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Abstract— Tropical cyclones (TCs) are among the most destructive weather systems. Realistically and efficiently detecting and
tracking TCs are critical for assessing their impacts and risks. In particular, the eye is a signature feature of a mature TC. Therefore,
knowing the eyes’ locations and movements is crucial for both operational weather forecasts and climate risk assessments. Recently, a
multilevel robustness framework has been introduced to study the critical points of time-varying vector fields. The framework quantifies
the robustness (i.e., structural stability) of critical points across varying neighborhoods. By relating the multilevel robustness with critical
point tracking, the framework has demonstrated its potential in cyclone tracking. An advantage is that it identifies cyclonic features using
only 2D wind vector fields, which is encouraging as most tracking algorithms require multiple dynamic and thermodynamic variables at
different altitudes. A disadvantage is that the framework does not scale well computationally for datasets containing a large number of
cyclones. This paper introduces a topologically robust physics-informed tracking framework (TROPHY) for TC tracking. The main
idea is to integrate physical knowledge of TC to drastically improve the computational efficiency of multilevel robustness framework for
large-scale climate datasets. First, during preprocessing, we propose a physics-informed feature selection strategy to filter 90% of
critical points that are short-lived and have low stability, thus preserving good candidates for TC tracking. Second, during in-processing,
we impose constraints during the multilevel robustness computation to focus only on physics-informed neighborhoods of TCs. We
apply TROPHY to 30 years of 2D wind fields from reanalysis data in ERA5 and generate a number of TC tracks. In comparison with
the observed tracks, we demonstrate that TROPHY can capture TC characteristics (e.g., frequency, intensity, duration, latitudes with
maximum intensity, and genesis) that are comparable to and sometimes even better than a well-validated TC tracking algorithm that
requires multiple dynamic and thermodynamic scalar fields.

Index Terms—Feature tracking, robustness, topology-based methods in visualization, applications, climate science, tropical cyclones

1 INTRODUCTION

Tropical cyclones (TCs) are the largest drivers of losses among natural
hazards, bringing wind gusts, high waves, storm surges, and heavy
rainfall. In order to achieve improved forecasts, robust risk assessment,
and confident future projections of TCs, realistically detecting and
tracking TCs are critical [5, 29, 45]. In particular, the eye (a region
of mostly calm weather at the center of TCs) is a signature feature of
a mature TC. Therefore, knowing the location and the movement of
the eye precisely and in a timely manner is crucial for weather centers
issuing warnings to the general public [10, 52]. Potential forecast track
errors, due to forecasting models or tracker issues, could have negative
impacts on downstream applications, such as the selection of areas
under watch and warnings, and false input for storm surge models
over certain coastal regions [39]. In addition, since the 1980s, there
have been increasing trends in TC intensities (particularly in strong
categories, such as Categories 4 and 5 hurricanes) based on the long-
term observation data in the Atlantic basin [21, 27].

In the past decades, many TC trackers were developed by research
institutes and weather forecast centers [2, 9, 20, 24, 44]. Most of them
focused on tracking the TC regions instead of TC eyes, and they used
different weather variables (e.g., minimum sea level pressure or maxi-
mum vorticity) as the basis to identify a TC candidate before applying
various thresholds [20, 44, 55]. Some efforts focused on fixing the TC
eyes during tracking (e.g., [4, 23, 28, 33, 50]).

Vector field topology has seen widespread applications in science and
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engineering since its introduction to visualization more than 30 years
ago [18], including climate study and ocean modeling [11,13,30]. It has
been one of the most promising tools to describe and interpret vector
field behaviors by providing meaningful abstraction and summarization,
especially for large-scale scientific data [7]. Critical points (i.e., where a
vector field vanishes) are core features of vector field topology, and they
can be used for studying TCs, since TC eyes can naturally be identified
as critical points of the wind vector fields. Thus, the tracking of TCs
can be converted to critical point tracking in vector field topology.

Many algorithms have been developed to find the correspondences
between critical points in successive time steps in the form of tracks
(trajectories). Most critical point tracking algorithms infer correspon-
dences between critical points based on distance proximity [17, 19, 31],
which may produce artifacts in TC tracking. Wang et al. [48] introduced
a topological notion of robustness to quantify the structural stability
of critical points. The robustness of a critical point is the minimum
amount of perturbation to the vector field necessary to cancel it. Skraba
and Wang [35] established the theoretical foundation to relate critical
point tracking with robustness: critical points with high robustness
values could be tracked more easily and more accurately.

Recently, Yan et al. [53] brought this theory to practice by introduc-
ing a multilevel robustness framework for the study of 2D time-varying
vector fields, which has demonstrated its potential in cyclone tracking
(this is referred to as the MRT framework for comparison purpose).
The multilevel robustness can be integrated with state-of-the-art feature-
tracking algorithms, such as the Feature Tracking Kit (FTK) [17], to
improve tracking results. An advantage is that it identifies cyclonic
features using only 2D wind vector fields, which is encouraging as most
TC tracking algorithms require multiple dynamic and thermodynamic
variables at different altitudes. A disadvantage is that the framework
does not scale well for datasets containing a large number of cyclones.
Contributions. We introduce a topologically robust physics-informed
tracking framework (TROPHY) for TC tracking. The main idea is to
integrate physical knowledge of TC to drastically improve the computa-
tional efficiency of the multilevel robustness framework for large-scale
climate datasets. Our newly designed framework, TROPHY, inherits the
capability of critical point tracking based on multilevel robustness [53].
First, TROPHY tracks the TC eyes instead of the TC impact areas.
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Second, it is super lightweight, requiring only near-surface wind speeds
and directions. Third, it is able to work with any TC/critical point
tracking algorithms. In particular, TROPHY is customized by adding a
number of physics-informed strategies on top of the MRT framework,
making TC tracking more efficient and accurate for large-scale climate
datasets. Our contributions are three-fold.

First, we introduce a physics-informed feature selection strategy to
filter short-lived and unstable features. Such a strategy removes 90%
of critical points in the multilevel robustness computation and makes
TROPHY much more efficient than the previous approach [53].

Second, we propose an adaptive strategy to use physics-informed
local neighborhoods for the multilevel robustness computation, mak-
ing it more efficient and physically meaningful under the real-world
scenario.

Third, we apply TROPHY to 30 years of reanalysis data from ERA5.
We demonstrate that TROPHY can achieve TC tracking results com-
parable to and sometimes even better than those of the traditionally
well-validated TC tracking algorithm, TempestExtemes [44, 55]. These
experimental results are encouraging since TROPHY only requires
2D wind vector field data at the near-surface, whereas the traditional
TC tracking algorithms need far more variables at various altitudes.
As pointed out by Bujack et al. [7], it is difficult to interpret flow
topology w.r.t. physical meaning in the time-varying setting. Our
comparison between TROPHY and TempestExtemes builds a bridge
between tracking methods based on vector field topology and those
based on multivariate scalar fields, which helps increase the physical
interpretability of vector field topology.

2 RELATED WORK

We review related work on traditional TC tracking algorithms and
critical point tracking from vector field topology.

2.1 Tropical Cyclone Tracking Algorithms
TC tracking has been studied over the past decades for weather fore-
casting and climate analysis to issue early warnings, assess impacted
areas, and provide risk assessments for public and critical infrastruc-
tures. Most of the traditional TC tracking algorithms require multiple
dynamic and thermodynamic variables at different altitudes to detect
and track a TC. These algorithms determine a detected feature as a
TC candidate by tuning parameter thresholds; however, the choices of
thresholds are generally subjective [14]. An example of a traditional
TC tracking algorithms is TRACK [20], which uses relative vorticity
at 850, 700, 600, 500, and 250 hPa as the key variable. TRACK uses
certain criteria (still based on vorticity) during post-tracking to isolate
the warm core of TCs. The criteria must be jointly attained for at
least one day. Another example of a traditional TC tracker is Tempes-
tExtremes [44, 55], which is used in this study for comparison with
TROPHY in Sec. 6. TempestExtremes uses sea level pressure (SLP) as
its key feature-tracking variable. TC candidates are initially identified
by minima and a closed contour of the SLP field. Next, a geopotential
height difference between 250 to 500 hPa is used to refine the candidate
definitions. Instead of the living time, TempestExtremes requires that a
tracked storm travels at least 8� between 10 N to 40 N latitudes. Both
TRACK and TempestExtremes algorithms and many others (e.g., [3])
require many input variables that are often not readily available from
raw model output and need additional calculations, which can involve
handling a big amount of data. Also, these algorithms are not exactly
tracking the eyes of TCs. They typically identify minimum SLP and
maximum vorticity, where the tracked path of a TC is not exactly along
the eye of the TC, and sometimes the path can even be biased toward
the eyewall (a ring of tall thunderstorms that produce heavy rains and
usually the strongest winds).

Recently, several contour-based and topology-based feature tracking
approaches have been proposed [6, 11, 12, 31, 35, 38, 51] that have po-
tential use in TC tracking. Most approaches identify features of interest
with regions enclosed by streamlines or level sets (i.e., isosurfaces or
contours). Wischgol et al. [51] discussed closed streamlines in 2D
fields, which can represent the eyes of the TCs and indicate locations
and sizes of the eyes in TC tracking. Correspondences between features
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Fig. 1: Four types of 2D critical points: (A) source, (B) sink, (C) center,
and (D) saddle. Each point is colored by its degree: red means degree
+1, blue means degree �1. Vector fields are visualized by the line
integral convolution (LIC) [8], colored by wind speed, with sampled
arrow glyphs (the length of an arrow is proportional to the wind speed).

in consecutive time steps can be identified via spatial overlap [38], crit-
ical point tracking [35], tree structure [6], or combinatorial feature flow
fields [31]. Critical point tracking is most relevant to our framework,
which is reviewed next.

2.2 Vector Field Topology: Critical Point Tracking
Critical point tracking establishes the correspondences between critical
points in successive time steps. It is a key tool from vector field
topology and plays an important role in understanding the behavior of
time-varying vector fields. Algorithms for critical point tracking may
be classified as proximity-, integral-, and interpolation-based methods.
Proximity-based methods (e.g., [18,19]) find correspondences of critical
points based on distance proximity in the domain. Integral-based
approaches represent the tracking of critical points as streamlines of
a higher dimensional field, called the feature flow field (FFF) [31,
40, 49], and compute feature tracks based on tangent curves in FFF.
Interpolation-based methods take into account the time as an additional
dimension in addition to the space domain [16, 17, 42, 43].

The robustness of critical points has been introduced to quantify
the structural stability of critical points [34] and has been used in vec-
tor field simplification [36, 37], feature extraction [46], and visualiza-
tion [48]. Skraba and Wang [35] showed the potential use of robustness
in feature tracking, that is, finding correspondences between critical
points based on their closeness in stability, measured by robustness,
instead of just distance proximity within the domain. Building on the
theoretical basis established by [35], Yan et al. [53] proposed a multi-
level robustness (MRT) framework to realize critical point tracking in
practice for large-scale scientific simulations, see Sec. 3.2 for details.

3 TECHNICAL BACKGROUND

We first review the classic notion of robustness and multilevel robust-
ness, which are customized to build TROPHY (see Sec. 4).

3.1 Robustness

Critical points of a 2D vector field. Unless otherwise specified, we
work with a 2D vector field f : X ✓ R2 ! R2, which assigns a 2D
vector to each point in X. We use u10 and v10 to represent the 10-meter
zonal (west-east) and meridional (south-north) wind vector components,
respectively. Then, f is expressed as f(x) = (u10(x), v10(x))

T .
A critical point x 2 X in f is where the vector vanishes, that

is, |f(x)| = 0. A critical point x can be classified w.r.t. its degree
deg(x), defined as the number of field rotations while traveling along
a closed curve counterclockwise surrounding x (enclosing no other
critical point). A source/sink/center has degree +1, whereas a saddle
point has degree �1. Critical points are important features in studying
flow behavior in many applications; see Fig. 1 as an example.

In most cases, the eye of a TC can be detected as a center in a
vector field when it is intensified into a strong hurricane, with very low
wind speed in the eye and extremely high wind speed along the eyewall.
During the dissipating phase of a TC, such as at its landfall, the center of
the TC can be detected as either a source or a sink. If a center transforms
to a source, then it indicates a divergence in meteorology, which means
the weather can be clear and calm. If a center transforms to a sink,
then it indicates a convergence, which is associated with clouds and
precipitation. An example of this phenomenon is Hurricane Florence
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Fig. 2: Cancellation partners and the exact multilevel robustness of x1, x2, and x3. (A-C) Cancellation partners of a selected critical point are
wrapped in bubbles and colored by their frequencies as partners. (D-F) The exact multilevel robustness of x1, x2, and x3.

in 2018: a clear sink forms in the 2D wind field during its landfall,
bringing 1-in-500-year expected flooding due to heavy precipitation.
Merge trees. The computation of robustness relies on an augmented
merge tree modified from the classic merge tree. Given a scalar function
f0 defined in a 2D domain X, f0 : X ! R, let Xr = f�1

0 (�1, r]
denote the sublevel set of f0 for some r � 0. A classic merge tree
is constructed by tracking the evolution of (connected) components
in Xr as r increases. Leaves in a merge tree represent the creation of
a component at a local minimum of f0, internal nodes represent the
merging of components, and the root represents the entire space as a
single component.

To construct an augmented merge tree from a 2D vector field f , first
we define a scalar field f0 : X ! R by assigning the vector magnitude
to each point x 2 X, that is, f0(x) = ||f(x)||2. In this paper, f0 can
be expressed as wind speed. Second, instead of using local minima of
f0 as leaves of the merge tree, the leaves of our augmented merge tree
consist of X0, which is precisely the set of critical points of f . The
tracking of the merging behavior of components is the same as classic
merge tree construction. Third, once the merge tree is constructed, it
can be further augmented with the degrees of critical points (on leaves)
and the degrees of components (on internal nodes). The degree of
a component is defined as the sum of degrees of critical points the
component contains. See Appendix A for an example.
Robustness calculation. The topological notion of robustness quanti-
fies the stability of a critical point w.r.t. perturbations of the vector field.
Let us define the concept of vector field perturbation first. A contin-
uous mapping h : X ! R2 is an r-perturbation of f , if d(f, h)  r,
where d(f, h) = supx2X ||f(x)� h(x)||2, and sup means supremum.
See [48] for some mathematical properties of robustness and lemmas
to support critical points cancellation under vector field perturbation.

The robustness of a critical point can be calculated as the func-
tion value of its lowest zero-degree ancestor in the augmented merge
tree [48]. See Appendix B for an example.

3.2 Multilevel Robustness
In practice, vector fields generated from large-scale ocean and atmo-
spheric datasets contain features at different scales. The drawback of
classic robustness comes from building a single merge tree with critical
points in the entire domain, which suffer from undesirable boundary
effects [53]. To mitigate such drawbacks, Yan et al. [53] introduced a
notion of multilevel robustness (reviewed in Sec. 3.2.1). This notion
captures the multiscale nature of the data and mitigates the boundary
effects suffered by classic robustness computation. It also shows initial
promise in critical point tracking in practice. We review how the no-
tion of multilevel robustness can improve the feature-tracking results
in Sec. 3.2.2, and we give the pipeline to implement the multilevel
robustness framework in Sec. 3.2.3. For simplicity and comparative

purposes, we refer to this original multilevel robustness-based track-
ing [53] as the MRT framework in the remainder of this paper.

3.2.1 The Multilevel Robustness
Roughly speaking, the multilevel robustness of a critical point x 2 X
can be defined as a sequence of robustness values computed from its
neighborhoods of increasing radii. Formally, let Bx(a) denote a ball
of radius a with a critical point x 2 X as its center. The multilevel
robustness of x can be expressed as Rx : [0,1) ! R, where Rx(a)
is the (classic) robustness of x computed w.r.t. the domain Bx(a) for
a 2 [0,1). Assuming the domain X contains n critical points, then
for a fixed critical point x 2 X, its multilevel robustness will change at
most n� 1 times as a increases, since x gets one more candidate as its
the cancellation partner as Bx(a) passes through each critical point.

In Fig. 2 (D-F), we give the exact multilevel robustness of x1, x2, and
x3, respectively, where the x-axis corresponds to the increasing radii
and the y-axis represents their classic robustness values. We highlight
the radii when the neighborhood includes new critical points with blue
points in Fig. 2 (D-F). In Fig. 2 (A-C), we visualize all cancellation
partners for selected critical points when we use different sizes of
neighborhoods in classic robustness computation. The cancellation
partners are wrapped in bubbles and colored by the number of times
that are referred to as cancellation partners of selected critical points.
For example, x1 and y1 are paired as cancellation partners 12 times,
whereas x2 and y2 are paired 122 times. The classic robustness of x1

calculated with the entire domain is infinity, even if it can be canceled
with y1 within a 7.85-degree region under a 17.6-perturbation. This
phenomenon happens because x1 represents the center of a large-scale
cyclone and is surrounded by flows of a large magnitude. If we build
an augmented merge tree from the entire input domain during classic
robustness calculation, the lowest ancestor of x1 will be the ancestor of
the most critical points in the domain. This limitation explains why x1

has potential cancellation partners across the entire domain and may
not be able to find its cancellation partner if the degree of the entire
domain is not equal to zero. See [53, Fig. 2] for another example.

Therefore, the drawback of classic robustness comes from building
a single merge tree with critical points in the entire domain, which
ignores the possibility of the occurrences of cancellation within a local
neighborhood. The definition of multilevel robustness successfully
captures the multiscale nature of the data and mitigates the drawbacks of
the classic robustness computation. However, computing the multilevel
robustness exactly is time-consuming. For the vector field containing
n critical points, we need to conduct n ⇥ (n � 1) classic robustness
computations. In [53], the MRT framework approximates the exact
multilevel robustness by using N -level robustness. That is, for a critical
point x 2 X, the authors considered N number of its neighborhoods
at radius {a0, . . . , aN�1}, where each ai := L ⇥ (i + 1)/N and L
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Fig. 3: FTK tracking result of the ERA5 2004 dataset. (A) The original FTK tracking result. (B) The filtered FTK tracking result after
physics-informed feature selection. (C) One track from (A). The radius of a track in (A) and (B) is proportional to its classic robustness.
Sources/sinks/centers are in red, and saddles are in blue.
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Fig. 4: Implementation pipelines for the MRT (in orange) and TROPHY (in blue). Numbers 1-5 correspond to the steps for each framework.

is the diameter of the domain X. In this case, the approximations
of multilevel robustness for all critical points require n ⇥ N classic
robustness computations and work well in their applications.

3.2.2 Enhancing Feature Tracking with Multilevel Robustness
The multilevel robustness can be integrated with any existing feature-
tracking algorithms to improve the understanding of vector field dy-
namics. Yan et al. [53] utilized the minimum multilevel robustness
minRx := mina2[0, L) Rx(a) for their visualization tasks, since
minRx approximates the smallest possible amount of perturbation
to the vector field necessary to cancel each critical point. The authors
integrated the minRx with FTK [17], a state-of-the-art feature-tracking
technique. We also utilize FTK in TROPHY.

The initial critical point tracks from FTK suffer from visual clutter
when we deal with large-scale datasets. Fig. 3 (A) shows the FTK
tracking result for the ERA5 2004 dataset whose time steps range from
06/01/2004 to 10/31/2004 with a six-hour time gap (see Appendix C
for the detail of dataset). Because of visual clutter among thousands
of tracks, it is hard for us to identify the dominant features. Since the
FTK algorithm considers only the correspondences of critical points
based on 0-levelset extraction, some important features (e.g., centers of
cyclones) will be included in the same track with other noisy features.
Fig. 3 (C) shows one of the FTK tracks from Fig. 3 (A). This long track
contains a Category 3 hurricane, named Jeanne, as highlighted with the
blue curve in Fig. 3 (C). However, it also contains unstable features on
the Gulf of Mexico; indicated within the orange box of Fig. 3 (C).

The main idea of enhancing feature tracking with multilevel robust-
ness is to segment and reconnect the initial tracks obtained by FTK
considering the minimum multilevel robustness. The MRT framework
can break initial FTK tracks into more meaningful segments with simi-
lar robustness values. In the example of Fig. 3 (C), the MRT framework
can extract the part highlighted with the blue curve from the other part
of the track. This framework can also remove unstable features in
the middle of a meaningful track and reconnect remaining parts as a
new track after examining spatial faces and spacetime edges [17] of
breakpoints; see [53, Sect. 5.1] for a concrete example.

3.2.3 Pipeline of the Multilevel Robustness Framework
As shown in Fig. 4 (orange arrows and indices), the implementation of
MRT framework involves the following three steps:

Step 1: multilevel robustness calculation. The MRT framework
calculates the multilevel robustness for all detected critical points with
evenly increased radii until the neighborhood includes the entire input
domain. Then, the minimum multilevel robustness is calculation for
postprocessing.
Step 2: integration with feature tracking. The MRT framework
integrates the minimum multilevel robustness with FTK [17] to enhance
the original FTK tracking results.
Step 3: feature selection. The MRT framework utilizes two filters
based on multilevel robustness and degree information of tracks for
feature selection. These feature selection strategies can help users
reduce visual clutter and highlight dominant features in the domain.

TROPHY reuses the notion of multilevel robustness, described
in Sec. 3.2.1, and the method to integrate the minimum multilevel
robustness with FTK; see Sec. 3.2.2. In the following section, we
customize the MRT framework to TROPHY by integrating the physical
knowledge of TCs in feature extraction and tracking.

4 METHOD: TROPHY FOR CYCLONE TRACKING

Our physics-informed tracking framework, TROPHY, encodes several
criteria considering the physical properties of cyclones. These criteria
make TROPHY more efficient and appropriate for cyclone tracking
than the MRT framework.
Overview of TROPHY. An overview of our pipeline is shown in Fig. 4.
First, we compute the FTK tracking result for the whole dataset and
the classic robustness of the critical points using the entire domain for
each time step. Second, the FTK tracks and the robustness of critical
points are used in the physics-informed feature selection (Sec. 4.1) to
filter out noise-liked tracks. Third, an adaptive-level strategy (Sec. 4.2)
is applied in the multilevel robustness calculation for selected critical
points. Fourth, TROPHY integrates the minimum multilevel robustness
with FTK to enhance the original FTK tracking results. This step uses
the same strategy with the MRT framework; see Sec. 3.2.2 or [53, Sect.
5.1] for a detailed discussion. Finally, we utilize one stability filter
function from [53] and propose two additional physics-informed filter
functions to highlight cyclones; see Sec. 4.3.

4.1 Physics-Informed Feature Selection
We now introduce a physics-informed feature selection strategy during
preprocessing, making TROPHY much more efficient than the MRT
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Fig. 5: Adaptive levels of neighborhoods for critical points x3 and x1.
(A) and (B) are truncated regions from Fig. 2 (A) and (C).

framework in studying large-scale datasets. The MRT framework
computes multilevel robustness for all detected critical points. For
the example in Fig. 3 (A), 102,720 critical points and 22,743 tracks
are detected with FTK. Suppose we set the number of levels N =
50, the MRT framework needs to conduct 102720⇥ 50 times classic
robustness computation. TROPHY instead focuses on tracking cyclone-
liked features, which selects a subset of critical points/tracks for in-
processing. Considering the physical properties of real-world cyclones,
we incorporate two criteria in physics-informed feature selection before
multilevel robustness calculations.

First, since the duration of a tropical storm/cyclone is usually larger
than 1 day, we require the selected tracks to contain at least one 1-day
segment that consists of +1 degree critical points only.

Second, since a critical point representing the center of a cyclone
usually has a high stability measure across time before it hits the land
and dissipates, we require the segment detected from the previous step
to have a high average robustness value. Based on domain knowledge,
a tropical storm must have maximum sustained winds of at least 17.5
m/s. We set the threshold to 1.75 for track filtering.

With these two requirements, the numbers of critical points and
tracks decrease to 9,784 and 86, respectively; compare Fig. 3 (A) and
(B). Thus, TROPHY needs to compute multilevel robustness for only
9.5% of critical points compared with the original MRT framework.

4.2 Adaptive Levels for Multilevel Robustness
We next propose an adaptive level strategy for the multilevel robustness
calculation. Such a strategy also considers physical properties of real-
world cyclones and leads to more reasonable minimum multilevel
robustness values for TROPHY than does the MRT framework. As
discussed in Sec. 3.2.1, the MRT framework approximates the exact
multilevel robustness with a set of evenly spaced radii. This strategy
may lead to two consequences that are counterintuitive in real-world
cyclone analysis. First, a critical point can be canceled with other
critical points that are far away in the known data domain due to
boundary effects; see partners for x1 and x2 in Fig. 2 (A) and (B).
Although such cancellations are mathematically justifiable, it is almost
impossible to happen in real-world scenarios since no perturbation
could happen across the whole Atlantic Ocean. Second, the MRT
framework may not find the true minimum multilevel robustness value
due to sampling. It may also waste computational resources when an
enlarged neighborhood does not include potential cancellation partners.
For example, increasing the radius of the neighborhood from 60 to 80
for x3 in Fig. 2 (C) does not lead to new cancellation candidates.

To mitigate the drawbacks of the MRT framework, we introduce an
adaptive-level strategy. First, we set a physics-informed neighborhood
size, where real-world perturbation could happen. We set this radius
to be 10 degrees since hurricanes are among the most destructive real-
world perturbations to wind field and are typically about 4.7 degrees
wide. Then, TROPHY considers all possible cancellation partners
within this neighborhood using varying radii. Fig. 5 (A) illustrates our
adaptive level strategy in calculating the multilevel robustness. For a
critical point x, we consider all critical points within its neighborhood
at radius 10. Suppose there are N (N � 10) critical points in this
neighborhood and their Euclidean distances to x are {a0, . . . , aN�1}.

We compute the classic robustness of x within neighborhood defined
by these radii, giving rise to its multilevel robustness. If N < 10, we
select an additional 10�N closest critical points outside of the selected
neighborhood for more candidates of cancellation partners; see Fig. 5
(B). However, in most cases, the cancellation partners for the true
minimum multilevel robustness are located in our physics-informed
neighborhood, for example, 7.85 degree for x1, 4.15 degree for x2,
and 6.05 degree for x3 in Fig. 2.

4.3 TC Feature Selection for Visualization
We now present feature selection aided by the minimum multilevel
robustness and physical properties of TCs. We inherit one stability
filter from the MRT framework. This filter considers the minimum
multilevel robustness minRx and its temporal stability in terms of
lifespan. Let l denote a logistic transformation of minRx, which maps
the minRx 2 [0,1] to l(minRx) 2 [0, 1]. This normalization is
defined as

l(minRx) =
2

1 + e�k·minRx
� 1,

where k is the logistic growth rate; see [53, Sect. 5.1] for a detailed
discussion on the benefit of this normalization and parameter selection
for k. Now let � denote a track, |�| is its total length. The stability of a
track � is defined as

b(�) :=

P
x2� l(minRx)

|�| · t�
T
, (1)

where T is the temporal span of the input dataset and t� is the temporal
span of �. The first term in Eq. (1) captures the average pointwise
stability (in a logistic scale), whereas the second term encodes the
lifespan of the track. By definition, b(�) 2 [0, 1].

Our second feature selection strategy is referred to as maximum wind
speed (MWS) filter. Since the storm systems are usually categorized
by the Saffir–Simpson Hurricane Wind Scale, which considers only a
hurricane’s maximum sustained wind speed, we use this filter to control
the categories of storm that users want to visualize. Formally, for a
track �, its maximum wind speed is

w(�) := max
x2�

!(x), (2)

where !(x) is the MWS within the two-degree region of the center x.
Our third feature selection strategy is referred to as smoothness filter.

It is used to filter out tracks that are too tortuous to be considered as
TC tracks. Roughly speaking, we define the smoothness of a track
by the average distance between the normalized track and its smooth
univariate spline. Formally, for a track �, its smoothness is

s(�) := 1�
P

x2� ||J(x)� U(J(x))||
|�| , (3)

where J is a normalization term mapping x to [0, 1]⇥[0, 1] and U maps
J(x) to the point on the smooth univariate spline of the normalized
�. TROPHY uses the SciPy Python library to calculate the (degree 3)
smooth univariate splines for detected tracks. Fig. 6 shows three curves
from our climate dataset and their smooth univariate splines. The left
track has the lowest average distance and hence the highest smoothness
value, whereas the right track has the lowest smoothness value and
usually cannot be considered as a TC track.

Fig. 6: Original trajectories and their fitted splines.
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Fig. 7: Feature selection for the ERA5 2010 dataset. Tracks are filtered and colored by their stability (A!B), maximum wind speed (C!D), and
smoothness (E!F).

In Fig. 7, we apply the above three filters to the ERA5 2010 dataset
(see Appendix C for the detail of dataset). After integrating multilevel
robustness with FTK tracking results, we obtain tracks in Fig. 7 (A),
which still suffer from visual clutter. By applying the stability filter with
a threshold of 0.029 for b(�), we obtain tracks in Fig. 7 (B). If we keep
enlarging the stability threshold, track a will be filtered out before track
b, even if track a represents the Category 1 hurricane Otto, and track c
cannot be found in the National Hurricane Center’s Tropical Cyclone
Reports. Therefore, we use our MWS filter w(�) based on the MWS
along the track and set the threshold to be 13.5. The remaining tracks
are shown in Fig. 7 (D). Again, if we keep increasing the threshold
for w(�), track c will be filtered out before track d, whereas track c
represents the Category 1 hurricane Lisa. Therefore, we apply our third
smoothness filter s(�) in Fig. 7 (E) and (F). Now, TROPHY highlights
8 tracks representing hurricanes/tropical storms that can all be found in
the National Hurricane Center’s Tropical Cyclone Reports.

5 METRICS, DATA, AND METHODS FOR EVALUATION

We present experimental results using using 30-year (1981–2010) near-
surface wind vector field from the ECMWF Reanalysis v5 (ERA5). We
annotate this 30-year dataset as the ERA5Wind dataset. We also mark
the one-year subset data from the ERA5Wind dataset as ERA5Year.
We use the International Best Track Archive for Climate Stewardship
(IBTrACS [26] version 4) observations as the reference and the TC
tracking results of the TempestExtremes software package [44] for com-
parision. The details of datasets, IBTrACS, and TempestExtremes are
described in Appendix C. We now describe the metrics used for eval-
uating the performance of TROPHY in Sec. 5.1. We also discuss the
parameter tuning for TROPHY in Sec. 5.2.

5.1 Metrics for Evaluating Tropical Cyclones
We review several metrics used for evaluating TCs in climate data.
See [56] for detailed descriptions.

5.1.1 Storm Climatology and Characteristics

Annual frequency, marked as count or m (#), is measured by the
number of discrete storm events.
Annual duration, marked as TCD (days), can be defined as TCDm =
1
4

P
i2[1,m] ocr6h,i, where ocr6h,i is occurrence of 6 hourly-tracked

points during the lifetime of storm i.
Storm genesis, marked as gen, is defined as the first entry for each
individual storm’s lifetime.
Storm intensity can be measured by the minimum sea level pressure
at the cyclone center, marked as SLP (hPa), and two-degree maximum

10-meter wind speed, marked as u10 (m/s).
Latitude of lifetime-maximum intensity, marked as LMI, is defined
as the absolute value of the latitude where a TC reaches its maximum
intensity (as defined by maximum u10).

5.1.2 Statistics
We employ two statistical techniques to evaluate the above metrics on
a 30-year (1981–2010) dataset.

One is the arithmetic mean, x̄ = 1
n

Pn
i=1 xi, which is used

in Sec. 6.4 to study annual domain-averaged climatology.
The second is the Pearson correlation coefficient rxy , defined as

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)pPn

i=1(xi � x̄)2
pPn

i=1(yi � ȳ)2
,

which is used in Sec. 6.5 to evaluate the similarity of metrics w.r.t. tem-
poral (e.g., storm frequency) or spatial (e.g., genesis density) patterns,
which are generated by TC tracking results from the tested tracking
algorithm and reference observations.

5.2 Configuration for Feature Selection
For filters introduced in Sec. 4.3, we recommend a default value as a
threshold for each filter function based on the TC tracks provided by
IBTrACS. First, we calculate the spatial pattern of cumulative track
density using TC tracks detected by TROPHY with thresholds of sta-
bility b(�) varying from 0.02 to 0.035, MWS w(�) varying from 10
to 14, and smoothness s(�) varying from 0.95 to 0.97. We also calcu-
late the spatial pattern of cumulative track density from IBTrACS as a
baseline. Then, we evaluate the similarity between the density patterns
from TROPHY and IBTrACS using Pearson correlation, marked as
rxy,track, which is the most exhaustive measure of TC activity. We
provide a detailed example for rxy,track computation in Sec. 6.5. We
suggest the thresholds for b(�), w(�) , and s(�) with the values when
rxy,track reaches its maximum, that is, 0.029 for stability b(�), 13.5
for MWS w(�), and 0.967 for smoothness s(�). TROPHY also al-
lows users to fine-tune these thresholds independently for individual
TC tracks of interest. We report performances of TROPHY with both
default thresholds and human-in-the-loop thresholds in Sec. 6. We
demonstrate that, although the tracking results using default threshold
are encouraging, results with the human-in-the-loop option can further
improve the performance of TROPHY.

6 CYCLONE TRACKING RESULTS WITH TROPHY
We demonstrate cyclone-tracking results using TROPHY and their com-
parisons with a state-of-the-art TC tracking algorithm. Observations
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Fig. 8: Annually detected TCs by IBTrACS (1st column), TempestExtremes(2nd column), the TROPHY (3rd column) with default setting, and
TROPHY (4th column) with human-in-the-loop in 1981 (1st row), 1990 (2nd row), 2004 (3rd row), and 2009 (4th row). Tracks are colored by
maximum wind speed within the two-degree great circle of the detected TC eyes.

from official forecast centers are provided for reference.

6.1 Overview of Results
We apply TROPHY to the ERA5Wind dataset on a cluster with 664
nodes (128GB DDR4 and 36 cores per node). We utilize the method of
Tricoche et al. [41] to calculate degrees of critical points for the vector
field in each time step and parallelize the computation of multilevel
robustness with Eden [32], which can schedule and manage a number
of tasks on a high-performance computing cluster.

Even though we have obtained the tracking results using TROPHY
for all 30 years of data, we demonstrate TC tracking results for 1981,
1990, 2004, and 2009 in Fig. 8 to highlight the tracking differences
between various datasets and algorithms. TempestExtremes tracks TC
eyes as positions with the local minimum SLP, whereas the TC eyes
from TROPHY are located where wind speeds are zeros. Therefore,
TC tracks from TempestExtremes and TROPHY do not overlap exactly.
Both methods consider the area within a two-degree great circle of
a detected TC eye to find a local maximum and use it to measure
storm intensity [44, 55]. Tracks in Figs. 8 to 10 are colored by storm
intensity w.r.t. this two-degree maximum wind speed, referred to as
wind speed for simplicity. We discuss some preliminary findings based
on Fig. 8 in the following paragraphs

First, since TempestExtremes requires both dynamic and thermody-
namic variables to meet its specified criteria, it usually cannot detect the
beginnings and endings of TC where wind speeds are low. TROPHY
can detect such tails as long as the centers of flows can be identified as
critical points; see tracks a, b, and c in Fig. 8.

Second, TROPHY can detect some discrete storm events that are
not captured by TempestExtremes, such as tracks d and e in Fig. 8.
Track d can be found in IBTrACS, whereas track e cannot. To further
investigate these discrepancies, including tracks that cannot be captured
by TempestExtremes/IBTrACS but are found by TROPHY, and tracks
that are in IBTrACS but are undetected by TROPHY, we conducted

case studies (reported in Secs. 6.2 and 6.3).
Third, using fine-tuned filter thresholds for TROPHY, we can get

TC tracking results that are more similar to IBTrACS. For example,
track f is missed by TROPHY with a default threshold for smoothness,
since f is severely bent and has a relatively low smoothness value.
When, however, we decrease the threshold for s(�) from 0.967 to 0.95,
track f is shown in the TC tracking result as indicated by the red arrow
in Fig. 8. Similarly, track e, which is not recorded in IBTrACS, can be
filtered out if we increase the threshold of stability b(�) from 0.029 to
0.03. These sensitivities to parameters in the tracking algorithm are, in
general, expected [15]. This human-in-the-loop option provides users
the opportunity of fine-tuning, especially for short-term forecasting or
weather-scale studies, as accuracy is more important at this scale. At
the climate scale and for climate change impacts, users may use the
same thresholds for all TC cases in both historic and future periods, to
avoid the impacts of parameter uncertainties.

6.2 Case Study: Tracking TC during Dissipation
We now investigate a Category 2 hurricane track named Hurricane
Bonnie. As illustrated in Fig. 9, (A) shows the TC tracks from Tempes-
tExtremes (colored by wind speed) and IBTrACS (in black), whereas
(B) shows the TC tracks detected by TROPHY. We observe a much
longer tail in (B) with low wind speed compared with (A). (C) gives the
zoomed-in views of tails of TC tracks detected by TempestExtremes
(1st row) and TROPHY (2nd row). Vector fields from different time
steps are shown as background. We also highlight the TC eyes de-
tected by each method in corresponding time steps by arrows on (C).
We see TC eyes detected by TROPHY are exactly located where the
wind vanishes, whereas the TC eyes from TempestExtremes are slightly
shifted to the outside of the eyes. The last two columns of (C) show
that TROPHY can track the TC eyes during dissipation because the
wind flow is still spinning even if the wind speed is low. TROPHY
tracks such flow behaviors as sources until the sources disappear.
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Fig. 9: Case study: Hurricane Bonnie. (A) The track detected by TempestExtremes is colored by wind speed, whereas the track provided by
IBTrACS is in black for reference. (B) The track detected by TROPHY, where the default thresholds and human-in-loop thresholds lead to the
same result. (C) Selected vector fields with the TempestExtremes track (1st row) and TROPHY track (2nd row). TC eyes detected from selected
time steps are indicated by arrows. These vector fields are located in orange dashed boxes from (A) and (B).

Table 1: Annually averaged metrics for TCs detected by TempestEx-
tremes and TROPHY relative to the reference (IBTrACS).

count(#) tcd(days) lmi (�lat.)

IBTrACS 10.74 79.34 25.65
TempestExtremes 8.17 50.01 38.30
TROPHY (default) 5.3 52.62 31.55

TROPHY (human-in-loop) 7.77 66.43 29.98

6.3 Case Study: Terminating Tracking
We next investigate a Category 1 hurricane named Hurricane Lisa,
which is captured by TempestExtremes but is partially missed by TRO-
PHY. Fig. 10 (A–C) show TCs of 1998, which are recorded in IBTrACS
and detected by TempestExtremes and TROPHY with the ERA5 1998
dataset, respectively. We focus on the analysis of Hurricane Lisa,
marked as �1, �2, and �3 in different methods. We note that �3, de-
tected by TROPHY, has a clearly shorter track compared with the other
two methods because the eyes of Hurricane Lisa were detected as cen-
ters only up to 10/08/1998 00:00 AM, after which Hurricane Lisa lost
its distinct eye and could not be detected by TROPHY; see Fig. 10 (M),
as well as a zoomed-in view in Fig. 10 (d).

Such a process could be related to TC’s extratropical transitions [25],
which may occur as a TC moves over cooler water and into areas of
stronger wind shear at higher latitudes. During this transition, the TC
loses its symmetric and distinct eye and, thus, TROPHY terminates
its tracking. In fact, Hurricane Lisa produced distinct eyes again at
time step 10/09/1998 at 12:00 PM and 10/10/1998 at 00:00 AM, so
TROPHY was able to start the track again. However, because this track
was short-lived, it was filtered out during the initial feature selection.

6.4 Evaluations: Annual Domain-Averaged Climatology
This section and the following present the evaluations of TROPHY
using the metrics described in Sec. 5.1. For annual climatology, cu-
mulative statistics are calculated over the entire data period (30 years),
which are then normalized to a per-year basis. Tab. 1 shows annually av-
eraged statistics for TCs detected by TROPHY and TempestExtremes.

According to annual TC count (count), IBTrACS contains approxi-
mately 11 TCs per year within the studied region, whereas TROPHY
with default setting produces the least number of TCs. However, when
considering annual storm lifetime (i.e., tcd), TROPHY detects longer
storms than TempestExtremes and is closer to IBTrACS on average.
This result is consistent with what we observed in our experiments.
TROPHY can detect TCs not only during their movements but also,
at least partially, during their formation and dissipation periods, even
if their wind speed is low; see Fig. 9 for an example. Also, since
TempestExtremes requires dynamic and thermodynamic variables to
meet specified criteria, TC tracks may break into pieces when some
parts of the track do not meet the requirement; see the track indicated
by a purple circle from Fig. 8 for an example. Overall, TROPHY pro-
duces TC tracks for a longer time than does TempestExtremes, whereas

Table 2: Spatial correlation for TCs detected by TempestExtremes and
TROPHY with the reference (IBTrACS).

4� ⇥ 4� rxy,track rxy,gen rxy,u10 rxy,slp

IBTrACS 1.00 1.00 1.00 1.00
TempestExtremes 0.892 0.638 0.920 0.889
TROPHY (default) 0.897 0.569 0.925 0.901

TROPHY (human-in-loop) 0.914 0.634 0.933 0.920

TempestExtremes detects more TC tracks than does TROPHY.
In addition, although TROPHY’s TC tracks have closer hurricane

genesis lmi w.r.t. the observation, both TROPHY and TempestEx-
tremes show a poleward bias compared with IBTrACS’s genesis. One
of the reasons for this bias could be that the reanalysis data including
ERA5 are not able to simulate storm structures near the equator well,
according to Knaff et al. [25], indicating that the input data to any
tracking algorithms is the most important factor when studying TCs.

6.5 Evaluations: Spatial Climatology
For spatial pattern climatology, density maps are generated by aggre-
gating occurrences into 4� by 4� bins. An example of the spatial
track density patterns is shown in Fig. 11. The spatical correlation
between IBTrACS and TROPHY (default) is caculated using patterns
from Fig. 11 (A) and (C). To quantify the similarity between IBTrACS
and TROPHY (or TempeExtremes), we calculate Pearson correlation
coefficient rxy for total occurrence (rxy,track), genesis occurrence
(rxy,gen), maximum wind speed, and minimum SLP. Tab. 2 shows the
pattern correlation of TROPHY/TempestExtremes with observations.

Both TROPHY and TempestExtremes can produce reasonable dis-
tributions of storm occurrence when compared with observations
(> 0.89). The spatial patterns of genesis (rxy,gen) from TROPHY
and TempestExtremes show lower correlations (< 0.64) with observa-
tions. This is not surprising because the initialization and development
of a clear eye depend on many other factors such as their 3D evolu-
tions, which are beyond the capability of what our 2D vector fields can
represent. In fact, predicting the genesis of TC is one of the scientific
challenges in TC research fields, indicating that the currently available
data cannot capture TC genesis and that new frameworks of such calcu-
lations are needed [54]. Both TROPHY and TempestExtremes are able
to produce storm strength similar to that of observations (� 0.89) in
terms of maximum u10 and minimum sea level pressure.

7 CONCLUSION AND DISCUSSION

We introduce a physics-informed TC tracking framework, TROPHY,
that utilizes tools from vector field topology. Based only on a 2D wind
vector field, TROPHY is able to produce results comparable to (and
sometimes even better than) those obtained with a widely used TC
tracking algorithm—TempestExtremes—while requiring far less input
data. Although TROPHY does not consider the air temperature field
(e.g., the warm cores) of TCs, the symmetric eye structures of TCs allow
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Fig. 10: Case study: Hurricane Lisa. 1998 annual TCs recorded by IBTrACS (A), detected by TempestExtremes (B) and TROPHY (C),
respectively. Hurricane Lisa is marked as �1, �2, and �3 in each method. (E–I) and (J–N) Hurricane Lisa detected by TempestExtremes and
TROPHY with selected vector fields as background. TC eyes detected by each method in corresponding time steps are indicated by arrows. (a–d)
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Fig. 11: Annual track density plots for all TCs detected by IBTrACS
(A), TempestExtremes (B), TROPHY (C, default), and TROPHY (D,
human-in-the-loop). Units are 6-hourly TC fixes per 4� ⇥ 4� grid box.

TROPHY to detect and track them. Furthermore, our framework may
be used in uncertainty visualization to understand uncertainty due to
different model physics or setup, or feature comparison of geoscientific
data with space and time dimensions.

TROPHY has a number of limitations. First, our robustness-based
framework is very useful for hurricane tracking, since hurricanes have
symmetric structures and hurricane tracks are one of the most important
factors in assessing their risks. However, once the symmetric structures
(i.e., the eyes) are weakened or disappear with the cyclones moving
to higher latitudes, TROPHY does not consider them as TCs anymore.
This is because the cyclone at higher latitudes may get their energy
from one or more front systems dividing warm air from the south and
cold air front the north, see Fig. 10. Such frontal systems lead to
asymmetric structures, which are not detected by TROPHY. In general,
our technique may not be suitable for asymmetric feature tracking such
as extratropical cyclones. Second, to obtain optimal tracking results, we

may need to fine-tune the parameters for each single event. Third, the
current framework only considers the near surface (10 meters) winds.
However, higher altitude winds (dozens to hundreds of meters) are also
big concerns when it comes to real-world applications such as wind
energy. This is left for future work.

From an application perspective, to the best of our knowledge, it is
an open challenge to incorporate 3D data in the study of TCs, based on
domain scientist feedback. Because adding more variables may reduce
the overall efficiencies of TROPHY yet may not guarantee a better
performance. From an algorithmic perspective, it may be possible to
extend TROPHY to utilize 3D data for TC tracking. First, we may
use horizontal layers of a 3D vector field along the vertical direction.
Second, we may utilize a third variable called the vertical motion (i.e.,
upward and downward), in addition to zonal wind (U) and meridional
(V) wind. Expanding TROPHY to either of these directions could
be useful in better detecting, tracking and understanding hurricanes
such as their genesis, intensification, and landfall (important factors
to be considered for risk assessment). The robustness framework has
been extended previously to study 2D symmetric tensor fields [22, 47]
and critical points in 3D vector fields [34]. It may be feasible to
integrate the robustness framework for 3D critical points in TROPHY.
However, there are more complex features that need to be considered
in 3D, such as vortex regions or vortex core lines. We would need to
develop theoretical foundations to quantify their robustness first before
establishing their physical interpretability in studying TCs.
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