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Abstract. A large body of evidence relates autism with abnormal struc-
tural and functional brain connectivity. Structural covariance MRI (scMRI)
is a technique that maps brain regions with covarying gray matter den-
sity across subjects. It provides a way to probe the anatomical structures
underlying intrinsic connectivity networks (ICNs) through the analysis
of the gray matter signal covariance. In this paper, we apply topological
data analysis in conjunction with scMRI to explore network-specific dif-
ferences in the gray matter structure in subjects with autism versus age-,
gender- and IQ-matched controls. Specifically, we investigate topological
differences in gray matter structures captured by structural covariance
networks (SCNs) derived from three ICNs strongly implicated in autism,
namely, the salience network (SN), the default mode network (DMN)
and the executive control network (ECN). By combining topological data
analysis with statistical inference, our results provide evidence of statisti-
cally significant network-specific structural abnormalities in autism, from
SCNs derived from SN and ECN. These differences in brain architecture
are consistent with direct structural analysis using scMRI (Zielinski et
al. 2012).

1 Introduction

Autism is a complex developmental disorder characterized by impairment in so-
cial interactions, difficulty in verbal and nonverbal communications and repet-
itive behaviors. Although the exact mechanism of its development remains un-
clear, there is strong evidence relating autism to abnormal white matter and
functional connectivity between brain regions. Structural abnormalities can be
identified using voxel-based morphometry by comparing gray matter, white mat-
ter volumes, cortical thicknesses and their growth trajectories [11] across diag-
nostic groups. Although the gross brain differences have been well-documented
[5], investigations into specific regional abnormalities in brain structure have
reported divergent results [14]. These inconsistent findings, however, may re-
flect discrete abnormalities in the brain network. Research has revealed a finite
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set of canonical domain-specific resting state or intrinsic connectivity networks
(ICNs) that organize the brain function [8]. Many of the regions with reported
abnormalities in autism lie within these ICNs. Network-specific differences could
account for seemingly contradictory findings from previous studies.

Structural covariance MRI (scMRI) maps brain regions with covarying gray
matter density across subjects, suggesting shared developmental or genetic in-
fluences. Seeley et al. [12] have used scMRI to demonstrate that specific brain
disorders affect distinct ICNs and the corresponding gray matter regions. Using a
similar technique, Zielinski et al. [16] have shown that there are network-specific
structural differences between autism and control groups which are consistent
with clinical aspects of the disease and that reported functional abnormalities
in autism have a structural bias. Several recent studies have applied the scMRI
technique to find network-specific structural abnormalities in other diseases such
as Alzheimer’s [10] and Huntington’s [9].

scMRI identifies regions of gray matter that have a statistically significant
correlation with a specific seed region of interest (ROI). We can model all pair-
wise correlations (across subjects) among the gray matter regions identified by
the seed-based covariance map as a network. Comparing these networks across
diagnostic groups may provide information not captured by direct comparisons
between individual regions.

Several graph-theoretic measures have been proposed previously to compare
networks [3]. However, a major drawback of these measures is their reliance on
a fixed network topology. That is, these measures are typically based on a graph
obtained by thresholding the connectivity matrix. The choice of threshold is
crucial in such analyses. Different heuristics have been suggested to determine
the threshold depending on which properties of the network are of interest.
However, it is often not possible to determine a unique optimal threshold.

In this paper, we apply topological data analysis to structural covariance net-
works (SCNs) derived from three ICNs strongly implicated in autism; the default
mode network (DMN), the salience network (SN) and the executive control net-
work (ECN). Our method is based upon a core technique from topological data
analysis known as persistent homology [6] where we extract topological features
across all thresholds from a given network. We make use of topology-inspired
statistical inference first reported by Chung et al. [4] to compare the extracted
topological features. By combining topological data analysis with statistical in-
ference, our results provide statistically significant evidence of structural abnor-
malities underlying SN and ECN in autism. Our results are consistent with the
observations of Zielinski et al. [16] and may offer new insights towards interpret-
ing fine-scale network-specific structural differences.

2 Technical Background

2.1 Structural Covariance Network

We use scMRI to extract a network-specific set of brain regions with covarying
gray matter density across subjects. Given a seed ROI, separate condition-by-
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covariate analysis is performed for each gray matter region, in which the mean
seed gray matter density is the covariate of interest and disease status is the
grouping variable. Total brain volume (TBV) is included as a covariate-of-no-
interest. This design enables us to determine the whole-brain patterns of seed-
based structural covariance in each group. One-sample t-tests are performed to
identify regions with significant groupwise gray matter density covariance with
the seed ROI across subjects.

All pairwise correlations between gray matter densities across subjects, for
pairs of identified regions, are modeled as a network. In what follows, we refer to
such a network as the structural covariance network (SCN). The SCN, therefore,
is a weighted, undirected graph G(V,E,W ), with gray matter regions as vertices
and absolute values of pairwise correlations as edge weights. In particular, we
compare SCNs generated with seed ROIs anchoring the three ICNs strongly
implicated in autism, the SN, the ECN and the DMN. In the context of this
paper, for simplicity (unless otherwise specified), we describe these SCNs by the
name of their corresponding ICNs, namely, SN-SCN, ECN-SCN and DMN-SCN.

2.2 Graph Filtration

We extract topological features at multiple scales from a structural covariance
network G by applying topological data analysis to a nested sequence of graphs
constructed from G, referred to as the graph filtration.

Let V = {vi | i = 1, . . . , n} be the vertex set with n vertices. Let E denote
the edge set and W denote the set of edge weights. The edge between vertices vi,
vj is denoted by eij and its weight is denoted by wij . |E| denotes the number of
edges. For a given threshold λ, we obtain a binary graph Gλ by removing edges
with weight wij ≤ λ. The adjacency matrix Aλ = (aij(λ)) is given by:

aij(λ) =

{
0 wij ≤ λ
1 o.w.

As λ increases, more and more edges are removed from the graph. We can
generate a sequence of thresholds, λ0 = 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λq, where q ≤ |E|
by setting λi’s equal to edge weights arranged in ascending order.

Corresponding to the sequence of thresholds we get a nested sequence of
binary graphs, referred to as a graph filtration G:

Gλ0
⊇ Gλ1

⊇ Gλ2
⊇ · · · ⊇ Gλq

.

We can measure the connectivity of a graph by its 0-th Betti number, β0, which is
the number of connected components in the graph. As the threshold λ increases,
β0(Gλ) of the corresponding graph also increases. The β0(Gλi

) of the graphs in
filtration G form a monotonic sequence of integers,

β0(Gλ0) ≤ β0(Gλ1) ≤ β0(Gλ2) ≤ · · · ≤ β0(Gλq ).

Suppose we start with a connected graph G = Gλ0
. We have β0(Gλ0

) = 1 and
β0(Gλq

) = |V | = n by construction. Given n nodes, there are at most
(
2n
n

)
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unique edge weights; therefore q ≤
(
2n
n

)
. The number of all possible monotonic

integer sequences of length q, starting with 1 and ending with n, is finite.

Following the formulation of Chung et al. [4], the distance between two given
graph filtrations G and H can be defined as:

Dq(G,H) = sup
0≤i≤q

|β0(Gλi)− β0(Hλi)|. (1)

Intuitively, if we plot the two sequences of Betti numbers as a function of
λ (the graph of such a function is referred to as the β0 curve), this distance
Dq measures the largest gap between the two curves. Given that the number of
possible sequences is finite, Dq can take only a finite number of discrete integer
values. Computing the β0 curve for a given graph filtration could follow the
standard algorithm for persistent homology [6]; in practice, a simpler algorithm
can be used to capture the λ values when the number of components (clusters)
decreases during the filtration.

2.3 Statistical Inference

We model the structural covariance networks for autism and control groups as
weighted graphs G and H, respectively, with the corresponding graph filtrations
G (autism) and H (control). We would like to test the equivalence of the two
filtrations. In particular, we would like to test the null hypothesis H0 against
the alternative hypothesis H1, where

H0 : β0(Gλi) = β0(Hλi) for all λi;

H1 : β0(Gλi
) 6= β0(Hλi

) for some λi.

By taking the supremum over all λi, Dq takes care of multiple comparisons im-
plied in the hypotheses. Chung et al. [4] have provided a combinatorial deriva-
tion of the exact probability distribution of Dq. The proof is based on the
Kolmogorov-Smirnov test [2]. This eliminates the need for numerically permut-
ing samples for the test of hypothesis. The asymptotic probability distribution
of Dq is given by :

lim
q→∞

P (Dq/
√

2q ≥ d) = 2

∞∑
i=1

(−1)i−1e−2i
2d2 ,

and the p-value under the null hypothesis can be computed as :

p = 2e−d
2
0 − 2e−8d

2
0 + 2e−18d

2
0 + · · · ≈ 2e−d

2
0 − 2e−8d

2
0 + 2e−18d

2
0 ,

where d0 is the smallest integer greater than Dq/
√

2q.
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3 Methods

3.1 Data Preprocessing

We derive our SCNs from the ICNs previously reported by Zielinski et al. [16,17].
Here, we review the preprocessing pipeline. 49 male subjects with autism, aged
3-22 years, are compared to 49 age-, gender- and IQ-matched typically develop-
ing control subjects. Images are acquired using a Siemens 3.0 Tesla Trio MRI
scanner. Whole brain isotropic MPRAGE image volumes are acquired in the
sagittal plane using an 8-channel receive-only RF head coil, employing standard
techniques (TR = 2300 ms, TE median = 3 ms, matrix median = 256×256×160,
flip angle = 12◦, voxel resolution = 1 mm3, acquisition time = 9 min 12 sec).

Customized image analysis templates are created by normalizing, segment-
ing and averaging T1 images using SPM5 according to the processing pipeline
proposed in [1,15]. First, images are transformed into standard space using a
12-parameter affine-only linear transformation and segmented into three tissue
classes representing gray matter, white matter and cerebrospinal fluid. Then
smoothly varying intensity changes as well as artifactual intensity alterations as
a result of the normalization step are corrected for using a standard modulation
algorithm within SPM5. Finally, the resulting segmented maps are smoothed
using a 12-mm full-width at half-maximum Gaussian kernel.

In performing the scMRI analysis, a two-pass procedure is utilized, wherein
study-specific templates are first created by segmenting our sample using a
canonical pediatric template. Then tissue-specific prior probability maps are cre-
ated from our sample. The tissue compartments are then re-segmented using this
sample-specific template, so that the age range of our sample precisely matches
that of the template(s) upon which the ultimate segmentations are based.

3.2 Structural Covariance Networks and Statistical Inference

The preprocessed images contain 7266 gray matter voxels. For each diagnostic
group, a whole-brain SCN is constructed by computing pairwise correlations
among all voxels.

To study network-specific structural covariance, 4-mm-radius spherical seed
ROIs are selected within the right frontoinsular cortex (R FI) [12], the right dor-
solateral prefrontal cortex (R DLPC) [13] and the right posterior cingulate cortex
(R PCC) [7]. These regions anchor the salience network (SN), the executive con-
trol network (ECN) and the default-mode network (DMN), respectively [12,7].

For each diagnostic group and each seed ROI, we generate SCNs following the
process described in Section 2. The structural covariance maps corresponding to
the seed ROI are shown in Fig. 1(a)-(c). The SCNs are composed of 4-mm-radius
spherical regions identified by these maps. Further comparisons in Fig. 2 show
that the two maps overlap in very few regions. Some regions present in the map
for the control group are absent in the map for the autism group. Conversely,
some regions are present only in the map for the autism group but not in the map
for the control group. Fig. 1(d) lists the number of regions present in controls
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but not in autism, in autism but not in controls and in both as well as in either
autism or control.

We then construct and compare the SCNs derived from corresponding sub-
sets of regions for each seed ROI. For each comparison, SCNs are derived for
both diagnostic groups (autism and controls) separately. Graph filtrations are
constructed for both networks. The distance Dq between the two resulting β0
curves and the corresponding p-value for the test hypotheses is obtained accord-
ingly.

SN

ECN

DMN

(a)

(b)

(c)

(d)
Fig. 1: (a)-(c) Structural covariance maps with seed in R FI, R DLPC and R PCC,
anchoring SN, ECN and DMN, respectively. Red represents the autism group map,
blue represents the control group map. (d) Number of regions identified from scMRI
map for a given seed region.

4 Results

We apply statistical inference and compare SCNs across groups of subjects with
autism and typically developing control subjects. We begin by comparing the
global SCNs composed of all 7266 gray matter voxels in the preprocessed images.
Applying the statistical inference detailed in Section 3, we obtain a p-value
of 6.6250179 × 10−19. The differences in whole-brain gray matter composition
between the autism and control groups have been well established in previous
studies [5]. The near-zero p-value shows that such differences can also be captured
by the topological features extracted from the global SCNs.

For a closer analysis, we compare the SCNs generated with seed ROIs an-
choring the three ICNs (SN, ECN and DMN), referred to as SN-SCN, ECN-SCN
and DMN-SCN, respectively. Recall that the structural covariance maps for the
autism and the control groups overlap in very few regions. We construct and
compare SCNs derived from subsets of regions that are present in controls but
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ECN

SN DMN-posterior (DMN)

(a)

(b)

DMN-anterior

(d)

(c)

Fig. 2: scMRI maps are further illustrated here with red to yellow (autism) and dark
blue to light blue (control) color look up tables. The color gradation indicates increasing
statistical significance. The overlapping regions among the autism and control groups
are highlighted in green. Note for (c) and (d): Our data consists of subjects with
an average age of about 13 years. The underlying structure of the DMN is not fully
developed at this age. We include two DMN maps with different seeds to show that
the posterior part (c) is not yet integrated with the anterior part (d). In our analysis,
we use the posterior covariance map (c) which corresponds to the most common seed
for DMN in adults (R PCC).

not in autism, present in autism but not in controls and present in both as well
as present in either.

The β0 curves corresponding to comparisons among global SCNs, and seed-
specific SCNs generated from regions present either in autism or controls, are
shown in Fig. 3. Table 1 lists the p-values obtained by applying the statistical
inference procedure to the corresponding SCNs. By combining topological data
analysis with statistical inference, our results provide statistically significant
evidence of network-specific structural abnormalities in autism for both SN-
SCNs and ECN-SCNs.

Controls only Autism only Both Either

DMN-SCN 0.6271670 0.0815188 0.9538228 0.2369032

SN-SCN 0.0014932 NA 0.0366311 1.3269078× 10−6

ECN-SCN 0.0422562 0.9960098 0.0059460 1.7996732× 10−6

Table 1: p-values for statistical inference on SCNs derived from ICNs; DMN-SCNs, SN-
SCNs and ECN-SCNs. Only one region in SN is present in autism but not in controls
where the inference procedure is not applicable.
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Global SCN SN-SCN

ECN-SCN DMN-SCN

Fig. 3: β0 curves from Global SCNs as well as SN-SCNs, ECN-SCNs and DMN-SCNs,
generated from regions present in either autism (red) or controls (green) respectively.

5 Conclusion and Discussion

Using direct comparisons of structural covariance maps, Zielinski et al. have
shown the structural differences in gray matter regions underlying intrinsic con-
nectivity networks (ICNs) such as SN [16], DMN [16] and ECN (Brandon Zielin-
ski, personal communication, May 2017) between the autism and the control
groups. In contrast, our method compares the structural covariance networks
(SCNs), which are composed of all possible pairwise correlations between gray
matter regions and not just their covariance with a specific seed region.

Our inference procedure obtains statistically significant p-values among the
SCNs derived from SN and ECN (SN-SCNs and ECN-SCNs) when compar-
ing networks constructed from regions present in controls only, regions present
in both autism and controls, as well as regions present in either autism or con-
trols. Our results indicate statistically significant differences in the 0-dimensional
topological features of these SCNs; this result is consistent with the findings of
Zielinski et al. [16].

Our method, however, does not capture significant differences in the topology
of SCNs derived from DMN (DMN-SCNs). It is possible that considering only
pairwise interactions among gray matter regions (that is, 0-order topological
features encoded by the β0 curves, corresponding to the number of connected
components) may not be sufficient to capture the complex topological differ-



Revisiting Abnormalities in Brain Network Architecture 9

ences within these SCNs. Analyzing three-way or four-way interactions, captur-
ing higher-order topological features such as tunnels and voids and focusing on
specific sites directly involved in merging components in the graph filtration may
provide further insights into these SCNs.

Final Remarks A key insight from the work of Zielinski et al. [16] is that
structure enables function and functional collaboration enables structure. Our
work, in particular, helps summarize these multidimensional, structure-function
relationships by conceptualizing them as higher order topological relationships.
The SCNs are constructed using inputs from both the function, in form of the
seed ROI anchoring specific ICNs and the structure, in the form of gray matter
density signals.

The techniques in [16] compare covariance maps directly. Such a comparison
helps to identify whether a particular region is present or absent in the autism
vs the control group maps. The regions in these maps are assigned significance
measures using their covariance with respect to a specific seed region. Our work,
on the other hand, uses the SCNs to encode all pairwise associations among
regions, where the extent of an association is measured by the correlations across
subjects. Our results indicate that there are statistically significant differences
in the way networks are connected, which implies differences in the patterns of
pairwise association across diagnostic groups.

To illustrate the advantage, consider the regions present in the SN- or ECN-
specific covariance maps of both the autism and the control groups. Direct com-
parison of the covariance maps does not provide any further insight into these
regions. Our method on the other hand, shows that there are statistically signifi-
cant differences in the topological features derived from SN-SCN and ECN-SCN
composed of these regions (Table 1, p-values of 0.0366311 and 0.0059460 respec-
tively). However, it should be noted that the SCNs are abstract networks and
do not represent physical connectivity between the regions. This limits the in-
terpretability of our results to some extent. Further analysis is needed in order
to quantify and better interpret the differences in the SCNs suggested by the
statistical inference.
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2. W. Böhm and K. Hornik. A kolmogorov-smirnov test for r samples. Fundam. Inf.,
117(1-4):103–125, Jan. 2012.

3. E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature Reviews Neuroscience, 10(3):186–198,
2009.



10 Palande et al.

4. M. K. Chung, V. Villalta-Gil, H. Lee, P. J. Rathouz, B. B. Lahey, and D. H.
Zald. Exact topological inference for paired brain networks via persistent homology.
bioRxiv:140533, 2017.

5. E. Courchesne, K. Pierce, C. M. Schumann, E. Redcay, J. A. Buckwalter, D. P.
Kennedy, and J. Morgan. Mapping early brain development in autism. Neuron,
56(2):399 – 413, 2007.

6. H. Edelsbrunner, D. Letscher, and A. J. Zomorodian. Topological persistence and
simplification. Discrete and Computational Geometry, 28:511–533, 2002.

7. D. A. Fair, A. L. Cohen, N. U. F. Dosenbach, J. A. Church, F. M. Miezin, D. M.
Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar. The maturing archi-
tecture of the brain’s default network. Proceedings of the National Academy of
Sciences, 105(10):4028–4032, 2008.

8. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E.
Raichle. The human brain is intrinsically organized into dynamic, anticorrelated
functional networks. Proceedings of the National Academy of Sciences of the United
States of America, 102(27):9673–9678, 2005.

9. L. Minkova, S. B. Eickhoff, A. Abdulkadir, C. P. Kaller, J. Peter, E. Scheller,
J. Lahr, R. A. Roos, A. Durr, B. R. Leavitt, S. J. Tabrizi, S. Klöppel, and T.-
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