) are isomorphisms, equivalently, if Dgm(kerφU)(ε, 2ε) and Dgm(cokφU)(ε, 2ε)
are empty. The connected components of the resulting graph are our clusters. A more de-
tailed statement of this procedure is giving in pseudo-code, see Algorithm 3. Note, the
connectivity of the graph is encoded by a weight matrix, and our clustering strategy is
based on a 0/1-weight assignment.

Algorithm 3 Strata-Inference(U, r, ε)
for all p, q ∈ U do

if ||p− q|| > 2r then
W (p, q) = 0

else
Compute Dgm(kerφU(p, q, r)) and Dgm(cokφU(p, q, r))
Compute Dgm(kerφU(q, p, r)) and Dgm(cokφU(q, p, r))
if Dgm(kerφU(p, q, r))(ε, 2ε) ∪Dgm(cokφU(p, q, r))(ε, 2ε) 6= ∅ then
W (p, q) = 0

else if Dgm(kerφU(q, p, r))(ε, 2ε) ∪Dgm(cokφU(q, p, r))(ε, 2ε) 6= ∅ then
W (p, q) = 0

else
W (p, q) = 1

end if
end if

end for
Compute connected components based on W .

5.6.2 Diagram Computation
We now describe the computation of the diagrams Dgm(kerφU) and Dgm(cokφU). Re-
call the homology map φUα is defined as,

φUα : H(BU
p (α), ∂BU

p (α)) → H(BU
pq(α), ∂BU

pq(α)).

We substitute the homology map φU involving the point cloud with the homology map ψ
involving simplicial complexes, and compute Dgm(kerψ) and Dgm(cokψ) instead.

First we define, for each α ≥ 0, two pairs of simplicial complexes L0(α) ⊆ L(α) and
K0(α) ⊆ K(α). Then we define a relative homology map,

ψα : H(L(α), L0(α)) → H(K(α), K0(α).
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We show in the next subsection that Dgm(kerφU) = Dgm(kerψ) and Dgm(cokφU) =
Dgm(cokψ).

To compute the diagrams involving ψ, we reduce various boundary matrices; since
we follow very closely the (co)kernel persistence algorithm described in [37], we omit
any further details here. We adapt similar shorthand notations by replacing X by U , i.e.,
BU
p (α).

Construct Simplicial Complexes
Constructing simplicial complexes in our algorithm involves taking the nerves of sev-
eral collections of sets which are derived from a variety of Voronoi diagrams of different
spaces. Here we briefly describe these concepts.

Nerves. The nerve N(C) of a finite collection of sets C is defined to be the abstract sim-
plicial complex with vertices corresponding to the sets in C and with simplices correspond-
ing to all non-empty intersections among these sets; that is, N(C) = {S ⊆ C |

⋂
S 6= ∅}.

Every abstract simplicial complex can be geometrically realized, therefore the concept of
homotopy type makes sense. Under certain conditions, for example whenever the sets in
C are all closed and convex subsets of Euclidean space ([50], p.59), the nerve of C has the
same homotopy type, and thus the same homology groups, as the union of sets in C.

Voronoi diagram. If U is a finite collection of points in Rk and ui ∈ U , then the Voronoi
cell of ui is defined to be:

Vi = V (ui) = {x ∈ Rk | ||x− ui|| ≤ ||x− uj||,∀uj ∈ U}.

The set of cells Vi cover the entire space and form the Voronoi diagram of Rk, denoted as
Voi (U |Rk). Each Vi restricted to a subset X ⊆ Rk, Vi ∩X , cover the space X , and form
the restricted Voronoi diagram, denoted as Voi (U |X). For a simplex σ with vertices in U ,
we set Vσ = ∩ui∈σVi.

The nerve of the restricted Voronoi diagram Voi (U |X) is called the restricted Delau-
nay triangulation, denoted as Del (U |X). It contains the set of simiplices σ for which
Vσ ∩X 6= ∅.

Power cells. An important task in our algorithm is the computation of the relative ho-
mology groups H(BU

p (α), ∂BU
p (α)) and H(BU

pq(α), ∂BU
pq(α)). Now to compute H(Uα), the

absolute homology of the thickened point cloud, we would need only to compute the nerve
of the collection of sets Vi ∩ Uα. This is because each such set is convex and their union
obviously equals the space Uα. Such a direct construction will not work in our context, for
the simple reason that the sets Vi ∩ ∂BU

p (α) and Vi ∩ ∂BU
pq(α) need not be convex.

To get around this problem, we first define P (α), the power cell with respect to Br(p),
to be:

P (α) = {x ∈ Rk | ||x− p||2 − r2 ≤ ||x− u||2 − α2,∀u ∈ U}, (5.5)

90



p

q

P (α) Q(α)

Z(α)

FIGURE 5.14: Illustration of intersection power cell Z(α), as the shaded region. The unshaded
convex regions are P (α) and Q(α) respectively.

and we set P0(α) = Br(p) − intP (α). To define Q(α), the power cell with respect
to Br(q), we replace p with q in (5.5). Finally, we set the intersection power cell as
Z(α) = P (α) ∩ Q(α), and Z0(α) = (Br(p) ∩ Br(q)) − intZ(α). This is illustrated in
Figure 5.14. We note that P0(α) and Z0(α) are both contained in Uα, as can be seen by
playing around with the inequalities in their definitions.

Replacing ∂BU
p (α) with P0(α) and ∂BU

pq(α) with Z0(α) has no effect on the relative
homology groups in question, as is implied by the following two lemmas. The first lemma
was proven in [20]; a proof of the second appears in Appendix D.

Lemma 5.6.1 (Power Cell Lemma). Assume Br(p)− P0(α) 6= 0. The identity on BU
p (α)

is a homotopy equivalence of (BU
p (α), ∂BU

p (α)) and (BU
p (α), P0(α)) as a map of pairs.

Lemma 5.6.2 (Intersection Power Cell Lemma). AssumeBr(p)∩Br(q)−Z0(α) 6= 0. The
identity on BU

pq(α) is a homotopy equivalence of (BU
pq(α), ∂BU

pq(α)) and (BU
pq(α), Z0(α))

as a map of pairs.

Lune and moon. It can be shown ([20]) that the sets Vi ∩ P0(α) are convex. Unfortu-
nately, it is still possible for some set Vi ∩ Z0(α) to be non-convex. To fix this, we must
further divide the Voronoi cells in a manner we now describe.

We consider the hyperplane P of points in Rk which are equidistant to p and q. This
will divide Rk into two half-spaces; let Pp and Pq denote the half-spaces containing p and q,
respectively. We also define the p-lune, Lp = Pq∩Br(p), and the p-moon, Mp = Pp∩Br(p),
as illustrated in Figure 5.15. The lune and the moon divide each Voronoi cell into two
parts, defined as the partial Voronoi cells, V L

i = Vi∩Lp and V M
i = Vi∩Mp. These sets are

convex, assuming they are non-empty, since they are each the intersection of two convex
sets. Furthermore, we have the following lemma whose simple but technical proof we
omit:
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FIGURE 5.15: Illustration of the lune and the moon. The shaded regions are the respective moons.
The white regions within solid circles are the respective lunes.

Lemma 5.6.3 (Convexity Lemma). The sets V L
i ∩ Z0(α) and V M

i ∩ Z0(α) are all convex,
assuming they are non-empty.

Of course the nonempty sets among V L
i ∩ P0(α) and V M

i ∩ P0(α) will also be convex.

Simplicial complexes. To construct the simplicial complexes needed in our algorithm,
first we letA be the collection of the nonempty sets among V L

i ∩BU
p (α) and V M

i ∩BU
p (α),

and we let A0 be the collection of the nonempty sets among V L
i ∩P0(α) and V M

i ∩P0(α).
Note that ∪A = BU

p (α) and ∪A0 = P0(α). Taking the nerve of both collections, we
define the simplicial complexes L(α) = N(A) and L0(α) = N(A0).

Similarly, we define C and C0 to be the collections of the nonempty sets among, re-
spectively, V L

i ∩ BU
pq(α) and V M

i ∩ BU
pq(α), and V L

i ∩ Z0(α) and V M
i ∩ Z0(α). And we

define K(α) = N(C) and K0(α) = N(C0).
For simplicity, for a simplex σ ∈ L(α) (similarly for a simplex in L0, K and K0), we

define V σ as the intersection of the partial Voronoi cells that correspond to the vertices of
σ. That is, σ ∈ L(α) iff V σ ∩BU

p (α) 6= ∅.
An example of the simplicial complexes constructed in R2 for a given U are illustrated

in Figure 5.16. A direct approach to construct these simplicial complexes runs into dif-
ficulties as the corners of the convex sets created by the bisector can be shared by many
sets, we defer the technicalities to Appendix C.

Construct ψ
We now construct simplicial analogues ψα of the maps φUα ,

ψα : H(L(α), L0(α)) → H(K(α), K0(α).

The containments L0(α) ⊆ L(α) and K0(α) ⊆ K(α) are obvious. In order to define
ψα, we first need the following technical lemma:

Lemma 5.6.4 (Containment Lemma). Assume that a simplex σ is in L0(α). If σ is also in
K(α), then σ is in K0(α), as well.
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u1

u2

p q

FIGURE 5.16: Illustration of the simplicial complexes constructed around two points p and q. The
underling Voronoi decomposition of the space is shown in thin dotted lines. u1 and u2 in U are the
points whose restricted Voronoi regions intersect with the lune at non-convex regions.

Proof. . By definition, σ ∈ L0(α) iff there exists some point x ∈ V σ ∩ P0(α). We must
show that the set V σ ∩ Z0(α) is non-empty. Note that x ∈ P0(α) implies that x ∈ Br(p),
while x 6∈ intP (α) implies that x 6∈ intZ(α). If x ∈ Br(q), then we are done, since
Z0(α) = Br(p) ∩Br(q)− intZ(α).

Otherwise, choose some point y ∈ V σ ∩ Uα ∩ Br(p) ∩ Br(q), which is possible since
σ ∈ K(α). Since both x and y belong to the same convex set V σ∩Uα∩Br(p), there exists
a directed line segment γ from x to y within this set connecting them. We imagine moving
along γ and first we suppose that γ intersects Br(q) before it intersects intQ(α). Let z
be the first point of intersection. Then z ∈ Br(p) ∩ Br(q), z /∈ intQ(α). Therefore z ∈
V σ ∩ Z0(α). On the other hand, we may prove by contradiction that it is impossible for γ
to intersect Q(α) before it intersects Br(q). Let z′ be the first point of such an intersection.
Since z′ ∈ Q(α), by definition ||z′− q||2− r2 ≤ ||z′−ui||2−α2, ∀ui ∈ U . Since z′ ∈ Uα,
∀ui ∈ σ, ||z′− ui||2−α2 ≤ 0. Therefore ||z′− q||2− r2 ≤ ||z′− ui||2−α2 ≤ 0, ∀ui ∈ σ.
Since z′ is outside Br(q), ||z′ − q||2 − r2 > 0. This is a contradiction.

To define ψα, we first construct a chain map g = gα : C(L(α)) → C(K(α)) as
follows. Given a simplex σ ∈ L(α), we define g(σ) = σ if σ ∈ K(α), and g(σ) = 0
otherwise; we then extend g to a chain map by linearity. Using the Containment Lemma,
we see that g(C(L0(α))) ⊆ C(K0(α)), and thus g descends to a relative chain map f =
fα : C(L(α), L0(α)) → C(K(α), K0(α)). Since f clearly commutes with all boundary
operators, it induces a map on relative homology, and this is our ψ = ψα.
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FIGURE 5.17: From left to right: points sampled from a cross; points sampled from a plane
intersecting a line; points sampled from two intersecting planes. All points are located on the grid.

5.6.3 Correctness
We show that our algorithm is correct by proving the following theorem. We describe a
proof sketch here and differ all details to Appendix D.

Theorem 5.6.5 (Equivalent Persistence Diagram Theorem). The persistence diagrams in-
volving simplicial complexes are equal to the persistence diagrams involving the point
cloud, that is, Dgm(kerφU) = Dgm(kerψ) and Dgm(cokφU) = Dgm(cokψ).

Proof sketch. To prove Theorem 5.6.5, we need to prove the following diagram (as well
as similar diagram involving cokernels) commutes and all vertical maps are isomorphisms.
That is, for each pair α ≤ β, we have the following commuting diagram:

. . .→kerφUα → kerφUβ → . . .

↑∼= ↑∼=
. . .→kerψα → kerψβ → . . . . (5.6)

Hence the Persistence Equivalence Theorem gives Dgm(kerφU) = Dgm(kerψ) and
Dgm(cokφU) = Dgm(cokψ).

5.7 Simulations
We use a simulation on simple synthetic data with points sampled from grids to illustrate
how the algorithm performs. In these simulations we assume we know ε, and we run our
algorithm for 0 ≤ α ≤ 2ε. The data sets are shown in Figure 5.17.

We use the following results to demonstrate that the inference on local structure, at
least for these very simple examples, is correct. As shown in Figure 5.18 top, if two
points are locally equivalent, their corresponding ker/cok persistence diagrams contain the
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FIGURE 5.18: Top: both points are from 1-strata. Bottom: one point from 0-strata, one point
from 1-strata. Left part shows the locations of the points. Right part shows the ker/cok persistence
diagram of two points respectively, if the diagrams are the same, only one is shown. A number
labeling a point in the persistence diagram indicates its multiplicity.

empty quadrant prescribed by our theorems, while in Figure 5.18 bottom, the diagrams
associated to two non-equivalent points do not contain such empty quadrants. Similar
results are shown for other data sets in Figure 5.19 and Figure 5.20.

5.8 Discussion
As the title of the chapter suggests we have presented a first step towards learning stratified
spaces. In the discussion we state some future problems and extensions of interest.

1. Algorithmic efficiency: The algorithm to compute the (co)kernel diagrams from
the thickened point cloud is based on an adaption of Delaunay triangulation and
the power-cell construction. This algorithm should be quite slow when the dimen-
sionality of the ambient space is high due to the runtime complexity of Delaunay
triangulation. One idea to address this bottleneck is to use Rips or Witness com-
plexes [44]. Another approach is to use dimension reduction techniques such as
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FIGURE 5.19: Top: one point from 0-strata, one point from 2-strata. Middle: one point from 0-
strata, one from 1-strata. Bottom: both points are from 2-strata. A number labeling a point in the
persistence diagram indicates its multiplicity.

principal components analysis (PCA) or random projection that approximately pre-
serve distance [31] as a preprocessing step. If the dimension of the ambient space
is not very high, we might be able to use faster algorithms to construct Delaunay
triangulations [21].

2. Weighting local equivalence: Currently we use a graph with 0/1 weights based
on the local equivalence between two points. If we can suggest a more continuous
metric for local equivalence, measuring how similar two points are in terms of their
local structure, we can extend this idea to assign fractional weights between points.
This would also allow us to use approaches such as Laplacian Eigenmaps [18] to
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FIGURE 5.20: Top: both points from 1-strata. Middle: one point from 1-strata, one from 2-
strata. Bottom: both points are from 2-strata. A number labeling a point in the persistence diagram
indicates its multiplicity.
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assign points to strata.

3. Curvature moderated tubes: Markus J. Pflaum [93] introduced a concept called
curvature moderation that regulates the behavior of the tangent spaces of a stratum
near the boundary. In other words, a stratum is curvature moderate if it curves near
the boundary in a controlled way, this includes the higher derivatives of the curva-
ture. This is yet another way to describe how strata and their tubular neighborhood
are “glued together nicely”. It would be interesting to connect this concept to our
idea of “local reach”.

4. Noisy data: Our sampling models draw points from the underlying topological
space. A more general model would sample points that are concentrated on the
topological space. A version of this type of sampling model is discussed in [88]. It
would be of interest to study how well our approach is suited to such a model.

5. Adaptive sampling conditions: Throughout this chapter we use ε-approximation
to characterize the similarity of the point sample to the topological space. There
are other approximation criteria that may be interesting to study and may provide
better sampling estimates. One such criteria is the adaptive ε-sample [45], which
is proportional to the local feature size. Another criteria of possible interest is the
weak feature size [28].
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Appendix to Chapter 5

A Defining the Map φ
We give a more precise description of the map

φ = φUα : H(BU
p (α), ∂BU

p (α)) → H(BU
pq(α), ∂BU

pq(α)).

The definition will be made on the chain level and will be given in terms of singular
chains. The map φX

α : H(BX
p (α), ∂BX

p (α)) → H(BX
pq(α), ∂BX

pq(α)) can be defined in a
similar fashion.

In this and subsequent sections, we use capital letters to denote topological spaces, i.e.
X , Y , U and V .

A.1 Background
We give here some necessary background as well as some material from algebraic topol-
ogy and homological algebra which will be needed in Appendix D. Most of the descrip-
tions are adapted from [63] and [82].

Chain homotopies. For our purposes, a chain complex C is a sequence of Z/2Z- vector
spcaes Cp, one for each integer p, connected by boundary homomorphisms ∂Cp : Cp →
Cp−1 such that ∂p−1 ◦ ∂p = 0 for all p. The p-th homology group of such a chain complex
is defined by Hp = ker ∂p/im ∂p+1.

A chain map η : C → D between two chain complexes is a sequence of homomor-
phisms ηp : Cp → Dp which commute with the boundary homomorphisms: ∂Dp ◦ ηp =
ηp−1 ◦ ∂Cp . Every chain map induces a map η∗ between the homology groups of the two
complexes.

A chain homotopy F between two chain maps η, η′ : C → D is a sequence of homo-
morphisms Fp : Cp → Dp+1 which satisfy the following formula for each p: η − η′ =
∂Dp+1 ◦ Fp − Fp−1 ◦ ∂Cp . We say that η and η′ are chain homotopic and note that they must
then induce the same maps on homology: η∗ = η′∗. Finally, η is called a chain homotopy
equivalence if there exists a chain map ρ : D → C such that η ◦ ρ and ρ ◦ η are both chain
homotopic to the identity. In this case η and ρ will both induce homology isomorphisms.

Singular homology. The standard p-simplex is the subset of Rp+1, given by,

∆p = {(t0, ..., tp) ∈ Rp+1|
p∑
i=0

ti = 1,∀i, ti ≥ 0}.
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The p+ 1 vertices of ∆p are points {ei} ⊂ Rp+1 where

e0 = (1, 0, 0, ..., 0),

e1 = (0, 1, 0, ..., 0),

...

ep = (0, 0, 0, ..., 1).

A singular p-simplex of a topological space X is a continuous map

δ : ∆p → X,

where ∆p is the standard p-simplex. By taking formal sums of singular simplices (using
binary coefficients for our purposes) one forms Cp(X), the singular chain group of X in
dimension p. Given points a0, ..., ap in some Euclidean space, which need not be indepen-
dent, there is a unique affine map l of ∆p that maps the vertices ei of ∆p to ai. This map
defines linear singular simplex determined by a0, ..., ap, denoted as l(a0, ..., ap). One then
defines a boundary homomorphism ∂p : Cp(X) → Cp−1(X) by:

∂p(δ) = Σp
i=0(δ ◦ l(ε0, ..., ε̂i, ..., εp)),

and defines the singular homology groups Hp(X) as above. A continuous map f from X
to another topological space Y induces a chain map f# : Cp(X) → Cp(Y ) given by the
formula f#(δ) = f ◦ δ, and a homology map f∗ : Hp(X) → Hp(Y ).

The minimal carrier of a singular simplex δ is its image δ(∆p), and the minimal carrier
of a singular p-chain

∑
δi is the union of the minimal carriers of the δi.

Isomorphism between simplicial and singular homology. The (simplicial) homology
groups of a simplicial complex K and the singular homology groups of its realization |K|
are isomorphic. To show an explicit isomorphism ([82]), we first define a chain map

η : C(K) → C(|K|)

as follows [82]: choose a partial ordering of the vertices ofK that induces a linear ordering
on the vertices of each simplex of K. Orient the simplices of K by using this ordering,
and define

η([v0, ..., vp]) = l(v0, ..., vp),

where v0 < ... < vp in the given ordering. We refer to the linear singular simplex
l(v0, ..., vp) as a simplicial linear singular simplex and it is important in the subsequent
sections. The chain map η is in fact a chain equivalence as it has a chain-homotopy in-
verse, for which a specific formula can be found in [52]. Hence the induced homology
map η∗ provides an isomorphism of simiplicial with singular homology.
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C(X, B) C(X, A) C(X − U, A − U)

i k

FIGURE 5.21: Definition of j, an example, spaces X , X − U are the light-shaded regions, B and
A are the dark-shaded regions.

Barycentric subdivision. Let Sd denotes a barycentric subdivision homomorphism,
Sd : Cp(X) → Cp(X). Iterate the map m times, we denote the m-th barycentric sub-
division as Sdm. For technical details, see [63].

A.2 Intersection Map Details
We now give the full and formal definition of the homology map φ = φUα , starting on the
chain level. For compactness, we will use the following shorthand:

X = BU
p (α) = Uα ∩Br(p),

B = ∂BU
p (α) = Uα ∩ ∂Br(p),

S = BU
pq(α) = Uα ∩Br(p) ∩Br(q),

A = Uα ∩Br(p)− int (S),

U = Uα ∩Br(p)− S.

Note that X − U = S = BU
pq(α) and A − U = ∂S = ∂BU

pq(α). So to define φ we need
only define a chain map j : C(X,B) → C(X − U,A − U) and then take φ as the map
induced on homology. The map j is defined as the composition j = k◦i. This is illustrated
in Figure 5.21. The chain map i : C(X,B) → C(X,A) is induced by inclusion on the
second factor, while the chain map k : C(X,A) → C(X − U,A − U) is an excision,
although this latter statement requires further elaboration.
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Excisions. The inclusion map of pairs (X−U,A−U) → (X,A) is called an excision if
it induces a homology isomorphism; in this case one says that U can be excised. We will
make use of the following two results about excision (see, e.g., [60]):

Theorem A.1. (Excision Theorem) If the closure of U is contained in the interior of A,
then U can be excised.

Theorem A.2. (Excision Extension) Suppose V ⊂ U ⊂ A and

(i) V can be excised.

(ii) (X − U,A− U) is a deformation retract of (X − V,A− V ).

Then U can be excised.

In our context, the closure of U need not be contained in the interior of A, and so we
must define a suitable V ⊂ U . Although there are many ways to do this, one direct way is
to choose some small enough positive δ.

I = Uα ∩ ∂(Br(p) ∩Br(q)) ∩ cl (U),

Iδ = {x ∈ cl (U)|dI(x) ≤ δ},
V = U − Iδ,

where dI(x) is the distance from x to the set I . It is straightforward to verify that V ⊂
U ⊂ A satisfies the hypotheses of Theorem A.2. In other words, the inclusion of pairs
(X − V,A − V ) → (X,A) is an excision; its induced chain map has a chain-homotopy
inverse, which we denote as s : C(X,A) → C(X − V,A − V ). Finally, we define
k = r# ◦ s, where r# is the chain map induced by the retraction r : (X − V,A − V ) →
(X − U,A− U).

Subdivision. In order to fully carry out the analysis in Appendix D, we must first decom-
pose the maps i and k through subdivision. Given a topological space X and a collection
A of subsets of X whose interiors form an open cover of X , a singular simplex of X is
said to be A-small if its image set is entirely contained in a single element of A [82]. For
each dimension p, the chain group CA

p (X) is the subgroup of Cp(X) spanned by the A-
small singular p-simplices. These groups form a chain complex, with homology HA(X).
Of course, any singular simplex on X can be subdivided into a sum of A-small simplices,
so it is plausible, and in fact true ([63]), that the inclusion CA(X) → C(X) is a chain
homotopy equivalence.

Returning to our context, we set A = {X − V,A} and denote by l the chain inclusion
CA(X,A) → C(X,A). We also let ρ : C(X,B) → CA(X,B) be the chain homotopy
inverse of the chain inclusion CA(X,B) → C(X,B), and let t : CA(X,B) → CA(X,A)
be the chain map induced by incusion on the second factor. Finally we note that i = l◦t◦ρ.

We also decompose k as k = r# ◦ η ◦ ρ, where η is the chain homotopy inverse of the
chain map C(X − V,A− V ) → C(X,A) → CA(X,A).
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Summary. To summarize, our map φ = j∗, where j is the chain map defined by the
following sequence of chain maps

j = k ◦ i = (r# ◦ η ◦ ρ) ◦ (l ◦ t ◦ ρ).

Since ρ◦ l is homotopic to the identity map, j can be simplified such that j = r# ◦η ◦ t◦ρ,
that is,

C(X,B)
ρ−→ CA(X,B)

t−→ CA(X,A)
η−→ C(X − V,A− V )

r#−→ C(X − U,A− U).

Following the same framework as above, we also define a chain map j′ and its induced
homology map φ′ = j′∗ : H(BU

p (α), P0(α)) → H(BU
pq(α), Z0(α)) simply by adopting the

notation:

X = BU
p (α) = Uα ∩Br(p),

B′ = P0(α),

S = BU
pq(α) = Uα ∩Br(p) ∩Br(q),

A′ = Uα ∩Br(p)− S + Z0(α),

U = Uα ∩Br(p)− S,

I = Uα ∩ ∂(Br(p) ∩Br(q)) ∩ cl (U),

Iδ = {x ∈ cl (U)|dI(x) ≤ δ},
V = U − Iδ,

defining our open cover to be A′ = {X − V,A′}, and otherwise proceeding exactly as
before.

Similarly, we create a chain map f ′ which induces ψ′ = f ′∗ : H(|SdL|, |SdL0|) →
H(|SdK|, |SdK0|), using the notation

X ′′ = |SdL|,
B′′ = |SdL0|,
A′′ = (|SdL| − |SdK|) ∪ |SdK0|,
U ′′ = |SdL| − int |SdK|,
I ′ = |SdK| ∩ cl (U ′′),

I ′δ = {x ∈ cl (U ′′)|dI′′(x) ≤ δ},
V ′′ = U ′′ − I ′′δ ,

with A′′ = {A′′, X ′′ − V ′′}.

B Control of η Parameters
In this section, we show that our geometric term, γ, is only related to τ(p, r) and τ(p, q, r),
if we put constraints on the resolution parameter r with respect to the reach τ of X. Again,
we assume that X is a smooth manifold with boundary.

103



Theorem B.1 states that if the resolution of the balls is finer than the reach of X, then
η(p, r) = η(q, r) = η(p, q, r) = r. This implies that

γ = γ(p, q, r) = min{τ(p, r), τ(p, q, r), η(p, r), η(p, q, r)} = min{τ(p, r), τ(p, q, r), r}.

In other words, if the balls are small enough, γ is only related to several local notions of
reach.

Theorem B.1 (Orthogonality Theorem). ∀r < τ, and ∀p, q ∈ X, we have

η(p, r) = η(q, r) = η(p, q, r) = r.

To prove this theorem, we first prove the following proposition.

Proposition B.2. Suppose r < τ and p ∈ X, a is any point inG(p, r). Then p is the closest
point on X from a.

Proof. We prove the proposition by contradiction. If r < τ , we assume p is not the closest
point on X from a. That is, there exists a point a′ ∈ X, a′ 6= p, such that ||a − a′|| <
||a− p|| = r.

We first prove that if such an a′ exists, it must lie on the line connecting a and p.
Let the gradient of dX at a be ∇dX(a). Let the tangent plane to Br(p) at a be Ta. Since

a ∈ ∂Br(p) ∩ G(p, q, r), ∇dX(a) is orthogonal to Ta, that is ∇dX(a)⊥Ta. Let the normal
vector at a be Na, we have Na⊥Ta. Therefore ∇dX(a) and Na are colinear. Since p is
the center of Br(p), Na is colinear with the line connecting a and p. Therefore ∇dX(a) is
colinear with the line connecting a and p. If a′ is the closet point on X from a, then∇dX(a)
is colinear with the line connecting a′ and a. Therefore a′ is colinear with a and p.

If such a′ exists, there can be two cases, as shown in Figure 5.22,

(i) a′ is contained in Br(p), that is ||p− a′|| < r.

(ii) a′ is outside Br(p), that is ||p− a′|| > r.

We start with case (i). We assume ||p − a′|| < r = ||p − a|| and a′ is the closest
point on X to a. The line connecting p and a′ is normal to Ta. We draw a ball of radius
r∗ = ||p−a′||

2
centered at p∗, where p∗ is the mid-point between p and a′. ThenB = Br∗(p

∗)
is tangent to Ta′ and intersects X in at least the one other point p. Hence we can, if
necessary, shrink B, keeping it tangent to a′ the entire time, until we obtain a ball which
intersects X tangentially at a′ and one other point and contains no points from X in its
interior; The center of this ball will of course then be a point from M, and so we find
τ ≤ lfs (a′) ≤ r∗ = ||p−a′||

2
< r

2
, which contradicts with our assumption that r < τ .

For case (ii) we assume ||p−a′|| > r. On the other hand, we must also have ||p−a′|| =
||p−a||+||a−a′|| ≤ 2r, since ||a−a′|| ≤ ||p−a|| = r by our initial assumption. Again we
draw a ball of radius r∗ = ||p−a′||

2
centered at the mid-point p∗ between p and a′. Repeating

the argument above, we find τ ≤ lfs (a′) ≤ r∗ = ||p−a′||
2

≤ r, a contradiction.
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FIGURE 5.22: Left: case (i). Right: case(ii)

We prove Theorem B.1.

Proof. By applying Proposition B.2 to any point that is in G(p, r), G(q, r) or G(p, q, r),
we conclude that if r < τ , then η(p, r) = η(q, r) = η(p, q, r) = r.

C Algorithm Details
We describe the details in constructing the simplicial complexes described in our algo-
rithm. The various simplicial complexes, L, L0, K andK0, are the nerves of collections of
convex sets. Here we go through the construction of L, constructions of the others follow
similarly.

Implicit Perturbations. A direct approach to constructing L, the nerve of the collection
A, runs into difficulties as the corners of the convex sets created by the hyperplane P can
be shared by many sets. To cope with this difficulty, we perturb these convex sets ever so
slightly so that they meet in general positions. Note that this is not done by perturbing the
hyperplane but rather decomposing it into pieces.

We are interested in the restricted Voronoi diagram of the sublevel sets inside the ball
Br(p), which we denote as V = Voi (U |Uα ∩Br(p)). The restricted Voronoi cell of ui is
defined as V (ui|Uα ∩Br(p)) = V (ui) ∩Br(p).

Given V , we create three sets of points. Let Tpq be the set of points ui ∈ U such that its
restricted Voronoi cell intersects with the hyperplane, that is, V (ui|Uα∩Br(p))∩P 6= ∅. We
impose an ordering of points in Tpq, w.l.o.g., let the ordered set be Tpq = {x1, x2, ..., xm}.
Tp is the set of points ui ∈ U , such that ui /∈ Tpq and are closer to p (than to q). Tq is the
set of points ui ∈ U , such that ui /∈ Tpq and are closer to q.
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The hyperplane P intersects the restricted Voronoi cells of points in Tpq. We denote
these corresponding intersections as {P1,P2, ...,Pm}. We perturb each Pi slightly such
that no two pieces are colinear. Note that Pi is perpendicular to the direction q − p. A
particular perturbation moves each Pi within the restricted Voronoi cell along the direction
q − p for iε distance, where ε is sufficiently small. An example in R2 is shown in Figure
5.23.

Given such a perturbation, we call Ã the collection of perturbed convex sets and com-
pute L̃ = Nerve (Ã) instead of L = Nerve (A). By the properties of nerve construction,
Nerve (Ã) '

⋃
Ã, Nerve (A) '

⋃
A. Since

⋃
Ã =

⋃
A, then we have L̃ ' L. Now we

describe how we construct L̃.

Case Analysis. LetL′ be the restricted Delaunay triangulation, L′ = Del (U |Uα ∩Br(p)).
We read the simplicies from L′ without explicit perturbations. Specifically, we follow a
set of rules as follows to construct L̃ from L′.

Since the hyperplane divides the restricted Voronoi cell of a point x ∈ Tpq into two
convex sets, let xp represent the perturbed convex set closer to p in the nerve construc-
tion, and let xq represent the other set. Let σ be a simplex in L′ with k vertices, that
is, σ = [y1, y2, ..., yk]. There are seven cases regarding the membership of the points
{y1, y2, ..., yk}.

1. All yi ∈ σ belong to Tp. We add simplex [y1, y2, ..., yk] to L̃.

2. All yi ∈ σ belong to Tq. Same as case 1. We add simplex [y1, y2, ..., yk] to L̃.

3. All yi ∈ σ belong to Tpq. Suppose {y1, y2, ..., yk} are sorted according to the order-
ing in Tpq. We add the following simplicies and their faces to L̃:

[yp1, ..., y
p
m, y

q
1]

[yp2, ..., y
p
m, y

q
1, y

q
2]

[yp3, ..., y
p
m, y

q
1, y

q
2, y

q
3]

...

[ypm, y
q
1, y

q
2, ..., y

q
m]

4. Some yi are in Tp, the rest are in Tpq. Suppose {yi1 , ..., yin} ⊆ Tp and {yj1 , ..., yjl} ⊆
Tpq. We add [yi1 , ..., yin , y

p
j1
, ..., ypjl ] to L̃.

5. Some yi are in Tq, the rest are in Tpq. Similar to case 4, suppose {yi1 , ..., yin} ⊆ Tq
and {yj1 , ..., yjl} ⊆ Tpq. We add [yi1 , ..., yin , y

q
j1
, ..., yqjl ] to L̃.

6. Some yi are in Tp, the rest are in Tq. We show that Case 6 is impossible. Let
yi ∈ Tp and yj ∈ Tq such that yi and yj are connected by an edge. Since yi and yj
are on the opposite sides of P, the edge must intersects P at a point z. Then their
corresponding restricted Voronoi cells, V (yi|Uα ∩ Br(p)) and V (yj|Uα ∩ Br(p)),
must meet at a Voronoi face, which contains the point z. Suppose that the Voronoi
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FIGURE 5.23: An example of the implicit perturbation. Dotted lines are the hyperplaness. A
simplex [y1, y2, y3] ∈ L′ is shown in the left. The simplices in L and in L̃ are shown in the middle
and right, respectively.

face is in general position, that is, it is not parallel to P. Then P intersects the
Voronoi face, by definition, yi and yj must belong to Tpq. This is a contradiction.

7. Some yi are in Tp, some are in Tq, and the rest are in Tpq. We show that case 7 is
impossible using the same proof in case 6.

A simple example is shown in Figure 5.23. Given [y1, y2, y3] ∈ L′, simplex [y1, y
p
2, y

p
3]

is added to L̃ according to case 4. Given [y2, y3] ∈ L′, simplices [yp2, y
p
3, y

q
2], [yp3, y

q
2, y

q
3]

and their faces are added to L̃ according to case 3.
In summary, we construct L̃ by iterating through all simplices σ in L′, adding new

simplicies to L̃ constructed from σ following the above cases.

D Algorithmic Correctness
We prove the correctness of the algorithm described in Section 5.6.2 by proving Theorem
5.6.5. More precisely, we will prove that diagram 5.6 commutes, with the vertical arrows
being isomorphisms, for some arbitrary but fixed choices of α < β; we will omit the
very similar argument about cokernels. The proof is unfortunately lengthy, and at times a
bit technical, for in order to prove our statements about diagram 5.6, we must also prove
similar statements about several other interlocking diagrams. For sanity and clarity of
presentation, we first exhibit all the diagrams at once in the form of the following double-
cube (Figure 5.24).
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H(L(α), L0(α))

H(BU
p (α), P0(α)) H(BU

p (β), P0(β))

H(BU
pq(α), Z0(α))

H(K(α), K0(α)) H(K(β), K0(β))

H(L(β), L0(β))

ψα

H(BU
pq(β), Z0(β))

ψβ

inclusion

inclusion

inclusion

inclusion

φα
φβ

inclusion

inclusionH(BU
p (α), ∂BU

p (α))

H(BU
pq(α), ∂BU

pq(α))

H(BU
pq(β), ∂BU

pq(β))

H(BU
p (β), ∂BU

p (β))

φ′

α

φ′

β

FIGURE 5.24: Two adjacent commuting cubes.

D.1 Bottom Face
The bottom face of the double-cube has been detached and drawn in diagram 5.7. The
horizontal maps in the upper square are induced by inclusion of pairs, and so the upper
square certainly commutes.

H(BU
p (α), ∂BU

p (α))
jβ
α−→ H(BU

p (β), ∂BU
p (β))

↓ iα ↓ iβ

H(BU
p (α), P0(α))

jβ
α−→ H(BU

p (β), P0(β))

↑ hα ↑ hβ

H(L(α), L0(α))
gβ

α−→ H(L(β), L0(β)). (5.7)

We have already shown that the two vertical maps in the upper square are isomorphisms;
this was the content of the Power Cell Lemma in Section 5.6.2. To show that the vertical
maps in the lower square are isomorphisms requires a bit more work. We make use of the
following lemma, proven in [20].

Lemma D.1 (General Nerve Subdivision Lemma (GNSL)). Let C be the collection of
maximal cells of a CW complex, each a convex set in Rk. Define f : |SdN | → ∪C by
piecewise linear interpolation of its values at the vertices. If f(σ̂) is contained in the
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intersection of the cells that correspond to the vertices of σ, for each simplex σ ∈ N , then
f is a homotopy equivalence.

The vertical isomorphisms in the bottom square then follow from this next lemma,
where we may of course replace α with β if we wish.

Lemma D.2 (Nerve Subdivision Lemma). Define h = hα : |SdL(α)| → BU
p (α) on the

vertices σ̂ of SdL(α) by the formula

hα(σ̂) = arg min
x∈V σ∩Uα∩Br(p)

d2
U(x)− d2

p(x),

and extend it by linear interpolation. Then hα is a homotopy equivalence of pairs from
(|SdL(α)|, |SdL0(α)|) to (BU

p (α), P0(α)).

Proof. By construction, h(σ̂) is contained in the intersection of the cells that correspond
to the vertices of σ. By the GNSL then, h is a homotopy equivalence.

Now we need to prove that the restriction of h to SdL0(α) is also a homotopy equiv-
alence. Let σ ∈ L0(α) and put h(σ̂) = z. For purposes of contradiction, suppose z /∈
P0(α). This means that z ∈ intP (α), by definition, and hence dU(z)2−dp(z)2 > α2− r2.

Now choose some z′ ∈ V σ∩P0, which must exist since σ ∈ L0(α). Then by definition
we have dp(z′)2−r2 ≥ dU(z′)2−α2, or dU(z′)2−dp(z′)2 ≤ α2−r2. Combining the above
inequalities, we have dU(z′)2 − dp(z

′)2 ≤ α2 − r2 < dU(z)2 − dp(z)
2, which contradicts

the assumption that h(σ̂) = z. We conclude that z ∈ V σ ∩ P0(α). Applying the GNSL
once more finishes the proof.

To show that the lower square commutes, we put e = jβα ◦ hα and e′ = hβ ◦ gβα, and we
consider the map H : |L(α)| × [0, 1] → Uα ∩ Br(p) defined by H(x, t) = hαt ◦ gαt

α (x),
where αt = (1 − t)α + tβ. Since the maps g and j are inclusions and the maps h vary
continuously with α, H is a homotopy between e and e′. This implies that the induced
homomorphisms between the corresponding homology groups are the same, e∗ = e′∗.

D.2 Top Face
We detach the top face of Figure 5.24, drawing it in diagram 5.8. As before, we prove that
all vertical maps are isomorphisms. The commutativity of the two smaller squares follows
from nearly identical arguments to the ones used for the bottom face.

H(BU
pq(α), ∂BU

pq(α)) → H(BU
pq(β), ∂BU

pq(β))

↓ i′α ↓ i′β
H(BU

pq(α), Z0(α)) → H(BU
pq(β), Z0(β))

↑ h′α ↑ h′β
H(K(α), K0(α)) → H(K(β), K0(β)) (5.8)

The Intersection Power Cell Lemma tells us that the vertical maps in the top square are
isomorphisms. As promised, we give the proof of this lemma here, repeating the statement
for completeness.
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Lemma D.3 (Intersection Power Cell Lemma). Assume Br(p)∩Br(q)−Z0(α) 6= 0. The
identity i′ on BU

pq(α) is a homotopy equivalence of pairs between (BU
pq(α), ∂BU

pq(α)) and
(BU

pq(α), Z0(α)).

Proof. It suffices to show that the restriction of the identity, i′ = i′α : ∂BU
pq(α) → Z0(α),

is a homotopy equivalence. To do this, we first define a retraction j : Z0(α) → ∂BU
pq(α)

as follows. Fix a point y ∈ intZ(α), recalling that this set is nonempty by assumption.
For each point x ∈ Z0(α), we consider the unique ray starting at y and passing through x,
and we let x′ = j(x) denote its intersection with ∂BU

pq(α). Note that x′ ∈ Z0(α) ⊆ U(α),
and so j is certainly well-defined. That j is a retraction, meaning j ◦ i′ is the identity on
∂BU

pq(α), is obvious. On the other hand, the map

λ : Z0(α)× [0, 1] → Z0(α)

defined by λ(x, t) = (1− t)x + tx′ is a homotopy between i′ ◦ j and the identity map on
Z0(α), and so the claim follows.

To prove that the vertical maps in the lower square are isomorphisms, we again make
use of the GNSL.

Lemma D.4 (Intersection Nerve Subdivision Lemma (INSL)). Define

h′ = h′α : |SdK(α)| → BU
pq(α)

by setting

h′α(σ̂) = arg min
x∈V σ∩Uα∩Br(p)∩Br(q)

min{d2
U(x)− d2

p(x), d
2
U(x)− d2

q(x)},

where σ̂ is the barycentre of σ ∈ K(α), and then extending it by linear interpoloat-
ion. Then h′ is a homotopy equivalence of pairs between (|SdK(α)|, |SdK0(α)|) and
(BU

pq(α), Z0(α)).

Proof. The proof is quite similar to that of the NSL. By construction, h′(σ̂) is contained
in the intersection of the cells that correspond to the vertices of σ, and so we need only
prove that the restriction of h′ to the barycentric subdivision of K0(α) is also a homotopy
equivalence. Let σ ∈ K0(α) and put h′(σ̂) = z.

Suppose z /∈ Z0(α), and thus z ∈ intZ(α). By definition then, dp(z)2−r2 < dU(z)2−
α2 and dq(z)2− r2 < dU(z)2−α2. In other words, min{d2

U(x)−d2
p(x), d

2
U(x)−d2

q(x)} >
α2 − r2.

Choose some point z′ ∈ V σ ∩ Z0(α). Then one of the following inequalities must
hold: dp(z′)2− r2 ≥ dU(z′)2−α2, or dq(z′)2− r2 ≥ dU(z′)2−α2. That is, min{d2

U(z′)−
d2
p(z

′), d2
U(z′)− d2

q(z
′)} ≤ α2 − r2.

Therefore, combining both inequalities, min{d2
U(z′)−d2

p(z
′), d2

U(z′)−d2
q(z

′)} ≤ α2−
r2 < min{d2

U(z)− d2
p(z), d

2
U(z)− d2

q(z)}, which contradicts the definition of z.
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D.3 Left and Right Faces

H(BU
p , ∂B

U
p )

φ−→ H(BU
pq, ∂B

U
pq)

↓ i∗ ↓ i′∗
H(BU

p , P0)
φ′−→ H(BU

pq, Z0)

↑ h∗ ↑ h′∗
H(L,L0)

ψ−→ H(K,K0). (5.9)

We now come to the final and most complicated part of the correctness proof, involv-
ing the left face (diagram 5.9) of the double-cube; of course, everything we prove here
will also hold for the right face. We have already established that all vertical maps are
isomorphisms, and now must show that both squares commute. The top square will in fact
commute even on the chain level. The bottom square is a little more complicated, and we
start by addressing this first.

In diagram 5.10, this bottom square has been expanded into two smaller squares of
chain groups connected by chain maps. We show that the lower of these squares commutes
on the chain level, and that the two choices of path across the upper square are connected
by a chain homotopy.

C(BU
p , P0)

j′−→ C(BU
pq, Z0)

↑ h# ↑ h′#
C(|SdL|, |SdL0|)

f ′−→ C(|SdK|, |SdK0|).
↑ η ↑ η

C(SdL, SdL0)
f−→ C(SdK, SdK0). (5.10)

Map Details
First we need to discuss two of the horizontal chain maps from diagram 5.10 in more
explicit detail.

Upper map. We analyze the effect of j′ on an arbitrary linear singular simplex ω : ∆p →
BU
p , where ω = l(a0, ..., ap) for some points ai in Euclidean space. The analysis can be

broken up into three main cases:

(A.1) ω(∆p) ⊆ BU
q : Then j′ maps ω through unchanged, meaning:

[ω : ∆p → BU
p ]

j′7−→ [ω : ∆p → BU
pq].

From now on we simplify notation by omitting the domain and range of the singular

simplex, writing instead: ω
j′7−→ ω.
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a0

a1

a2

x

x
′

v0

v1

v2

|SdK|
BU

q
x

x
′

FIGURE 5.25: Left: map j′ for a linear singular simplex l(a0, a1, a2). Right: map f ′ for a simpli-
cial linear singular simplex l(v0, v1, v2).

(A.2) ω(∆p) ∩BU
q = ∅: Then ω

j′7−→ 0.

(A.3) ω(∆p) * BU
q and ω(∆p) ∩BU

q 6= ∅. Here we have two sub-cases:

(A.3.a) ω is A′-small: This implies that ω(∆p) ⊆ X − V . Map j′ can be interpreted
as a retraction. That is, letting T = ω(∆p), S = ω(∆p) ∩ BU

q and R =
ω(∆p) ∩ ∂BU

q , we define r : T → S by: for x ∈ S, r(x) = x; for x ∈ T − S,

r(x) = x′, where x′ ∈ R, as shown in the left of Figure 5.25. Then ω
j′7−→ τ,

where τ : ∆p → BU
pq is defined by: for ε ∈ ∆p where ω(ε) ∈ S, τ(ε) = ω(ε);

otherwise for ε ∈ ∆p where ω(ε) /∈ S, τ(ε) = r ◦ ω(ε).

(A.3.b) ω is notA′-small: We barycentrically subdivide ω enough timesm until Sdmω
is a A′-small singular chain. Then each A′-small singular simplex in Sdmω
that has its image inX−V follows the pattern of (A.3.a), resulting in a singular

simplex τi : ∆p → BU
pq. In the end we have, ω

j′7−→ cτ , where cτ is the singular
chain, cτ =

∑
τi. This is shown in Figure 5.26.

Middle map. We now describe the action of f ′ on an arbitrary simplicial linear singular
simplex. Let δ : ∆p → |SdL| be such a simplex with δ = η(σ) = l(v0, ..., vp), for some
simplex σ = [v0, ..., vp] ∈ SdK. As above, we have three cases to consider::

(B.1) δ(∆p) ⊆ |SdK|: then δ
f ′7−→ δ.

(B.2) δ(∆p) ∩ |SdK| = ∅: δ
f ′7−→ 0.

(B.3) δ(∆p) * |SdK| and δ(∆p) ∩ |SdK| 6= ∅: From Lemma D.5 below, we know that

(δ(∆p) ∩ |SdK|) ⊆ |SdK0|, and so δ
f ′7−→ 0.

Lemma D.5. Given a simplex σ ∈ L, if σ /∈ K and there exists τ < σ such that τ ∈ K,
then τ ∈ K0.
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BU
q

X − V

A′

FIGURE 5.26: Map j′ for a linear singular simplex that requires barycentric subdivision. In this
illustrated example, all four shaded regions are the images of the four singular simplexes in the first
barycentric subdivision which are A′-small and have their images in X − V . Their formal sum
gives a singular chain in X − V . Their retraction result in a singular chain in BU

pq.

Proof. Suppose there exists ω < τ such that ω ∈ K − K0. This implies that V ω is
completely contained in BU

pq. Since V σ is the intersection of V ω with the partial Voronoi
cells of vertices in σ that are not in ω, then V σ should be completely contained in BU

pq.
This means that σ is in K, which leads to a contradiction.

Lower Square
As promised, we now show that the lower square in diagram 5.10 commutes. Choose an
arbitrary σ = [v0, ..., vp] ∈ SdL, where each vi is a barycenter of some simplex σ′ in L;
as always, we assume that that the vertices are ordered by increasing dimension of their
defining simplices. We have two cases:

(C.1) σ ∈ SdK: by definition, η(σ) = l(v0, ..., vp) has its image in |SdK|, and f is the

identity map, that is, σ
f7−→ σ

η7−→ η(σ).Meanwhile, by case (B.1), σ
η7−→ η(σ)

f ′7−→ η(σ).
Therefore (η ◦ f)(σ) = (f ′ ◦ η)(σ).

(C.2) σ /∈ SdK : then σ
f7−→ 0

η7−→ 0. On the other had, since σ /∈ SdK, we know that the
image of δ = η(σ) = l(v0, ..., vp) cannot be entirely contained within |SdK|. There
are then two sub-cases to consider:

(C.2.a) δ(∆p) ∩ |SdK| = ∅ : this is case (B.2). We have σ
η7−→ δ

f ′7−→ 0.

(C.2.b) δ(∆p) ∩ |SdK| ⊆ |SdK0| : this is case (B.3). We have σ
η7−→ δ

f ′7−→ 0.

Upper Square
Finally, we show that the upper square in diagram 5.10 commutes up to chain homotopy;
that is, we will construct a chain homotopy D between the two chain maps e = j′ ◦ h#

and e′ = h′# ◦ f ′. This will of course imply that e∗ = e′∗; in other words, that the induced
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FIGURE 5.27: Case (D.1.a): illustration of F .

homology diagram commutes. For clarity, we zoom in on diagram 5.10 and draw the
relevant portion below as diagram 5.11.

C(BU
p , P0)

j′−→ C(BU
pq, Z0)

↑ h# ↑ h′#
C(|SdL|, |SdL0|)

f ′−→ C(|SdK|, |SdK0|). (5.11)

For notational ease ,we set X = |SdL| and Y = BU
pq. To construct D, we will define for

each p a chain map Fp : Cp(X × I) → Cp(Y ), and then we will set Dp = Fp+1 ◦ Gp,
where Gp : Cp(X × I) → Cp+1(X × I) is given by Lemma D.6 below.

Construction of F. Let π : X × I → X be projection on the first factor, and fix an arbi-
trary simplicial linear singular simplex κ : ∆p → X × I . Then π#(κ) = δ = l(σ̂0, ..., σ̂p),
for some simplex σ = [σ̂0, ..., σ̂p] in SdL. We define F in stages, based on properties of
δ, as follows.

(D.1) δ(∆p) ⊆ |SdK|: following the e′-path and case (B.1), we have δ
f ′7−→ δ

h′#7−→ τ ′.

On the other hand, following the e-path results in δ
h#7−→ ω. We now have three

sub-cases, based on varying properties of ω:

(D.1.a) ω(∆p) ⊆ BU
q : following the e-path and case (A.1). we have, δ

h#7−→ ω
j′7−→ τ,

where τ = ω except for differing range. We then can define F (κ) = ι, where
ι : ∆p → Y is given by: for every ε ∈ ∆p, where κ(ε) = (x, t) ∈ X × I ,
ι(ε) = (1− t)τ(ε) + tτ ′(ε). This formula is illustrated in Figure 5.27.

(D.1.b) ω(∆p) ∩BU
q = ∅: This is case (A.2). We branch further as follows:

(i) δ(∆p) ⊆ |SdK0|: Following the e′-path, δ
f ′7−→ 0

h′#7−→ 0. Similarly, follow-

ing the e-path, δ
h#7−→ ω

j′7−→ 0. We define F (κ) = 0.
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∆p

X × I

δ

κ F

(x, t)

(x, 1)

(x, 0)

δi(∆p)

κi(∆p)

Y

τ
′

i(∆p)

ιi(∆p)

τi(∆p)

FIGURE 5.28: Case (D.1.c): illustration of F . Left: the dark shaded region is the minimal carrier
of δi and κi. Right: the shaded regions from top to bottom are the minimal carriers of τ ′, cι and cτ
respectively; the dark shaded regions from top to bottom are the minimal carriers of τ ′i , ιi and τi,
respectively. For simplicity, we illustrate the minimal carrier of the singular chain cτ as the union
of the minimal carriers of its simplexes before their retraction.

(ii) δ(∆p) * |SdK0|: this is not possible. Suppose it were. This implies
that there exists at least one vertex σ̂i of σ such that V σi ∩ BU

pq 6= ∅ and
V σi ∩ Z0 = ∅. This means that V σi is completely contained in Br(q).
Therefore h(σ̂i) is contained in Br(q), which contradicts our assumption.

(D.1.c) ω(∆p) * BU
q and ω(∆p) ∩BU

q 6= ∅: we must consider two further sub-cases.

(i) ω is A′-small: this is case (A.3.a), and we define F (κ) similarly to case
(D.1.a).

(ii) ω is not A′-small: this is case (A.3.b). Then δ
h#7−→ ω

j′7−→ cτ , where cτ =∑
τi for some collection of τi : ∆p → BU

pq. We now define F (κ) = cι,
where cι =

∑
ιi and each singular simplex ιi : ∆p → Y is defined as

follows. Let m be the smallest integer such that Sdmω is A′-small. For
each singular simplex τi in cτ , there exists a singular simplex ωi in Sdmω
such that j′(ωi) = τi. For each such ωi, there exists a singular simplex δi in
Sdmδ such that h#(δi) = ωi. In other words, for each τi in cτ , there exist

δi in Sdmδ, such that following the e-path, δi
h#7−→ ωi

j′7−→ τi. Meanwhile,

for each such δi, following the e′-path gives δi
f ′7−→ δi

h′#7−→ τ ′i .
On the other hand, for each such δi, there exists a corresponding κi in
Sdmκ, such that δi = π(κi). We now define ιi for each such κi. For all
ε ∈ ∆p where κi(ε) = (x, t) ∈ X × I , ιi(ε) = (1− t)τi(ε) + tτ ′i(ε). This
is illustrated in Figure 5.28.

(D.2) δ(∆p) * |SdK| : we again have two sub-cases:
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∆p ∆p × I
X × I

î

ĵ

δ × Id

FIGURE 5.29: Illustration of G.

(D.2.a) δ(∆p) ∩ |SdK| = ∅ : following the e′-path and case (B.2), δ
f ′7−→ 0

h′#7−→ 0.
Since δ(∆p) ∩ |SdK| = ∅, this implies that its corresponding σ /∈ SdK.
That is, for all σ̂i, V σi ∩ BU

pq = ∅, therefore all h(σ̂i) lie outside of Br(q). Let
ω = h#(δ) = h◦δ. This means ω has its image outside ofBU

q . Then following

the e-path, δ
h#7−→ ω

j′7−→ 0. We define F (κ) = 0.

(D.2.b) (δ(∆p) ∩ |SdK|) ⊆ |SdK0| : following the e′-path and case (B.3), we have,

σ
f ′7−→ 0

h′#7−→ 0. On the other hand, let ω = h#(δ) = h ◦ δ. Then ω(∆p) ⊆ P0

and so following the e-path give σ
h#7−→ ω

j′7−→ 0. We define F (κ) = 0.

Construction of D. To define our chain homotopyD, we first need the following lemma:

Lemma D.6. ([82], page 171) There exists for each space X and each non-negative in-
teger p, a homomorphism Gp : Cp(X) → Cp+1(X × I), having the following property:
if δ : ∆p → X is a singular simplex, then ∂Gδ + G∂δ = j#(δ) + i#(δ), where the map
i : X → X × I carries x to (x, 0), and the map j : X → X × I carries x to (x, 1).

This homomorphism is illustrated intuitively in Figure 5.29, where δ × Id carries a
singular p + 1 chain that fills up the entire prism ∆p × I to a singular chain on X × I ,
and the maps î, ĵ : ∆p → ∆p × I carry each x to (x, 0) and (x, 1) respectively. Then, as
promised, we set Dp = Fp+1 ◦Gp. To show that D is a chain homotopy between e and e′,
we calculate

∂D = ∂(FG)

= F∂G

= F (j# + i# +G∂)

= Fj# + Fi# + FG∂

= Fj# + Fi# +D∂

Hence we need only show that Fj# = e′ and Fi# = e to complete the argument. In the
case when F (κ) is defined to be 0, the corresponding e(δ) and e′(δ) are also 0, so this is
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no problem. In the case when F (κ) is not defined to be 0, as shown in Figure 5.27 and
Figure 5.28, Fj#(δ) = e′(δ), and Fi#(δ) = e(δ). This concludes the proof that the upper
square in diagram 5.10 commutes up to chain homotopy, and thus that the bottom square
of diagram 5.9 commutes.

Top Square of Diagram 5.9
As promised above, we now prove that the top square of diagram 5.9 commutes, which
will complete the proof that the left face of Figure 5.24 commutes. In fact, the top square
commutes on the chain level, which we draw directly below.

C(BU
p , ∂B

U
p )

j−→ C(BU
pq, ∂B

U
pq)

↓ i# ↓ i′#
C(BU

p , P0)
j′−→ C(BU

pq, Z0)

Setting e = j′ ◦ i# and e′ = i′# ◦ j, we show, once again via an exhaustive case analysis,
that e = e′.

First we need to understand the map j for a linear singular simplex. The interpretation
of j is almost the same as that of j′ (case (A)). More specifically, we let ω : ∆p → BU

p be
an abitrary linear singular simplex. There are three cases:

(E.1) ω(∆p) ⊆ BU
q : then ω

j7−→ ω.

(E.2) ω(∆p) ∩BU
q = ∅ : then ω

j7−→ 0.

(E.3) ω(∆p) * BU
q and ω(∆p) ∩BU

q 6= ∅ : We have two sub-cases:

(E.3.a) ω is A-small: then ω
j7−→ γ, where γ : ∆p → BU

pq is defined via the retraction-
type arguments above.

(E.3.b) ω is not A-small: then ω
j′7−→ cγ, where cγ =

∑
γi, with each γi : ∆p → BU

pq

described by the subdivision and retraction arguments we have already given.

To complete the proof, we fix an arbitrary singular simplex δ : ∆p → BU
p , and again

argue by cases.

(F.1) δ(∆p) ⊆ BU
q : exploiting the analysis above, we note that following the e′-path

results in δ
j7−→ δ

i′#7−→ δ, while following the e-path gives δ
i#7−→ δ

j′7−→ δ, as needed.

(F.2) δ(∆p) ∩BU
q = ∅ : here both paths result in 0.

(F.3) δ(∆p) * BU
q and δ(∆p) ∩BU

q 6= ∅ : here we must analyze two sub-cases:
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(F.3.a) δ is A-small: this implies that δ(∆p) ⊆ X − V . Following the e-path gives.

δ
j7−→ γ

i′#7−→ γ. On the other hand, δ is also A′-small, since A and A′ share the
element X − V , and hence the e′ path

δ
j7−→ δ

i′#7−→ τ.

But really the fact that X − V is part of A and A′ means that τ and γ follow
the same retraction, and thus γ = τ .

(F.3.b) δ is notA-small: the analysis here is the same as the last case, with some words
about subdivision added.

D.4 Finale
We are now ready to finish the proof of Theorem 5.6.5, which boils down to verifying that
diagram 5.6 commutes, with the vertical maps being isomorphisms. That is,

. . .→kerφUα → kerφUβ → . . .

↑∼= ↑∼=
. . .→kerψα → kerψβ → . . . .

But this is now just easy diagram-chasing. Commutativity of diagram 5.6 follows directly
from the commutativity of the bottom face of the double-cube in Figure 5.24, and the
leftmost (rightmost) vertical isomorphism derives from our statements about the left (right)
face of the double-cube. The commmutativity of the top face implies that the cokernel
analogue to diagram 5.6 commutes, after a little more algebra which we omit.
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Chapter 6
Discussion

In this thesis, we concern ourselves with feature extractions from several forms of data,
graphs, triangulations and point cloud. We demonstrate that both the theory of persistent
homology and statistics are effective in separating features from noise. Our work provide
theoretical foundations for potential applications in computational biology, social science,
visualization and machine learning.

We begin with Chapter 2 by generalizing spacial scan statistics from point sets to
graphs, introducing the notion of graph scan statistic and its simplification, the Poisson
discrepancy. The graph scan statistics infers graph clusterings by measuring the statistical
significance of a densely-connected subgraph based on hypothesis testing and likelihood
function. Since the graph scan statistics is used to detect locally best clusters, perhaps
another interesting question is: can we derive a global graph scan statistic that is useful in
finding the best partition of a graph? This is currently joint work with Randolf Rotta. We
have some success defining such a global measure and relating it to modularity.

We gradually shift our focus from statistics to persistent homology, and from graphs to
triangulations. In Chapter 3, we describe our first attempt in bringing statistical flavor to
the theory of persistent homology by analyzing how noise influences summary statistics
on total persistence. We derive several theorems for PL functions defined on triangulations
of topological spaces, relating the total persistence in expectation to the properties of the
triangulation and the distribution. However, this is merely a simple test drive towards
the direction of probabilistic topological analysis, by bridging the theory of statistics with
persistent homology. This include providing sampling estimates for topological inference
under different resolutions, quantify variance of persistence computation from noisy data,
etc. One interesting question in this direction is, can we compute the notion of “average”
persistence diagrams, from points sampled from manifolds, or from functions sampled
from distributions?

We continue to explore feature extraction from triangulations in Chapter 4, specifi-
cally for triangulations of 2-manifolds. We use tools developed in persistent homology,
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the elevation function, to study features of triangulated protein surfaces. Since the eleva-
tion function is based on the persistence pairings of height functions, it is an interesting
research direction to define the general elevation function based on various notions of
distance functions, such as distances to a point, a line or a convex set.

Subsequently we work towards stratification learning from point cloud data in Chap-
ter 5. We focus on inferring the local structure of a point in the sample in relation to its
neighborhood. We examine this inference problem both theoretically and algorithmically.
We provide inference statements from both topological and probabilistic perspectives. We
give one result, the probabilistic inference theorem, in the direction of probabilistic topo-
logical analysis, namely, if we sample enough points i.i.d. uniform from the space, we can
infer local structure with confidence. It will be interesting to apply our homological infer-
ence on real-world data, such as medical images and high-dimentional parameter spaces.
Developing faster algorithms for stratification learning in practice is necessary. We envi-
sion our work to be applied by using computationally more convenient complexes such
Rips or Witness complexes, or in combination with dimension reduction and dimension
estimation techniques. Furthermore, we would like to improve the theoretical bounds,
make them more general under different models of uncertainty.
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[15] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-
works. Science, 286:509–512, 1999.

[16] Jeffrey Baumes, Mark K. Goldberg, Mukkai S. Krishnamoorthy, Malik Magdon-
ismail, and Nathan Preston. Finding communities by clustering a graph into over-
lapping subgraphs. In Proceedings IADIS International Conference of Applied
Computing, pages 97–104, 2005.

[17] M. J. Bayarri and M. H. DeGroot. Difficulties and ambiguities in the definition of a
likelihood function. Statistical Methods and Applications, 1:1–15, 1992.

[18] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural Computation, 15:1373–1396, 2002.

[19] Paul Bendich. Analyzing Stratified Spaces Using Persistent Versions of Intersection
and Local Homology. PhD thesis, Duke University, 2008.

[20] Paul Bendich, David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy
Morozov. Inferring local homology from sampled stratified spaces. In Proceedings
48th Annual IEEE Symposium on Foundations of Computer Science, pages 536–
546, 2007.

[21] Jean-Daniel Boissonnat, Olivier Devillers, and Samuel Hornus. Incremental con-
struction of the delaunay triangulation and the delaunay graph in medium dimen-
sion. In Proceedings 25th Annual Symposium on Computational Geometry, pages
208–216, 2009.

[22] Peter Bubenik, Gunnar Carlson, Peter T. Kim, and Zhi-Ming Luo. Statistical topol-
ogy via morse theory, persistence and nonparametric estimation. Contemporary
Mathematics, (to appear), 2010.

[23] Peter Bubenik and Peter T. Kim. A statistical approach to persistent homology.
Homology, Homotopy and Applications, 9:337–362, 2007.

122



[24] George Casella and Roger L. Berger. Statistical Inference. Duxbury Press, Pacific
Grove, CA, USA, 2002.

[25] Frédéric Cazals, Frédéric Chazal, and Thomas Lewiner. Molecular shape analysis
based upon the morse-smale complex and the connolly function. In Proceedings
19th Annual Symposium on Computational Geometry, pages 351–360, 2003.

[26] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and
Steve Y. Oudot. Proximity of persistence modules and their diagrams. In Proceed-
ings 25th Annual Symposium on Computational Geometry, pages 237–246, 2009.

[27] Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for
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Glossary

A-small Given a topological space X and a collection A of subsets of X whose interiors
form an open cover of X , a singular simplex of X is said to be A-small if its image
set is entirely contained in a single element of A [82]. 102

absolute Gaussian curvature Letting x be a point in the 2-manifold M and r > 0, we
define the absolute Gaussian curvature at x by taking the limit of a fraction of areas,
g(x) = limr→0

Area(N(Ar))
Area(Ar)

, where Ar is the neighborhood of points at distance at
most r from x on M, N(Ar) is its area under the Gauss map. The total absolute
Gaussian curvature is the integral of the local quantity, G(M) =

∫
x∈M g(x)dx. 57,

136

absolute Gaussian curvature (PL case) See Gaussian curvature (PL case). 59

alternative hypothesis See hypothesis. 13

bipartite A graph G = (V,E) is bipartite if there is a partition of V = X ∪ Y , with X
and Y disjoint, such that each edge of G has one end in X and one in Y [108]. 11

birth (persistence module) Assume the persistence module F is tame and so we have a
finite ordered list of critical values 0 = c0 < c1 < . . . < cm. We choose regular
values {ai}mi=0 such that ci−1 < ai−1 < ci < ai for all 1 ≤ i ≤ m, and we adopt
the shorthand notation Fi = Fai

and f ji : Fi → Fj , for 0 ≤ i ≤ j ≤ m. A vector
v ∈ Fi is said to be born at level i if v 6∈ im f ii−1, and such a vector dies at level j if
f ji (v) ∈ im f ji−1 but f j−1

i (v) 6∈ im f j−1
i−1 . Its birth time is ci while its death time is cj .

54, 69, 131, 134

birth (persistent homology) Given the lower star filtration and the sequence of homol-
ogy groups connected by homomorphisms, letting γ be a class in Hp(Ki), it is born
at Ki if γ /∈ Hi−1,i

p . If γ is born at Ki, then it dies entering Kj if it merges with an
older class as we go from Kj−1 to Kj , that is, f i,jp (γ) /∈ Hi−1,j−1

p but f i,jp (γ) ∈ Hi−1,j
p .

If γ is born at Ki and dies entering Kj , then we call the difference in function value
the persistence, pers(γ) = aj − ai. See lower star filtration. 38, 131, 134

bottleneck distance The bottleneck distance between any two persistence diagrams D
and D′ to is, dB(D,D′) = infΓ:D→D′ supu∈D ||u− Γ(u)||∞, where Γ ranges over all
bijections from D to D′. 69

cokernel See kernel. 71
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cone The cone of a topological space X is the quotient space (X × I)/X × {0} of the
product of X with the unit interval I = [0, 1] [63]. 73

critical point Let f : M → R be a smooth function on a d-manifold, a point x ∈ M
is critical iff all its first-order partial derivatives vanish; otherwise it is regular. The
image of a critical point is a critical value of f . All others are regular values of f . 53,
131, 135

critical region For each u ∈ S2, letting hu : |K| → R be the height function defined by
hu(x) = 〈x, u〉, the critical region of a vertex is the closure of the set of directions u
along which it is critical. 59

critical value See critical point. 54

critical value (persistence module) See regular value (persistence module). 69

critical vertex Given a generic function f : |K| → R on the underlying space of a
simplicial complex K, a vertex in K is critical if its lower link is not contractible;
otherwise it is regular.. 37, 58, 135

death (persistence module) See birth (persistence module). 54, 69

death (persistent homology) See birth (persistent homology). 38

deformation retract Let X be a topological space and A a subspace of X . A continuous
map F : X × [0, 1] → X is a deformation retraction if for every x ∈ X and a ∈
A, F (x, 0) = x, F (x, 1) ∈ A, and F (a, 1) = a. A deformation retraction is a
homotopy between a retraction and the identity map on X . The subspace A is called
a deformation retract of X. 102

Delaunay triangulation The dual of the Voronoi diagram of a set of points is the Delau-
nay triangulation. 90

distance function Given a topological space X embedded in some Euclidean space Rn,
we define dX as the distance function which maps each point in the ambient space to
the distance from its closest point in X. 72

elevation function For each u ∈ S2, suppose the height function hu on the 2-manifold M
is Morse, the points in the persistence diagram of hu correspond to pairs of critical
points. The elevation at the points x and y of such a pair is set to the absolute height
difference in the direction, E(x) = E(y) = |hu(x)− hu(y)|. There is a unique value
at every point in M. This is the elevation function, E : M → R. 55, 56

excision Given topological spaces X , A and U such that U ⊆ A ⊆ X , the inclusion map
of pairs (X − U,A − U) → (X,A) is called an excision if it induces a homology
isomorphism [60]. 102

extended real plane The extended real plane is defined as R̄2 = (R ∪ {±∞})2. 39, 69

feature size If the persistence moduleFR≥0
is tame, then it has a smallest non-zero critical

value ρ(F), we call this number the feature size of the persistence module. 69
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Gauss map The Gauss map on a 2-manifold, N : M → S2, maps a point x ∈ M to the
outer unit normal at x. 57

Gaussian curvature (PL case) The Gaussian curvature of a vertex in a triangulated sur-
face is the area of its critical region weighted by the winding number. Its absolute
Gaussian curvature is defined as the area weighted by the absolute winding number.
The total absolute Gaussian curvature is then the sum over all vertices. 59, 130, 136

graph A graph G = (V,E) is defined by a set V of elements called vertices, a set E of
elements called edges, and a relation of incidence, which associates with each edge
either one or two vertices called its ends [108]. 1, 7

half-normal The half-normal distribution is the probability distribution of the absolute
value of a random variable that is normally distributed with expected value 0 and
variance σ2. 39

height function Let M be a smoothly embedded 2-manifold in R3. Given a direction
u ∈ S2, the height function in this direction, hu : M → R, is defined by mapping
each point x to hu(x) = 〈x, u〉. 55

Hessian The Hessian of a function f at a point x is the matrix of second partial derivatives
at the point. 54

homology group The p-th homology group is the p-th cycle group modulo the p-th bound-
ary group. 37

homotopy A homotopy between two continuous functions f and g from a topological
space X to a topological space Y is defined to be a continuous function H : X ×
[0, 1] → Y from the product of the space X with the unit interval [0, 1] to Y such that,
if x ∈ X then H(x, 0) = f(x) and H(x, 1) = g(x). 44

homotopy equivalent Two spaces X and Y are said to be homotopy equivalent, or to
have the same homotopy type, if there are maps f : X → Y and g : Y → X such
that g ◦ f is homotopic to the identity map idX on X , and f ◦ g is homotopic to the
identity map idY on Y . 37

hypothesis A hypothesis is a statement about a population parameter. The two com-
plementary hypotheses in hypothesis testing are called the null hypothesis and the
alternative hypothesis, denoted by H0 and H1, respectively. If θ denotes a population
parameter, the general format of the null and alternative hypothesis is H0 : θ ∈ Θ0,
H1 : θ ∈ Θc

0, where Θ0 is some subset of the parameter space Θ and Θc
0 is its com-

plement. A hypothesis testing is a rule that specifies: (i) For which sample values
the decision is made to accept H0 as true; (ii) For which sample values H0 is rejected
and H1 is accepted as true [24]. 13, 130, 132, 134

hypothesis testing See hypothesis. 13

index According to Morse Lemma, the number of minus signs in the quadratic polyno-
mial is the index of the critical point [50]. 54
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individually most powerful The parameter space Θc
0 is partitioned into a countable num-

ber of subsets {Aj}. Likewise using the same index, the critical region R is parti-
tioned into subsets {Rj}. Let R′ denote an alternative critical region with corre-
sponding disjoint subsets, {R′

j}. A test is individually most powerful with respect to
a partition {Aj} of the parameter space Θc

0, and a partition {Rj} of the critical region
R, if for each Ak there are no sets R′ and {R′

j} such that: assuming a significance
level α, 1) β(θ) = β′(θ) if θ /∈ Ak; 2) β(θ) < β′(θ) if θ ∈ Ak. 15

kernel If f : U → V is a linear transformation between vector spaces, the kernel, image
and cokernel are defined as, ker f = {u ∈ U |f(u) = 0 ∈ V }, im f = {v ∈
V | there exists u ∈ U with f(u) = v}, cok f = V/im f [50]. 71, 130

likelihood function A likelihood function is a function of the parameters of a statisti-
cal model that allows estimation of unknown parameters based on known outcomes.
Formally, let f(x|θ) denote the probability density function of the random variable
X . That is, over any range R, Pr (X ∈ R) =

∫
x∈R f(x|θ)dx, based on a known pa-

rameter θ. Then, the function of θ defined by L (θ|x) = f(x|θ) is call the likelihood
function [24]. 12

likelihood ratio test See likelihood ratio test statistic. 13

likelihood ratio test statistic The likelihood ratio test statistic for testing H0 : θ ∈ Θ0

versus H1 : θ ∈ Θc
0 is defined as follows, which equals the ratio of the maximum

likelihood values, λ(x) =
supΘ0

L (θ|x)
supΘ L (θ|x) = L (θ̂0|x)

L (θ̂|x) . A likelihood ratio test (LRT) is any
test that has a critical region of the form {x : λ(x) ≤ c} for some 0 ≤ c ≤ 1 [24].
13, 133

link The link of a vertex consists of all faces of simplices in the star that do not belong to
the star. 37, 58

local feature size The local feature size of a point a ∈ X is the distance of a to the medial
axis of X. 84

local homology The local homology groups of a space X at a point x ∈ X are the groups
Hi(X,X− x) in each homological dimension i [82]. 74

lower link Given a piecewise-linear function f : |K| → R, the lower link of a vertex is
the subset of simplicies in the link with smaller function values than the vertex. 37,
58

lower star Given a piecewise-linear function f : |K| → R, the lower star of a vertex u is
the subset of simplicies in the star of u for which u is the vertex with the maximum
function value. 37, 58

lower star filtration Let K be a triangulation of a topological space. Given a generic
function f : |K| → R, the lower star filtration is the sequence ∅ = K0 ⊆ K1 ⊆
. . . ⊆ Kn = K, where Ki is the union of the lower stars of the first i vertices in the
ordering by f . In other words, if a1 < a2 < ... < an are the function values of the
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vertices in K and a0 = −∞, then Ki = K(ai) =
⋃
u∈V,f(u)≤ai

St−u for each i. 37,
130

maximum likelihood estimator For sample point x, let θ̂(x) be a parameter value at
which L (θ|x) obtains its maximum as a function of θ with x fixed. A maximum
likelihood estimator (MLE) of the parameter θ based on a sample X is θ̂(X) [24]. 13

medial axis The medial axis M of an embedded space X is the subset of the ambient
space consisting of all points which have at least two nearest neighbors on X. 83

minimal carrier (chain) See minimal carrier (simplex). 100

minimal carrier (simplex) The minimal carrier of a singular simplex is its image. The
minimal carrier of a singular chain is the union of the minimal carriers of its simplices
[82]. 100, 134

Morse function f : M → R is a Morse function if all its critical points are non-degenerate
and its values at the critical points are distinct. 54

Morse Lemma Let u be a non-degenerate critical point of f : M → R on a smooth
d-manifold. There are local coordinates with u = (0, 0, ..., 0) such that f(x) =
f(u)− x2

1 − ...− x2
q + x2

q+1 + ...+ x2
d, for every point x = (x1, x2, ..., xd) in a small

neighborhood of u [50]. 132

nerve The nerve of a finite collection of sets consists of all non-empty subcollections
whose sets have a non-empty common intersection. 90

non-degenerate critical point A critical point x is non-degenerate if the Hessian at the
point is non-singular. 54

normal The normal distribution is a continuous probability distribution whose probability

density function is, f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , where µ and σ are the mean and variance.
39

null hypothesis See hypothesis. 13

persistence (persistence module) See persistence diagram (persistence module). 55

persistence (persistent homology) See birth (persistent homology). 38

persistence diagram (persistence module) Given a persistence module F , let P i,j be
the vector space of vectors that are born at level i (with critical value ci) and then
subsequently die at level j (with critical value cj), and βi,j denotes its rank. The
persistence of these vectors is cj − ci. The persistence diagram of F , Dgm(F),
contains a multiset of points in the extended real plane. It contains βi,j copies of
the points (ci, cj), as well as infinitely many copies of each point along the major
diagonal y = x. See persistence module and birth (persistence module). 69, 134

persistence diagram (persistent homology) The p-th persistence diagram of a function
f , Dgmp(f), contains a multiset of points in the extended real plane. It contains βp

134



copies of the points that represent the birth and death of p-dimensional homology
classes, as well as infinitely many copies of each point along the major diagonal
y = x. 38

persistence module Let A be some subset of R. A persistence module FA is a family
{Fα}α∈A of Z/2Z-vector spaces, together with a family {fβα : Fα → Fβ}α≤β∈A of
linear maps such that α ≤ β ≤ γ implies fγα = fγβ ◦ fβα . 69, 134

persistent homology group Given the lower star filtration, for each i ≤ j, the inclusion
mapKi → Kj induces homomorphisms between homology groups, f i,jp : Hp(Ki) →
Hp(Kj), for dimension p. This gives a sequence of homology groups connected by
homomorphisms, 0 = Hp(K0) → Hp(K1) → . . . → Hp(Kn) = Hp(K), the p-
th persistent homology groups are the images of the homomorphisms induced by
inclusion, Hi,j

p = im f i,jp for 0 ≤ i, j ≤ n. The corresponding p-th persistent Betti
numbers βp are the ranks of these groups. 38

point cloud A point cloud is a set of vertices in Rk. 1

Poisson process A Poisson process is a stochastic process in which events occur continu-
ously and independently of one another. Formally, a counting process {N(t), t ≥ 0}
is said to be a Poisson process having rate λ, λ > 0, if: 1) N(0) = 0; 2) The process
has independent increments; 3) The number of events in any interval of length t is
Poisson distributed with mean λt [100]. 8

power The power of a test is the probability that the test will not make Type II error. 14

power function The power function of a hypothesis test with rejection region R is the
function of θ defined by β(θ) = Pθ(X ∈ R) [24]. For θ ∈ Θ0, it equals the proba-
bility of a Type I Error. For θ ∈ Θc

0, it equals one minus the probability of a Type II
Error. 14

reach The reach of a topological space X is the smallest distance between X and its medial
axis. 84

reduced Betti number For a non-negative integer p, the p-th reduced Betti number is the
rank of the p-th reduced homology group of X, H̃p(X) [82]. 37

regular point See critical point. 54

regular value See critical point. 54

regular value (persistence module) A real number α is said to be a regular value of the
persistence module F if there exists some ε > 0 such that, for all δ < ε, the maps
fα+δ
α−δ are all isomorphisms. Otherwise we say that α is a critical value of the per-

sistence module; if A = R≥0, then α = 0 will always be considered to be a critical
value. 69, 131

regular vertex See critical vertex. 37, 58

rejection region The subset of the sample space for which H0 is rejected is called the
rejection region or critical region. 13
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significance level For 0 ≤ α ≤ 1, a test with power function β(θ) is a level α test if
supθ∈Θ0

β(θ) ≤ α [24]. α is called the significance level. 14

simplicial complex A simplicial complexK in Rn is a collection of simplicies in Rn such
that every face of a simplex of K is in K, and the intersection of any two simplexes
of K is a face of each of them [82]. 36, 57

singular chain group The free abelian group generated by the singular p-simplices of X
is called the singular chain group of X in dimension p. 100

singular simplex A singluar p-simplex of a topological space X is a continuous map
δ : ∆p → X, where ∆p is the standard p-simplex [82]. 100

standard simplex The standard p-simplex is the subset of Rp+1, given by ∆p = {(t0, ..., tp) ∈
Rp+1|

∑p
i=0 ti = 1,∀i, ti ≥ 0} [82]. 99

star The star of a vertex is the set of simplices that contain it. 37, 58

stratification A d-dimensional stratification of a topological space X is a decreasing se-
quence of closed subspaces X = Xd ⊇ Xd−1 ⊇ . . .X0 ⊇ X−1 = ∅, such that for
each i, the i-dimensional stratum Si = Xi − Xi−1 is a (possibly empty) i-manifold.
72

Stratified Morse function f is a Stratified Morse function iff: 1) f is a Morse function
when restricted to each manifold piece; 2) All critical values of f are distinct; 3) The
differential of f at a critical point x ∈ Si does not annihilate any generalized tangent
space to x other than TxSi. 75

strongly interleaved Two persistence modulesF and G are said to be strongly ε-interleaved
if, for some positive ε, there exist two families {ξα : Fα → Gα+ε}α and {ψα : Gα →
Fα+ε} of linear maps which commute with the module maps {fβα} and {gβα} in the
appropriate manner. More precisely, we require, for all α ≤ β, fβ+ε

α−ε = ψβ ◦gβα ◦ ξα−ε
and ψβ ◦ gβα = fβ+ε

α+ε ◦ ψα, as well as the two other equations obtained by exchanging
the roles of f and g and ξ and ψ [26]. 70

sublevel set Let f : M → R be a smooth function on a d-manifold. Given a ∈ R,
the sublevel set consists of all point with value at most a, Ma = f−1(−∞, a]. The
superlevel set is Ma = f−1[a,∞). 54, 136

superlevel set See sublevel set. 55

tame A persistence module F is tame if it has a finite number of critical values and if all
the vector spaces Fα are of finite rank. 69

total absolute Gaussian curvature See absolute Gaussian curvature. 57

total absolute Gaussian curvature (PL case) See Gaussian curvature (PL case). 59

total persistence The total persistence of a persistence diagram is the sum of the persis-
tences of its points. 39

triangulation A triangulation of a topological space X is a simplicial complexK together
with a homeomorphism between X and |K|. 1, 36, 57
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Type I Error If θ ∈ Θ0 but the test incorrectly decides to reject H0, it makes the Type
I Error, the probability of making Type I error is denoted as Pθ(X ∈ R), which is
commonly known as the false positive rate. 13

Type II Error If θ ∈ Θc
0 but the test incorrectly decides to accept H0, it makes the Type

II Error, the probability of making Type II error is denoted as Pθ(X ∈ Rc) = 1 −
Pθ(X ∈ R), which is commonly known as the false negative rate. 14

uniformly most powerful Let C be a class of tests for testing H0 : θ ∈ Θ0 versus H1 :
θ ∈ Θc

0. A test in class C with power function β(θ), is a uniformly most powerful
(UMP) class C test if β(θ) ≥ β′(θ) for every θ ∈ Θc

0 and every β′(θ) that is a power
function of a test in class C [24]. Simply put, a test is UMP if it has a smaller Type II
error than all other tests in the same class. 14

Voronoi cell Given a set of points in Rn, the Voronoi cell of a point u ∈ Rn is the set of
points for which u is the closest. 90

Voronoi diagram The Voronoi diagram of a set of points is the collection of Voronoi cells
of its points. 90

Whitney stratification A stratification is called a Whitney stratification if for every pair
of strata pieces Si and Sj with Si ⊂ clSj , the Whitney conditions A and B hold. 74

winding number Given a closed curve on S2, the winding number of a direction u ∈ S2

not on the curve is the number of times the curve goes around the directed line defined
by u. Viewed along u, we count a counterclockwise turn as +1 and a clockwise turn
as −1. Taking the sum we get the winding number. 59
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2. Mats Ensterö, Örjan Åkerborg, Daniel Lundin, Bei Wang, Terrence Furey, Marie
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