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Abstract

A large body of evidence relates autism with abnormal structural and functional brain con-
nectivity. Structural covariance MRI (scMRI) is a technique that maps brain regions with
covarying gray matter density across subjects. It provides a way to probe the anatomical struc-
ture underlying the intrinsic connectivity networks (ICNs) through analysis of the gray matter
signal covariance. In this paper, we apply topological data analysis in conjunction with scMRI
to explore network-specific differences in the gray matter structure in subjects with autism ver-
sus age-, gender- and IQ-matched controls. Specifically, we investigate topological differences
in gray matter structure captured by structural covariance networks (SCNs) derived from three
ICNs strongly implicated in autism, namely, the salience network (SN), the default mode net-
work (DMN) and the executive control network (ECN). By combining topological data analysis
with statistical inference, our results provide evidence of statistically significant network-specific
structural abnormalities in autism, in SCNs derived from SN.

1 Introduction

Autism is a complex developmental disorder characterized by impairment in social interactions,
difficulty in verbal and nonverbal communications and repetitive behaviors. Although the exact
mechanism of its development remains unclear, there is strong evidence relating autism to abnormal
white matter and functional connectivity between brain regions. Structural abnormalities can be
identified using voxel-based morphometry by comparing gray matter, white matter volumes, cortical
thicknesses and their growth trajectories [11] across diagnostic groups. Although the gross brain
differences have been well-documented [4], investigations into specific regional abnormalities in
brain structure have reported divergent results [14].

These inconsistent findings, however, may reflect discrete abnormalities in the brain network.
Research has revealed a finite set of canonical domain-specific resting state or intrinsic connectivity
networks (ICNs) that organize the brain function [7]. Many of the regions with reported abnor-
malities in autism lie within these ICNs. Network-specific differences could account for seemingly
contradictory findings from previous studies.

Structural covariance MRI (scMRI) maps regions of gray matter that have a statistically signif-
icant correlation with a specific seed region of interest (ROI) across subjects. This suggests shared
developmental or genetic influences between the gray matter region and the seed ROI. Seeley et
al. [12] have used scMRI to demonstrate that specific brain disorders affect distinct ICNs and the
corresponding gray matter regions. Using a similar technique, Zielinski et al. [16] have shown that
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there are network-specific structural differences between autism and control groups which are con-
sistent with clinical aspects of the disease and that reported functional abnormalities in autism have
a structural bias. Several recent studies have applied the scMRI technique to find network-specific
structural abnormalities in other diseases such as Alzheimer’s [9] and Huntington’s [8].

However, scMRI can only reveal shared influences between gray matter region and a specific
seed ROI. We can model all pairwise correlations across subjects, among the gray matter regions
identified by the seed-based covariance map, as a network. Such networks represent structural
relationships between regions which are not captured by scMRI. Comparing these networks across
diagnostic groups may provide information that is not given by direct comparisons between indi-
vidual regions.

Comparing networks is not an easy problem, specially when the networks are weighted. Several
graph-theoretic measures have been proposed previously to compare networks [2]. However, a major
drawback of these measures is their reliance on a fixed network topology. That is, these measures
are typically based on a graph obtained by thresholding the connectivity matrix. The choice of
threshold is crucial in such analyses. Different heuristics have been suggested to determine the
threshold depending on which properties of the network are of interest. However, it is often not
possible to determine a unique optimal threshold.

In this paper, we apply topological data analysis to structural covariance networks (SCNs)
derived from three ICNs strongly implicated in autism; the default mode network (DMN), the
salience network (SN) and the executive control network (ECN). Our method is based upon a
core technique from topological data analysis known as persistent homology [5] where we extract
topological features across all thresholds from a given network and make statistical inference by
comparing these features. By combining topological data analysis with statistical inference, our
results provide evidence of statistically significant structural abnormalities underlying SN in autism.
Our results are consistent with the observations of Zielinski et al. [16] and may offer new insights
towards interpreting fine-scale network-specific structural differences.

2 Technical Background

2.1 Structural Covariance Network

We use scMRI to identify a set of brain regions, underlying a specific intrinsic connectivity network
(ICN). This is done by first determining a seed ROI which typically anchors a specific ICN and
then finding regions that have covarying gray matter densities across subjects, with that seed ROI.
Specifically, given a seed ROI, separate condition-by-covariate analysis is performed for each gray
matter region. The mean seed gray matter density is the covariate of interest and disease status
is the grouping variable. Total brain volume (TBV) is included as a covariate-of-no-interest. This
design enables us to determine the whole-brain patterns of seed-based structural covariance in each
group. To identify regions with significant gray matter density covariance with the seed ROI across
subjects in a diagnostic group, one-sample t-tests with family-wise error correction are performed.

The regions are identified on the basis of their structural relationship with a specific seed ROI.
We model the structural relationships between pairs of regions as a network. Correlations between
gray matter densities across subjects, for all pairs of regions, are modeled as a weighted, undirected
graph G(V,E,W ). The vertices of the graph represent gray matter regions and the edge weights
are given by absolute values of pairwise correlations.

In what follows, we refer to such a network as the structural covariance network (SCN). We
compare SCNs derived from three intrinsic connectivity networks strongly implicated in autism, the
SN, the ECN and the DMN. In the context of this paper, for simplicity (unless otherwise specified),
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we describe these SCNs by the name of their corresponding ICNs, namely, SN-SCN, ECN-SCN and
DMN-SCN.

2.2 Graph Filtration

We extract topological features at multiple scales from a structural covariance network G by ap-
plying topological data analysis to a nested sequence of graphs constructed from G, referred to as
the graph filtration.

Let V = {vi | i = 1, . . . , n} be the vertex set with n vertices. Let E denote the edge set and W
denote the set of edge weights. The edge between vertices vi, vj is denoted by eij and its weight
is denoted by wij . |E| denotes the number of edges. For a given threshold λ, we obtain a binary
graph Gλ by removing edges with weight wij ≤ λ. The adjacency matrix Aλ = (aij(λ)) is given by:

aij(λ) =

{
0 wij ≤ λ
1 o.w.

As λ increases, more and more edges are removed from the graph. We can generate a sequence
of thresholds, λ0 = 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λq, where q ≤ |E| by setting λi’s equal to edge weights
arranged in ascending order.

Corresponding to the sequence of thresholds we get a nested sequence of binary graphs, referred
to as a graph filtration G:

Gλ0 ⊇ Gλ1 ⊇ Gλ2 ⊇ · · · ⊇ Gλq .

We can measure the connectivity of a graph by its 0-th Betti number, β0, which is the number
of connected components in the graph. As the threshold λ increases, β0(Gλ) of the corresponding
graph also increases. The number of connected components of the graphs in filtration G form a
monotonic sequence of integers,

β0(Gλ0) ≤ β0(Gλ1) ≤ β0(Gλ2) ≤ · · · ≤ β0(Gλq).

Assuming that we started with a connected graph G = Gλ0 , we have β0(Gλ0) = 1 and β0(Gλq) =
|V | = n by construction. The plot of β0(Gλ) as a function of threshold λ is called the β0 curve.
Given a finite graph with n nodes, there are at most

(
n
2

)
unique edge weights. If we choose the set of

all the unique edge weights, sorted in ascending order, to be the thresholds, then with finitely many
threshold values, we can estimate the β0 curve for all λ. Computing the β0 curve for a given graph
could follow the standard algorithm for persistent homology [5]. In practice, a simpler algorithm
relying on the notion of a minimum spanning tree can be used to capture the λ values when we are
only concerned with tracking the number of components (clusters) during the filtration.

2.3 Statistical Inference

Our data consists of subjects divided into two diagnostic groups (a.k.a., samples), autism and
control. We would like to test whether the two samples come from the same underlying distribution
or not. More specifically, we want to test whether there are any statistically meaningful differences
in the 0-dimensional topology of the SCNs derived from the two samples. We do this by examine
the equivalence among the corresponding β0 curves.

Let G and H represent the SCNs obtained from autism and control samples respectively with
corresponding graph filtrations G and H. We want to test the null hypothesis,

H0 : β0(Gλ) = β0(Hλ) for all λ,
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against the alternative hypothesis,

H1 : β0(Gλ) 6= β0(Hλ) for some λ.

Since we are dealing with finite graphs, a discrete version of the null hypothesis is stated as,

H0 : β0(Gλi) = β0(Hλi) for all λi, i = 1, 2, . . . , q,

with the null hypothesis being

H1 : β0(Gλi) 6= β0(Hλi) for some λi, i = 1, 2, . . . , q.

Following the formulation of Chung et al. [3], we can define the distance between graph filtrations
G and H as:

Dq(G,H) = sup
0≤i≤q

|β0(Gλi)− β0(Hλi)|. (1)

Intuitively, Dq measures the largest gap between the two β0 curves. The p-value is the probability
that Dq will take a value equal to or greater than the observed value under the null hypothesis. In
order to determine this p-value, we need to sample the distribution of Dq under the null hypothesis.

Permutation test provides a simple way to estimate such a sampling distribution. Let D∗q denote
the value computed from the two original samples. To estimate the sampling distribution of Dq, in
each permutation, we randomly swap subject labels between the two groups and proceed with the
following:

1. Construct SCNs for autism and control groups separately;

2. Apply graph filtration to both networks and obtain their corresponding β0 curves;

3. Compute the corresponding Dq with the above permutation.

Each permutation gives us a new value of Dq. For a reliable estimation of the distribution of Dq,
large number of permutations is required. The p-value is given by the fraction of Dq values greater
than or equal to D∗q .

3 Methods

3.1 Data Preprocessing

We derive our SCNs from the ICNs previously reported by Zielinski et al. [16, 17]. Here, we review
the preprocessing pipeline. 49 male subjects with autism, aged 3-22 years, are compared to 49
age-, gender- and IQ-matched typically developing control subjects. Images are acquired using a
Siemens 3.0 Tesla Trio MRI scanner. Whole brain isotropic MPRAGE image volumes are acquired
in the sagittal plane using an 8-channel receive-only RF head coil, employing standard techniques
(TR = 2300 ms, TE median = 3 ms, matrix median = 256 × 256 × 160, flip angle = 12◦, voxel
resolution = 1 mm3, acquisition time = 9 min 12 sec).

Customized image analysis templates are created by normalizing, segmenting and averaging
T1 images using SPM5 according to the processing pipeline proposed in [1, 15]. First, images
are transformed into standard space using a 12-parameter affine-only linear transformation and
segmented into three tissue classes representing gray matter, white matter and cerebrospinal fluid.
Then smoothly varying intensity changes as well as artifactual intensity alterations as a result of the
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normalization step are corrected for using a standard modulation algorithm within SPM5. Finally,
the resulting segmented maps are smoothed using a 12-mm full-width at half-maximum Gaussian
kernel.

In performing the scMRI analysis, a two-pass procedure is utilized, wherein study-specific tem-
plates are first created by segmenting our sample using a canonical pediatric template. Then
tissue-specific prior probability maps are created from our sample. The tissue compartments are
then re-segmented using this sample-specific template, so that the age range of our sample precisely
matches that of the template(s) upon which the ultimate segmentations are based.

3.2 Structural Covariance Networks and Statistical Inference

We would like to construct SCNs that capture structural relationships, across subjects, between
all pairs of gray matter regions from a predefined set of regions. We begin by constructing a
whole brain SCN as follows: 1-mm spheres are placed at grid points of a uniform grid on the
entire preprocessed image volume. After applying the gray matter mask, we obtain a set of 7266
regions. The whole-brain SCN (denoted Global-SCN) is constructed by computing correlations,
across subjects, between all pairs of these regions.

To study network-specific structural covariance, 4-mm-radius spherical seed ROIs are selected
within the right frontoinsular cortex (R FI) [12], the right dorsolateral prefrontal cortex (R DLPC) [13]
and the right posterior cingulate cortex (R PCC) [6]. These regions anchor the salience net-
work (SN), the executive control network (ECN) and the default-mode network (DMN), respec-
tively [12, 6].

For each diagnostic group and each seed ROI, we obtain the set of regions covarying with the seed
ROI, following the process described in Section 2. The structural covariance maps corresponding
to the seed ROI are shown in Fig. 1(a)-(c). Further comparisons in Fig. 2 show that the maps for
two diagnostic groups do not completely overlap. Some regions present in the map for the control
group are absent in the map for the autism group. Conversely, some regions are present only in
the map for the autism group but not in the map for the control group. Fig. 1(d) lists the number
of regions present in controls but not in autism, in autism but not in controls and in both as well
as in either autism or control. A network specific set of ROIs is given by the union of all regions
covarying with the corresponding seed ROI, in either the autism group map or the control group
map.

Thus, we have one Global set of ROIs and three network specific sets of regions. For each set
of ROIs, we perform the permutation test as described in section 2. One million permutations are
performed in case of network-specific ROIs. Only ten thousand permutations are performed for the
Global-SCN due to computational constraints.

4 Results

We apply the permutation test and compare SCNs across groups of subjects with autism and
typically developing control subjects. We begin by comparing the global SCNs composed of 7266
gray matter regions in the preprocessed images. For a closer analysis, we compare the SCNs
generated with seed ROIs anchoring the three ICNs (SN, ECN and DMN), referred to as SN-SCN,
ECN-SCN and DMN-SCN, respectively. Recall that the structural covariance maps for the autism
and the control groups overlap in very few regions. We construct and compare SCNs derived from
sets of regions that are present in either controls or in autism.

The β0 curves corresponding to the global SCNs and the seed-specific SCNs are shown in Fig. 3.
Table 1 lists the p-values obtained after the permutation test. By combining topological data
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SN

ECN

DMN

(a)

(b)

(c)

(d)
Figure 1: (a)-(c) Structural covariance maps with seed in R FI, R DLPC and R PCC, anchoring SN, ECN
and DMN, respectively. Red represents the autism group map, blue represents the control group map. (d)
Number of regions identified from scMRI map for a given seed region.

ECN

SN DMN-posterior (DMN)

(a)

(b)

DMN-anterior

(d)

(c)

Figure 2: scMRI maps are further illustrated here with red to yellow (autism) and dark blue to light
blue (control) color look up tables. The color gradation indicates increasing statistical significance. The
overlapping regions among the autism and control groups are highlighted in green. Note for (c) and (d): Our
data consists of subjects with an average age of about 13 years. The underlying structure of the DMN is not
fully developed at this age. We include two DMN maps with different seeds to show that the posterior part
(c) is not yet integrated with the anterior part (d). In our analysis, we use the posterior covariance map (c)
which corresponds to the most common seed for DMN in adults (R PCC).

analysis with statistical inference, our results provide evidence of statistically significant network-
specific structural abnormalities in autism SN-SCNs.
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Global SCN SN-SCN

ECN-SCN DMN-SCN

Figure 3: β0 curves from Global SCNs as well as SN-SCNs, ECN-SCNs and DMN-SCNs, generated from
regions present in either autism (red) or controls (blue) respectively.

Global-SCN DMN-SCN SN-SCN ECN-SCN

p-value 0.3985 0.3658 0.00614 0.1118

Table 1: p-values for permutation test on SCNs

5 Comparison and Discussion with Respect to Prior Work

In an earlier version of this work [10], we used an exact statistical inference method first proposed
in [3]. It is derived from the two sample Kolmogorov-Smirnov (KS) test, based on the fact that
the β0 sequences are monotonic increasing sequences. Here we will briefly review the two sample
KS test and discuss why the inference method we used in [10] was in fact, not appropriate in our
setting.

5.1 Two sample KS Test

Suppose there exist two populations X and Y with cumulative distribution functions FX and FY
respectively. Given a random (i.i.d.) sample from X and a random sample from Y , we wish to test
whether the populations are identical or not, i.e.

H0 : FX(x) = FY (x) ∀x,
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against the alternative
H1 : FX(x) 6= FY (x) for some x.

FX and FY are assumed to be continuous. For simplicity, let us also assume that both samples are
of the same size n. Let the order statistic of the samples be

X(1), X(2), . . . , X(n) and Y(1), Y(2), . . . , Y(n).

The empirical distribution function of the samples, denoted Sn(x) and Tn(x) are the proportions
of samples with values smaller than or equal to x. They are step functions that increase by 1/n at
the jump points which coincide with the order statistic of the respective samples. Formally, Sn(x)
is defined as

Sn(x) =


0 if x < X(1)
k
n for X(k) ≤ x ≤ X(k+1), where k = 1, 2, . . . , n− 1

1 if x ≥ X(n)

For a fixed, but arbitrary value of x, Sn(x) itself is a random variable with following properties:

1. nSn(x) follows a binomial distribution with parameter θ = FX(x), that is,

P [Sn(x) = j/n] =

(
n

j

)
[FX(x)]j [1− FX(x)]n−j

2. E[Sn(x) = FX(x)] and Var[Sn(x)] = FX(x)[1−FX(x)]
n

3. Glivenko-Cantelli Theorem: Sn(x) converges uniformly to FX(x). That is, for every
ε > 0

lim
n→∞

P [ sup
−∞<x<∞

|Sn(x)− FX(x)| > ε] = 0

4. As n→∞, standardized Sn(x) ≈ standard normal distribution.

The properties mentioned above ensure that Sn(x) and Tn(x) are reasonable estimates of FX(x)
and FY (x) respectively. Under the null hypothesis, two populations being identical implies that the
two samples are drawn i.i.d. from the same distribution. Therefore, the two empirical distributions
should agree. The KS two sample test statistic is given as:

Dn,n = max
x
|Sn(x)− Tn(x)|.

For any continuous FX and FY and random samples drawn from the two populations, Dn,n is
completely distribution free. The exact and asymptotic probability distributions for Dn,n are
derived using this fact and the properties of empirical distribution functions mentioned earlier.

5.2 Issues with previous inference method

The underlying assumption of the exact inference method used in [10] was that the two β0 sequences,
after normalization, could be used as empirical distribution functions in the two sample KS test,
the KS statistic being Dq as defined in 1.

The empirical distribution functions are derived from random samples. They are step functions
with jump points coinciding with the order statistics of the samples. The normalized β0 curves are
step functions with exactly n jumps, but for them to be used as empirical distribution functions,
the order statistics would have to be the n threshold values at which the jumps in β0 curves occur.
These are the values at which the number of connected components changes. A closer examination
of the setup reveals the following:
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1. The order statistics in this case are independent of the number of subjects. The number of
jumps in the β0 curves is determined by the number of nodes in the SCNs. The number of
samples is determined by the number of gray matter ROIs instead of the number of autism
and control subjects. We cannot use such a test to infer anything about the autism and
control populations.

2. The results on exact as well as asymptotic null distribution of the KS statistic follow from the
fact that it is distribution free. Given a weighted undirected graph G, the threshold values
at which jumps in the β0 curve occur are uniquely determined and not i.i.d. as required by
the KS test. As a consequence, we can no longer claim that the Dq is distribution free to
construct a KS test with Dq as a test statistic.

These two issues make it clear that the inference method employed in [10] was not appropriate for
the hypotheses we would like to test.

6 Conclusion

Using direct comparisons of structural covariance maps, Zielinski et al. have shown the structural
differences in gray matter regions underlying intrinsic connectivity networks (ICNs) such as SN [16],
DMN [16] and ECN (Brandon Zielinski, personal communication, May 2017), between the autism
and the control groups.

A key insight from their work is that structure enables function and functional collaboration
enables structure. Our work helps to summarize these multidimensional, structure-function rela-
tionships by conceptualizing them as higher-order topological relationships.

The techniques in [16] compare covariance maps directly. The regions in these maps are assigned
significance measures based on their covariance with respect to the specified seed region. The
SCNs, on the other hand, encode all pairwise associations among regions, where the extent of an
association is measured by the correlations across subjects. Our experiments provide evidence of
statistically significant differences in the 0-dimensional topological features of SCNs derived from
SN (SN-SCNs). This result is consistent with the findings of Zielinski et al. [16].

However, it should be noted that the SCNs are abstract networks and do not represent physical
connectivity between the regions. This limits the interpretability of our results to some extent and
deeper analysis is needed in order to quantify and better interpret the differences suggested by the
statistical inference.

Our method, fails to capture any significant differences in the topology of SCNs derived from
DMN or ECN (DMN-SCNs, ECN-SCNs). It is possible that considering only pairwise interactions
among gray matter regions (that is, 0-order topological features encoded by the β0 curves, corre-
sponding to the number of connected components) may not be sufficient to capture the complex
topological differences within these SCNs. Analyzing three-way or four-way interactions, capturing
higher-order topological features such as tunnels and voids and focusing on specific sites directly
involved in merging components in the graph filtration may provide further insights into these
SCNs.
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