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Abstract The mapper construction is a powerful tool from topological data analysis
that is designed for the analysis and visualization of multivariate data. In this paper,
we investigate a method for stitching a pair of univariate mappers together into a
bivariate mapper, and study topological notions of information gains, referred to as
topological gains, during such a process. We further provide implementations that
visualize such topological gains for mapper graphs.

1 Introduction

The mapper construction is one of the main tools in topological data analysis and
visualization used for the study of multivariate data [41]. It takes as input a multi-
variate function defined on the data and produces a topological summary of the data
using a cover of the range space of the function. For a given cover, such a summary
converts the mapping into a simplicial complex suitable for data exploration.

In this paper, we take a constructive viewpoint of a multivariate function f :
X→ Rd defined on a topological space X and consider it as a vector of continuous,
real-valued functions defined on a shared domain, f = (f1,f2, · · · ,fd),fi : X→ R,
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where each fi (referred to as a filter function) gives rise to a univariate mapper
(or mapper construction). We investigate a method for stitching a pair of univariate
mappers together and study topological notions of information gains, referred to as
topological gains, from such a process. Our notion of topological gain is loosely
inspired by the concept of information gain used in the construction of decision
trees, which is computed by comparing the entropy of the dataset before and after
a transformation. Topology gain, in our context, measures the change in topological
information by comparing the homology or entropy of themapper before and after the
stitching process. In particular, we aim to assign a measure that captures information
about how each filter function contributes to the topological content of the stitched
result, and how the two filter functions are topologically correlated.

We are also inspired by the ideas of stepwise regression for model selection
and scatterplot matrices for visualization. For a set of variables x1,x2, . . . ,xd, the
stepwise regression [20, 29] iteratively incorporates variables into a regressionmodel
based on some criterion. A measure of topological gain can be used as a criterion
for choosing filter functions and constructing a single “best” multivariate mapper.
The scatterplot matrix [21] shows all pairwise scatterplots for the set of variables
on a single d×d matrix, where each scatterplot illustrates the degree of correlation
between two variables. We are interested in a topological analogue of the scatterplot
matrix for a set of filter functions f1,f2, . . . ,fd, referred to as mapper matrix, and in
studying the degree of topological correlation between filter functions.
Contributions. Our contributions are as follows:

• We define a composition (or stitching) operation for mappers (Definition 1) and
show its equivalence to the standard construction (Theorem 1). We then provide
an algorithm for carrying out this composition (Algorithm 1). Although the
composition produces identical results as the standard construction, we focus
on interrogating the composition process itself to study and quantify structural
differences between a bivariate mapper and its corresponding univariate mappers.

• We consider three measures that quantify topological gains during the stitching
process (Sect. 6). To the best of our knowledge, this is the first time information-
theoretic measures are used in the study of mapper constructions.

• We end by describing our efforts in studying topological gains between filter
functions via interactive visualization of a mapper graph matrix, using synthetic
and real-world datasets.

• Our visualization tool is open source via GitHub at https://github.com/
tdavislab/mapper-stitching.

2 Related Work

The mapper construction can be considered as a discrete approximation [35] of the
Reeb space [19], which is a topological descriptor of a multivariate function. The
Reeb graph is a special type of a Reeb space for a univariate function, which has

https://github.com/tdavislab/mapper-stitching
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been actively studied in recent years [4]. Similarly, the mapper graph is a special
type of mapper for a univariate function, approximating the Reeb graph under certain
conditions [6]. The mapper construction has emerged as a practical and effective tool
to solve a number of problems in data science [1, 31, 36, 38, 39]. The mapper con-
struction has a number of variants, including the α-Reeb graph [11], extended Reeb
graph [3], multi-resolutional Reeb graph [28], multiscale mapper [14], multinerve
mapper [9], joint contour net [7, 8], and enhanced mapper graphs [6]; see [49] for a
survey.

Although the mapper construction has been widely appreciated by the practi-
tioners, many open questions remain regarding its theoretical properties, such as its
information content [9, 15, 24], stability [6, 9], and convergence [2, 15, 35, 41];
see [6] for a discussion. The mapper construction can be considered as a “lossy
compression” of the information from the original data. To quantify its information
content, Dey et al. [15] showed that the 1-dimensional homology of the mapper is
no richer than the domain itself. Carriére and Oudot [9] quantified the information
encoded in the mapper using the extended persistence diagram of its corresponding
Reeb graph. Different from previous approaches, our work quantifies the topological
gain (in an information-theoretic sense) of a bivariate mapper when it is constructed
by stitching a pair of univariate mappers.

There are several open-source implementations of the mapper algorithm, includ-
ing PythonMapper [34],KeplerMapper [47, 48], giotto-tda library [43],Gudhi [44],
Mapper Interactive [50], and its domain-specific adaptations [30, 51]. In particular,
Mapper interactive provides a simple but effective strategy for speeding up mapper
graph computations by precomputing the distance matrix of points within each in-
terval using a highly optimized function within scikit-learn [50]; it also comes with
a GPU implementation.

Hajij et al. [26] studied the computation of mapper in parallel. The main idea is
to decompose the computation onto a set of processors by decomposing the space
of interest into multiple smaller, partially overlapping subspaces. Each subspace is
processed independently by a processing unit, resulting in a mapper construction on
the subspace. The final mapper graph on the entire space is obtained by merging
together the individual pieces gathered from subspaces.

In comparison with the work of Hajij et al. [26], we focus on a completely
different problem. Their approach [26] produces a final mapper graph by stitching
together mapper graphs constructed from spatially distributed individual subspaces;
while our Algorithm 1, in the univariate setting, produces a final mapper graph
by stitching together mapper graphs constructed from individual filter functions.
Specifically, each filter function gives rise to a univariate mapper. We stitch two
univariate mappers into a bivariate mapper and study the topological gains from the
stitching process using information theory. In the univariate setting, although both
approaches produce the same final mapper graph, our work is not about the efficient
computation of the mapper construction, but rather, we care about the stitching
process itself and how much information is gained during the stitching process,
moving from a univariate mapper to a multivariate mapper.
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3 Main Theoretical Result

We assume the readers are familiar with concepts in algebraic and computational
topology such as homology (see the book by Edelsbrunner and Harer [17] for an
introduction). Given a space X, a function f : X→ Rd, and a cover U = {Ui} of
f(X), we define the pullback cover f∗(U) ofX as the cover obtained by decomposing
each f−1(Ui) into its path-connected components ∪ki

j=1uij . The mapper [41] is
then a simplicial complex defined as the nerve of this pullback cover M(f,U) :=
Nrv(f∗(U)).
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Fig. 1: The mapper of a height function f defined on a 2-dimensional point cloud
sample X of a circle. Mapper parameters: n = 5, p = 33%.

For simplicity, we describe the mapper construction by assuming X to be a point
cloud equipped with a univariate function f :X→R. Several parameters are relevant
to the construction of its mapper. First is the number of intervals (of uniform lengths)
in the cover U of f(X), denoted as n and referred to as the resolution, giving the
cover U = {U1, . . . ,Un}. Second is the amount of overlap p between the intervals
in U (e.g., 20% overlap). Finally, there are parameters associated with a clustering
algorithm (e.g., DBSCAN [22]) that clusters points in f−1(Ui) into connected
components. These clusters of points form a pullback cover of X, and the mapper
is the nerve of such a cover. An example of a univariate mapper is shown in Fig. 1
for a height function f : X→ R defined on a 2-dimensional point cloud sample of a
circle, for n = 5 and p = 33%. Note that the inverse f−1(Ui) of the red interval Ui is
decomposed into two clusters ui1 and ui2, forming part of the pullback cover of X.

On the other hand, if f becomes a bivariate function, f = (f1,f2) for fi : X→ R
(i = 1,2), then the cover of f(X) consists of rectangles and the resulting mapper is
referred to as a bivariate mapper.

Definition 1 (Composition) Given f,g :X→R and covers U = {Ui} and V = {Vj}
of their respective images f(X) and g(X), we construct a composed cover W of X
from f∗(U) and g∗(V) by taking the connected components of the set {U ′ ∩V ′ |
∀U ′ ∈ f∗(U),∀V ′ ∈ g∗(V),U ′ ∩V ′ , ∅}, where U ′ ∈ f∗(U) and V ′ ∈ g∗(V) are
path-connected cover elements of X:

W ={Wk | ∪kWk = U
′∩V ′,∀U ′ ∈ f∗(U),∀V ′ ∈ g∗(V),U ′∩V ′ , ∅,

Wk is path-connected}.
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We define the composed mapper as the nerve of this cover W ,

S(M(f,U),M(g,V)) :=Nrv(W).

Under certain assumptions, this compositionS is equivalent to the traditional method
of constructing mappers from a pair of filter functions, as described by Theorem 1.

Theorem 1 If f and g are continuous real-valued functions, Ui, Vj , and Ui×Vj

are simply connected for all i, j, then S(M(f,U),M(g,V)) =M((f,g),U×V), the
bivariate mapper constructed in the traditional manner.

Proof sketch. The proof follows directly from properties of continuous functions and
connected sets. We provide a sketch here. Starting with the two covers associated
with the two univariate mappers,U for f and V for g, we can show that the defined set
W and the cover obtained from the traditional mapper construction are equivalent.
Taking the nerve of each, we conclude that the resulting mappers are equivalent as
well. See Sect. 5 for details.

Furthermore, we give an algorithm (Algorithm 1) that illustrates how the compo-
sition can be considerably simplified by directly incorporating simplex information
from each of the two input mappers. The algorithm that combines (or stitches)
two mappers together works by tracking vertices (i.e., representatives of the path-
connected pull back cover elements as a result of the Nrv operation) of the first
mapper in a breadth first search fashion and combining them with vertices of the
second mapper. The simplices in both mappers provide hints about which possible
simplices could be in the composition. Using this information to avoid many explicit
intersection checks, we can considerably simplify and speed up the composition pro-
cess. Although some simplices from each univariate mapper can be added directly
to the composition (the STITCH step), others require explicitly checking the nerve
condition in the mapper construction (the FIX step).

We recall the relevant notation used in the following sections. Given f,g : X→
R, let U = {Ui} and V = {Vj} denote the cover of their images f(X) and g(X),
respectively. Let {U ′} and {V ′} denote the sets of path-connected cover elements of
X in the pullback covers, f∗(U) and f∗(V), respectively. Let {u} and {v} represent
the set of vertices in the mappersM(f,U) andM(g,V), respectively. LetW = {W}
denote the composed cover ofX, and {w} the set of vertices for the composed cover,
that is, w =Nrv(W ).

4 Algorithm

The stitching (composition) algorithm, as shown in Algorithm 1, has two main
phases, STITCH for each cover element and FIX across cover elements. The STITCH
phase takes all vertices from the first mapper in each cover element and stitches
them together with all vertices in the second mapper. All simplices within the cover
element of the secondmapper will be inherited in the composition. The second phase
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FIX addresses simplices that cross between cover elements and uses an auxiliary
procedure COMPLETE to construct simplices that cannot be derived directly from
simplices in either of the two input mappers.

Suppose we have two filter functions, f,g : X→ R together with covers of their
images, U = {Ui} and V = {Vj}. We define a function, µ(·) that takes a vertex v in
M(f,U) :=Nrv(f∗(U)) and returns a path-connected cover element of X to which
the vertex belongs. For a cover element Ui ∈ U (referred to as an interval set of
f(X)), we consider a vertex v ∈M(f,U) to be in the interval setUi if f(µ(v))⊆Ui.
We say a simplex σ satisfies the nerve condition if ∩iµ(vi) , ∅ for all vi ⊂ σ.

For each cover element Ui ∈ U , the algorithm iterates over each path-connected
component of f∗(Ui)∩g∗(V). Hence there exists a unique cover elementWjh of X
in {W} in Line 5 of STITCH for vj corresponding to the h-th component (for some
h) in µ(vj)∩f∗(Ui). Also, vertex u in Line 3 of FIX is unique.

InAlgorithm 1, the set {u} and {v} contain vertices whereas the set {W} contains
path-connected cover elements of X (we use vertex w for Nrv(W )). We make use
of the notion of p-completion in COMPLETE. For a p-dimensional simplicial complex
Σ, its p-dimensional completion [25] is defined to be:

Σ∪

{
τ ∈

(
Σ(0)

p+1

)∣∣∣(τ \v) ∈ Σ,∀v ∈ τ
}
,

where Σ(0) is the vertex set of Σ. In our use, we reduce the set to include only
simplices that satisfy the nerve condition. We illustrate the steps of Algorithm 1 on
a simple space X in Fig. 2.

Asymptotically, Algorithm 1 does not improve the runtime in comparison with
the traditional algorithm in computing a bivariate mapper. However, it provides a
different perspective in constructing a bivariate mapper from stitching together a pair
of univariate mappers. Understanding such a stitching process gives a detailed view
of structural differences between the bivariate mapper and the univariate mappers.

5 Proof of Theorem 1

The following proof for Theorem 1 shows that the composition of two univariate
mappers is equivalent to the mapper directly constructed from a bivariate func-
tion encoding both filter functions. The proof follows directly from properties of
continuous functions and connected sets.

Proof Given a pair of filter functions f,g : X→ R equipped with covers of their
images U = {Ui} and V = {Vj}, respectively, we define h = (f,g) : X→ R2. The
pullback coverW = h∗(U×V) is constructed from a cover of the image h(X) in the
traditional manner. That is, the nerve of W gives the traditional bivariate mapper.

Recall in Definition 1 that W is the path-connected components of the set {U ′∩
V ′ | ∀U ′ ∈ f∗(U),∀V ′ ∈ g∗(V),U ′ ∩ V ′ , ∅}. This proof will show that W is
equivalent to W .
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Algorithm 1Mapper Composition
Input: M(f,U), M(g,V)
Output: S(M(f,U),M(g,V))
1: M ←{} . An empty simplicial complex
2: W ←{} . Composed cover of X; empty at start
3: for Ui ∈ U do
4: {u}← {vertex u ∈M(f,U) | f(µ(u))⊆ Ui}
5: {v}← {vertex v ∈M(g,V) | f(µ(v))∩Ui , ∅}
6: {W}← {Wk | ∪kWk = µ(ui)∩µ(vj), for ui ∈ {u},vj ∈ {v},Wk is path-connected}
7: M ← STITCH(M , {v}, {W})
8: W ←W ∪{W}
9: M ← FIX(M ,W)
10: returnM
1: procedure STITCH(M , {v}, {W}) . Add vertices and within-interval simplices
2: K← subcomplex ofM(g,V) induced by {v}
3: for j← 1, . . . , |{v}| do
4: for h← 1,2, . . . , lj do . Repeat for each of the lj components of µ(vj)∩f∗(Ui)
5: K← (K \vj)∪wjh . Replace vj with wjh =Nrv(Wjh)
6: M ←M ∪K
7: returnM
1: procedure FIX(M ,W) . Add cross-interval simplices
2: forW ∈W do
3: u← vertex u ∈M(f,U) whereW ⊆ µ(u).
4: Σ←{}
5: for σ ∈ {σ | u⊂ σ,simplex σ ∈M(f,U)} do
6: σw← (σ \u)∪w . Replace u with w =Nrv(W ) in the new simplex
7: if σw satisfies the nerve condition of σ as before then
8: Σ← Σ∪σw

9: M ←M ∪Σ
10: M ← COMPLETE(M)
11: returnM
1: procedure COMPLETE(Σ) . Add higher order simplices
2: i← 2
3: while i≤ dim(Σ)+1 do
4: Σ

′←
{
τ ∈
(
Σ

(0)

i+1
)∣∣(τ \v) ∈ Σ,∀v ∈ τ,τ satisfies the nerve condition

}
5: Σ← Σ∪Σ′
6: i← i+1
7: return Σ

First, we show that W ⊆W . Let W ∈W be any path-connected cover element
of X. By definition of the mapper and the refinement, we have W ⊆Wi for some
Wi = h

−1(Ui×Vj), Ui ∈ U and Vj ∈ V . Thus, h(W ) ⊆ Ui×Vj . Note that Wi is
not necessarily path-connected.
h(W ) can be further projected along the two filter functions such that f(W ) ⊆

Ui and g(W ) ⊆ Vj . Hence, W ⊆ f−1(Ui) and W ⊆ g−1(Vj). Therefore, W ⊆
f−1(Ui)∩g−1(Vj). SinceW is path-connected, it must be the intersection of path-
connected components from f−1(Ui) and g−1(Vj), respectively. That is, we must
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x

z

y

a b c

d e f

Fig. 2: Illustration of Algorithm 1. (a) The space X is a half-cylinder in R3 with
height along the z-axis. We consider f = x and g = z. (b) Cover U = {U1,U2}
of f(X), path-connected pullback cover elements shown in red (for U1), and in
orange and purple (for U2), and the mapper M(f,U). (c) Cover V = {V1,V2,V3}
of g(X), corresponding path-connected pullback cover elements (in dark blue, sky
blue, green), and the mapperM(g,V). The composite cover W consists of 9 path-
connected cover elements determined by the intersection of each element of f∗(U)
(in red, orange, and purple) with each element of g∗(V) (dark blue, sky blue, and
green). The corresponding vertices in the composite mapper are shown with these
pairs of colors. (d) The mapper compositionM after the STITCH phase of Algorithm
1. (e) M after the first stage of FIX phase (before running COMPLETE). M is still
1-dimensional at this stage. (f) The final composite mapper S(M(f,U),M(g,V))
after the COMPLETE phase, which adds the four tetrahedra (indicated by the pink
diagonals) after adding the corresponding triangles which are their faces.

have W = U ′ ∩V ′ for some path-connected components U ′ ∈ f−1(Ui) and V ′ ∈
g−1(Vj). Therefore,W ∈W; thusW ⊆W .

Second, we consider the cover W of X used to construct S(M(f,U),M(g,V)).
We show that W ⊆W . Take a path-connected element W ∈W . By definition,
W ⊆ U ′∩V ′ for some path-connected U ′ ∈ f∗(U) and V ′ ∈ g∗(V). Thus, we have
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W ⊆ U ′ ∈ f−1(Ui) for some Ui ∈ U and similarly W ⊆ V ′ ∈ g−1(Vj) for some
Vj ∈ V . Thus, we have f(W )⊆Ui and g(W )⊆ Vj . It follows that h(W )⊆Ui×Vj ,
and therefore,W ⊆ h−1(Ui×Vj).

This observation shows thatW andW are equivalent. Since both constructions of
the mapper derive from the same cover, the resulting mappers must be equivalent.�

6 Quantifying Topological Gains

Theorem 1 and Algorithm 1 inspire us to think about ways to quantify structural
differences between a bivariate mapper and its corresponding univariate mappers.
Moving from theory to practice, we consider threemeasures that quantify topological
gains during the stitching process using homology or entropy. These measures are
straightforward to compute, and use only information within each interval set from
the STITCH phase of the composition algorithm. We aim to give simple quantitative
measures describing the change in information content from a univariate mapper
construction to a bivariate mapper construction. Although these measures do not
capture the complete connectivity information across interval sets, they provide a
quantitative assessment of the stitching process both globally and locally.
Notations. Before introducing these measures, we first introduce a few notations
regarding mappers and mapper graphs restricted to interval sets. Given mappers
Kf :=M(f,U) and K(f,g) :=M((f,g),U ×V), let Kf (Ui) be the subcomplex of
Kf restricted to the interval Ui ∈ U , and similarly letK(f,g)(Ui) be the subcomplex
ofK(f,g) restricted to the interval Ui.

We consider two types of restrictions. We construct interior subcomplexes
K̊f (Ui) by considering the subcomplexes ofKf induced by vertices x ∈Kf whose
function values f(x) fall in the intervalUi.We also construct boundary subcomplexes
Kf (Ui) by considering all σ ∈ K̊f (Ui) and their cofaces. Recall the star of a simplex
in a simplicial complexK consists of all its cofaces inK, St(σ) = {τ ∈K | σ ≤ τ}.
Then we have Kf (Ui) = {St(σ) | σ ∈ K̊f (Ui)}. Similarly, we define K̊(f,g)(Ui)
and K(f,g)(Ui). If Kf and K(f,g) are replaced by their 1-dimensional skeletons
(referred to as theirmapper graphs) denoted asGf andG(f,g), respectively, then we
speak of interior subgraphs G̊f (Ui) and boundary subgraphs Gf (Ui) accordingly.

Both localized homological difference (Sect. 6.1) and local relative Euler char-
acteristics (Sect. 6.2) are applicable to the mapper subcomplexes and mapper sub-
graphs, whereas the localized entropy differences (Sect. 6.3) are applicable only to
the mapper subgraphs.
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6.1 Localized Homological Difference

The localized homological difference (LHD) compares the Betti numbers for each
interval set between the two mapper constructions. This measure bears a weak
resemblance to the approach taken by Edelsbrunner et al. [18], where local and global
comparison measures are introduced for a pair of real-valued functions defined on
a common domain; in particular, such measures can be related to the set of critical
points from one function to the level sets of the other.

Intuitively speaking, the LHD characterizes the homological information gain
during the composition (stitching) process. Starting with a mapper Kf associated
with the first function f , LHD studies what happens within each interval set while
stitching a mapperKg associated with the second function g. Let βp(K) denote the
p-th Betti number of a simplicial complexK.

Definition 2 (Localized Homological Difference) Let Kf :=M(f,U) be the first
mapper andKg :=M(g,V) the second.We define LHDp as a vector that quantifies the
amount of p-dimensional homological information gained by stitching the second
mapper onto the first one within each interval setUi ∈ U . That is, we define localized
homology (LH) vectors βf

p and β(f,g)
p to encode homological information associated

with each mapper subcomplex and compute their difference (suppose |U | = k),

βf
p =

(
βp(Kf (U1),βp(Kf (U2), . . . ,βp(Kf (Uk))

)
, (1)

β
(f,g)
p =

(
βp(K(f,g)(U1)),βp(K(f,g)(U2)), . . . ,βp(K(f,g)(Uk))

)
, (2)

LHDp

(
Kf ,K(f,g)

)
= β

(f,g)
p −βf

p . (3)

Here,Kf (Ui) andK(f,g)(Ui) represent either interior or boundary subcomplexes.
Example 1 below demonstrates the LHD calculation for p = 1 on a cylinder, using

interior subcomplexes. Consider a cylinder embedded in a 3-dimensional space
centered on the origin with a circle along the x-y plane and the tube rising along the
z-axis. Suppose we have three filter functions that represent the projection along the
x, y, and z axes, respectively. For simplicity, let us denote these filter functions as x,
y, and z. The cover of each filter function is made of three equal length intervals with
small overlaps spanning the range. Clearly, the images of filter functions x and y are
nearly identical whereas that of z is distinct. LetKx :=M(x,U) andKz :=M(z,V)
denote the univariate mappers associated with filter functions x and z, respectively.
Also letK(x,z) :=M((x,z),U ×V) be a bivariate mapper.

Example 1 (LHD1 on a cylinder)

LHD1
(
Kx,K(x,z)

)
=

0−0
0−0
0−0

 =
0

0
0
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LHD1
(
Kz,K(x,z))

)
=

1−0
1−0
1−0

 =
1

1
1


To illustrate this example, consider the first interval set of the x projection. Kx

has 1 vertex in U1 ∈ U . K(x,z) restricted to U1 then consists of a line of 3 vertices
with 2 edges. Thus, for the first entry in LHD1, we have

β1
(
K(x,z)(U1))−β1(Kx(U1)

)
= 0−0 = 0.

In contrast, the first interval set of Kz contains 1 vertex, whereas K(x,z) within the
same interval set contains a loop. Thus, for the first interval V1 ∈ V ,

β1
(
K(x,z)(V1))−β1(Kz(V1)

)
= 1−0 = 1.

This example shows that more homological information is gained with respect to the
first homology class by stitchingKx (i.e., the mapper of filter function x) toKz than
by stitchingKz (i.e., the mapper of the filter function z) toKx.

These LHD vectors have some interesting properties. For instance, we know that
LHD0 = 0 when stitching the mapperKx toKz , since including more filter functions
will not split any path-connected components; otherwise, they would have been
represented by a cover element of the filter function z in the univariate mapper Kz

already. Additionally, LHD can be shown to be always nonnegative.

6.2 Local Relative Euler Characteristic

The local homology (LH) vectors can be summarized with the local relative Euler
characteristic (LREC) by computing the Euler characteristic restricted to each interval
set, that is, the alternating sums of each homology class vector. Let χ(K) denote the
Euler characteristic of a simplicial complexK.

Definition 3 (Local Relative Euler Characteristic)Given a pair of mappersKf :=
M(f,U) and Kg =M(g,V), we define LREC as a vector that captures the extent to
whichKg effects the Euler characteristic within each interval set Ui ∈ U by stitching
Kg with Kf . That is, we define Euler characteristic vectors for Kf and K(f,g) and
compute their difference,

χf =
(
χ(Kf (U1)),χ(Kf (U2)), . . . ,χ(Kf (Uk))

)
, (4)

χ(f,g) =
(
χ(K(f,g)(U1)),χ(K(f,g)(U2)), . . . ,χ(K(f,g)(Uk))

)
, (5)

LREC
(
Kf ,K(f,g)

)
= χ(f,g)−χf . (6)

Example 2 below demonstrates the LREC calculation on the cylinder fromExample 1.

Example 2 (LREC on a cylinder)
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LREC
(
Kx,K(x,z)

)
=

1−1
2−2
1−1

 =
0

0
0



LREC
(
Kz,K(x,z)

)
=

0−1
0−1
0−1

 =
−1
−1
−1


As before, we illustrate this computation on a single interval set. First, consider

the first interval set U1 of the x projection. Kx has one vertex in U1 (based on
its corresponding interior subcomplex), so χ(Kx(U1)) = 1. K(x,z) restricted to the
interval U1 contains a line of 3 vertices with 2 edges, so χ(K(x,z)(U1)) = 3−2 = 1.
Thus, for the first entry in LREC, we have

χ(K(x,z)(U1))−χ(Kx(U1)) = 1−1 = 0.

In contrast, the first interval set of Kz contains 1 vertex, that is χ(Kz(V1)) = 1;
whereasK(x,z) within the same interval set contains a loop, that is, χ(K(x,z)(V1))=
0. Thus, for V1 ∈ V ,

χ(K(x,z)(V1))−χ(Kz(V1)) = 0−1 =−1.

However, the LREC being negative does not necessarily mean that the topological
information has decreased. The Euler characteristic does not scale with the expected
information change in an intuitive way, and so LREC may be a less interpretable
measurement in comparison with LHD.

6.3 Localized Entropy Differences

Finally, the localized entropy difference (LED) compares the graph entropy for each
interval set between two mapper graphs. Graph entropy was introduced [37, 45] to
measure the structural complexity of a graph,where it was originally referred to as the
topological information content [37] of a graph. This is fitting for our purpose since
we are interested in measuring the change of topological information content from
a univariate mapper graph to a bivariate mapper graph. A number of graph entropy
measures exist, see the survey by Dehmer and Mowshowitz [13]. We generalize and
implement two of them in our visualization tool, although our framework is easily
extendable to other entropy measures. For the remainder of this section, mapper
graphs Gf and G(f,g) represent the 1-skeletons of mappers Kf :=M(f,U) and
K(f,g) :=M((f,g),U ×V), respectively.

Definition 4 (Localized Entropy Difference) Given a pair of mapper graphs Gf

andG(f,g), we define LED as a vector that captures the extent to whichGg affects the
graph entropy within each interval set Ui ∈ U . That is, we define localized entropy
(LE) vectors for Gf and G(f,g) and compute their difference,
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Hf =
(
H(Gf (U1)),H(Gf (U2)), . . . ,H(Gf (Uk))

)
, (7)

H(f,g) =
(
H(G(f,g)(U1)),H(G(f,g)(U2)), . . . ,H(G(f,g)(Uk))

)
, (8)

LED
(
Gf ,G(f,g)

)
=H(f,g)−Hf . (9)

Here,Gf (Ui) andG(f,g)(Ui) can be either interior or boundary mapper subgraphs.
H represents a certain notion of entropy. We introduce two types of LEDs, based on
distance matrices and adjacency matrices, respectively.
Graph entropy based on the distance matrix. For an unweighted connected graph
G, Bonchev and Trinajstić [5] introduced an entropy measure based on its graph
distance matrix D. This measure originates from a notion in information theory
called the information content (i.e., Shannon entropy) of a system.

Assume a system S contains N elements. Consider all the N elements are parti-
tioned intom groups, andNi is the number of elements in the i-th group. We define
the probability pi for a randomly selected element of S to be found in the i-th group
as pi =

Ni
N . Specifically, we work with the mean information content of one element

of the system, defined by Shannon’s relation

H(S) =−Σm
i=1pi logpi. (10)

To apply Eq. (10) to the setting of a graph G with N vertices and introduce an
information measure on its distance matrix D, we consider all N2 matrix elements
in D as elements of a system. Since G is an unweighted graph, the distance of a
value i (where 0 ≤ i ≤N −1) appears 2ki times in D. Let m be the highest value
of i, which equals the diameter of the graph. Then a total ofN2 matrix elements are
partitioned intom+1 groups, which correspond to distances valued at {0,1, . . . ,m}
respectively, where the value of 0 shows up N times. We associate each group
with the probability for a randomly chosen distance to be in the i-th group. That is,
pi =

2ki
N2 and p0 =

N
N2 =

1
N . Applying Eq. (10) tom+1 groups, themean information

on distances of a graph G is defined as [5, Eq. (8)]

HD(G) =− 1
N

log( 1
N

)−Σm
i=1

2ki

N2 log(2ki

N2 ). (11)

In this paper, we generalize Eq. (11) to graphs with multiple connected components
by considering ∞ as an additional possible value in the distance matrix D. That
is, we define p∞ = 2k∞

N2 , where 2k∞ is the number of times a value∞ appears in
D. Therefore, for a graph G whose matrix D might contain∞ (that is, G contains
multiple connected components), we apply Eq. (12) with m+2 groups to define a
mean entropy on distance,

HD(G) =− 1
N

log( 1
N

)−Σm
i=1

2ki

N2 log(2ki

N2 )− 2k∞
N2 log(2k∞

N2 ). (12)

Based on Eq. (12), we define LED based on distances as
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LEDD

(
Gf ,G(f,g)

)
=H

(f,g)
D −Hf

D. (13)

Intuitively speaking, HD(G) captures the information on the distribution of dis-
tances in the graph; it has been shown to be useful experimentally in studying the
branching of graphs having different numbers of vertices [5]. Therefore, LEDD quan-
tifies changes in branching structures moving from a univariate to a bivariate mapper
graph.
Graph entropy based on the adjacency matrix. Mackenzie [32] proposed an
entropy based on an adjacency matrix, which was employed by Sen et al. [40] to
study brain networks. For a weighted graph G, let wij be the weight of edge eij

between vertices vi and vj . Let W = Σeij∈E(wij) be the total edge weight. The
probability of correlation between vi and vj is defined [40, Eq. 5] as

qij =

{
wij

W when i , j, and
0 when i = j.

The mean entropy on adjacency is then defined as [40, Eq. 6]

HA(G) =−Σeij∈E (qij log(qij)) . (14)

We extend Eq. (14) to handle mapper subgraphs that are not necessarily connected
by considering qij = 0 when vi and vj belong to different connected components of
G. Based on Eq. (14), we define LED based on adjacencies as

LEDA

(
Gf ,G(f,g)

)
=H

(f,g)
A −Hf

A. (15)

Intuitively, HA(G) captures the centrality property of a graph: it varies inversely
with respect to the structural centrality of G, that is, HA(G) increases as the graph
becomes decentralized [32]. It can be used to compare a pair of graphs of different
sizes, where a graph with a smaller entropy indicates more centrality thus less
randomness [40] in its structure. Therefore, LEDA quantifies changes in centrality
moving from a univariate to a bivariate mapper graph.
Remarks. Finally, we note that a number of entropy measures are defined for sim-
plicial complexes (e.g., [12]), which may be applicable to mappers (not just mapper
graphs). This is left for future work.

7 Visualizing Topological Gains

We provide a tool that visualizes topological gains during the stitching process. We
experiment with two synthetic 2- or 3-dimensional point cloud datasets together
with four classic datasets in machine learning, the Boston Housing dataset, the Iris
dataset, the Breast Cancer dataset, and the Wine Quality dataset, some of which
are available via the UCI Machine Learning Repository [16]. We also explore two
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real-world datasets, a phenomics dataset referred to as the KS/NE dataset and a
breast cancer dataset referred to as the NKI dataset. For each dataset X, we compare
mapper graphsGf andG(f,g) constructed based on a pair of variables f,g :X→ R.
We implement localized homological differences in dimensions 0 and 1 (denoted as
LHD0 and LHD1), as well as localized entropy differences based on distances (LEDD)
and adjacencies (LEDA), respectively.
Implementation details.We implement the tool using HTML/CSS/JavaScript stack
with D3.js and JQuery libraries. It interfaces with a Python backend using a Flask-
based server. The tool is an extension of Mapper Interactive [50], which is an
extendable and interactive toolbox for the visual exploration of high-dimensional data
using the mapper algorithm. In particular, Mapper Interactive uses an accelerated
modification of KeplerMapper [47] to compute mapper graphs in a scalable way.

7.1 Visualization Interface

We begin with an example of a 2-dimensional point cloud X = {(xi,yi)} containing
two nested circles in Fig. 3a to illustrate our main visualization interface. Themapper
graph parameters are n = 7, p = 5%. The two filter functions are chosen to be the x-
and y-coordinates of the points, x,y : X→ R.

The main display is in the form of a mapper graph matrix, shown in Fig. 3 .
As illustrated in Fig. 3, we construct univariate mapper graphs Gx in (b) and Gy

in (e) for variables x and y, respectively, that are placed along the diagonal of
the mapper graph matrix. We construct bivariate mapper graphs G(x,y) in (c) and
(d), respectively, which are shown off-diagonal. The mapper graphs are drawn with
force-directed layouts. Nodes are colored by the index of intervals, where indices 1
to 7 correspond to the color light blue, dark blue, light green, dark green, pink, red,
and orange, respectively.

For each mapper graph, we report its associated 0-dimensional local homology
(LH) vectors w.r.t. the interior mapper subgraphs. For instance, in Fig. 3e, the LH
vector βy

0 = (1,2,3,4,3,2,1) captures the number of connected components for the
univariate mapper graphGy of variable y. The LH vector β(x,y)

0 = (1,2,3,4,3,2,1)
in Fig. 3d similarly captures the distribution of connected components for the bivari-
ate mapper graph G(x,y) along the intervals for y. For each bivariate mapper graph
G(x,y), we also report its localized homological difference (LHD0) w.r.t.Gx andGy ,
respectively. For instance, LHD0(Gx,Gx,y) = 0 (Fig. 3c) and LHD0(Gy,Gx,y) = 0
(Fig. 3d, due to symmetry).

In general, within a mapper graph matrix, univariate and bivariate mapper graphs
are placed on and off the diagonal, respectively. For each mapper graph, the graph
nodes are colored by the intervals they belong to: they are either colored by interval
indices or by the value of a measure attached to each interval. The rectangle bars on
the right of each mapper graph demonstrate the vector of either LH or LE restricted to
the interval sets. They are either colored by interval indices (Fig. 3), or by a continuous
colormap associated with the values of a chosen measure. For the bivariate mapper
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a

b c

d e

Fig. 3: Two Circles dataset: the mapper graph matrix with LHD0. Graph nodes are
colored by interval indices.

graphs, we also display LHD/LED between the bivariate and univariate mapper graphs.
Such differences are computed by subtracting the values of LH or LE in a univariate
mapper graph from the values in a bivariate mapper graph on the same row.

By looking at LHD or LED, we would know how much topological information
is gained during the stitching process. In addition, by comparing the LHD or LED
between two bivariate mapper graphs, we could identify the variables with high
LHD/LED values. Such a variable is considered to be more important than the other
variables in terms of extracting topological information of a given point cloud. More
detailed explanations of such comparisons will be provided in the examples below.

7.2 Cylinder

Our first example is to reproduce the result of Example 1 by generating a 3-
dimensional cylinder point cloud X = {(xi,yi,zi)}, where the x-, y-, and z-
coordinates correspond to the three filter functions, respectively. The point cloud
is shown in Fig. 4a. The mapper graph parameters are n = 3, p = 15%. The two filter
functions are chosen to be the x- and z- coordinates of the points, x,z :X→ R. The
two univariate mapper graphs Gx in Fig. 4b and Gz in Fig. 4e for variables x and
z, respectively, are placed along the diagonal of Fig. 4. The bivariate mapper graphs
G(x,z) are off diagonal in Fig. 4c and Fig. 4d, respectively.

For each mapper graph, we report its associated 1-dimensional local homology
(LH) vectors w.r.t. the interior mapper subgraphs. The results confirm our previous
computation in Sect. 6.1 that LHD1 increases when stitching Gx to Gz , while LHD1
does not increase when stitching Gz to Gx (see Fig. 4d and Fig. 4c).
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a

b c

d e

Fig. 4:Cylinder dataset: themapper graphmatrixwith LHD1. Graph nodes are colored
by interval indices.

7.3 Sphere

a

b

d

c

e

Fig. 5: Sphere dataset: the mapper graph matrix with LEDA. Graph nodes are colored
by LE measures restricted to the interval sets.

Our second example is a 3-dimensional point cloud sampled from the surface of
a sphere (Fig. 5a). We again choose 2 of the 3 dimensions (x and y) to compute the
mapper graphs Gx and Gy , as well as the boundary mapper subgraphs. The mapper
parameters are n = 6, p = 15%. In this example, we observe the information content,
quantified by localized entropy difference (LED) based on adjacencies (LEDA),



18 Youjia Zhou, Nathaniel Saul, Ilkin Safarli, Bala Krishnamoorthy, Bei Wang

increases in the bivariate mapper graphs, especially for the intervals capturing the
top and bottom of the sphere. For instance, the localized entropy (LE) vectors Hx,
H(x,y), and their difference are shown in Fig. 5b and Fig. 5c, respectively, where

Hx =
(
0.00, 0.69, 1.39, 1.39, 0.69, 0.69

)
,

H(x,y) =
(
4.50, 4.50, 4.68, 4.68, 4.68, 4.65

)
,

LEDA(Hx,H(x,y)) =
(
4.50, 3.81, 3.29, 3.29, 3.99, 3.96

)
.

In this example, LHD does not give much information in dimension 0 since βx
0 =

β
(x,y)
0 = (1,1,1,1,1,1), hence giving LHD0 = 0.

7.4 Boston Housing Dataset

Our third example is the classic BostonHousing dataset [27], which contains housing
information in the Boston area collected by the U.S. Census Service. It contains 14
attributes per data point, including CRIM (per capita crime rate by town), RAD
(index of accessibility to radial highways), and ZN (proportion of residential land
zoned for lots over 25,000 sq. ft.). We chose three attributes as variables to compute
the mapper graphs: RM, which is the average number of rooms per dwelling, TAX,
which is the full-value property-tax rate per 10,000 dollars, and MEDV, which
is the median value of owner-occupied homes in 1000’s of dollars, using mapper
parameters n= 10, p= 15%. We compute LED based on distances, denoted as LEDD,
for boundary mapper subgraphs. For instance, for variables RM and TAX (Fig. 6c,
Fig. 6d),

HRM = (0.69,0.69,0.69,1.4,1.35,1.34,1.22,1.06,0,0),

H(RM,T AX) = (0,0,1.26,1.84,1.73,1.14,1.06,0,0),

LEDD(HRM ,H(RM,T AX)) = (−0.69,−0.69,0.57,0.44,0.45,0.39,−0.08,0,0,0).

Themapper graph matrix complements the scatter plot matrix in Fig. 6. In particular,
we observe globally that stitching the mapper graph GT AX to GRM has a higher
global LED (0.48) in comparison to stitching GMEDV to GRM (0.20), which is
aligned with the observation that RM vs. TAX are less correlated than RM vs.MEDV
(see the scatter plots in Fig. 6a and Fig. 6b). Understanding the relation between
topological gains and correlations among variables will be an interesting future
direction.
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a b

dc

a b

edc

Fig. 6: Boston Housing dataset. Top: the scatter plot matrix. Bottom: the mapper
graph matrix with LEDD; graph nodes are colored by LE restricted to interval sets.
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7.5 Iris Dataset

Our fourth example is Fisher’s Iris dataset [23], another classic dataset in machine
learning. This dataset contains four attributes including the sepal length, sepal width,
petal length, and petal width of each iris plant. We use all four attributes to compute
the mapper graph matrix, with mapper parameters n = 10, p = 30%. As shown
in Fig. 7, we combine both the scatter plot matrix and the mapper graph matrix.
We observe that stitching the mapper graph associated with sepal width to petal
length has a higher global LEDA (Fig. 7c, 2.20) than stitching petal width to petal
length (Fig. 7d, 0.41). Such a topological gain is also observed locally for boundary
subgraphs. At the same time, petal length is shown to be more correlated to petal
width than with sepal width (see Fig. 7b and Fig. 7a).

7.6 Breast Cancer Wisconsin (Diagnostic) Dataset

Our fifth dataset describes characteristics of the cell nuclei present in the images
of breast masses [33, 42]. We choose four variables from among ten real-valued
features computed for each cell nucleus: area mean (mean area of the tumor), radius
mean (mean of distances from the center to points on the perimeter), parameter
mean (mean size of the core tumor), and smoothness mean (mean of local varia-
tion in radius lengths). We compute univariate and bivariate mapper graphs using
boundary subgraphs, with parameters n = 8, p = 20%. As shown in the scatter plot
matrix (Fig. 8), area mean and radius mean are highly correlated, but area mean
and smoothness mean are not. We observe that stitching the mapper graph of the
smoothness mean to that of the area mean achieves a higher global and local LEDA

than stitching radius mean with area mean (see Fig. 8d and Fig. 8c).

7.7 Wine Quality Dataset

Our sixth dataset is thewine quality dataset,which is another classicmachine learning
dataset, and gives 11 variables describing wine quality based on physicochemical
tests [10]. We use 3 of these variables for our analysis: residual sugar, density,
and fixed acidity. The scatter plot matrix shows that residual sugar and density are
highly correlated (Fig. 9a), but residual sugar and fixed acidity are not (Fig. 9b).
Complementarily, we see that stitching the mapper graph of fixed acidity to the
mapper graph of residual sugar gives rise to higher LEDA globally and locally than
stitching density with residual sugar (see Fig. 9d and Fig. 9c).
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a b

dc

Fig. 7: Iris dataset. Top: the scatter plot matrix. Bottom: the mapper graph matrix
with LEDA; graph nodes are colored by LE restricted to interval sets.

7.8 KS/NE dataset

We also explore a real-world phenomics dataset referred to as the KS/NE dataset
and was first studied by Kamruzzaman et al. [30]. It records daily measurements of
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a b

c d

Fig. 8: Breast Cancer dataset. Top: the scatter plot matrix. Bottom: the mapper graph
matrix with LEDA; graph nodes are colored by LE restricted to interval sets.

maize plants that were cultivated in Kansas (KS) and Nebraska (NE). The columns
consist of the genotype of each plant, the growth rate of each plant (growth_rate), a
time measurement describing the days after planting (DAP), and 10 environmental
variables including humidity, temperature, rainfall, solar radiation, etc. There are
400 rows, with each row corresponding to the daily record of a plant. We construct
a 1D point cloud using growth_rate, and choose the variables DAP and humidity to
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a b

dc

Fig. 9:Wine Quality dataset. Top: the scatter plot matrix. Bottom: the mapper graph
matrix with LEDA; graph nodes are colored by LE restricted to interval sets.

compute the mapper graphs GDAP , Ghumidity , and G(DAP,humidity), as well as
the boundary mapper subgraphs. The mapper parameters are n = 10, p = 46%.
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As shown in Fig. 10, we observe that the bivariate mapper graphs have posi-
tive LEDA both globally and locally, indicating the bivariate mapper graphs have
more topological gains than the univariate mapper graphs. In particular, stitching
Ghumidity to GDAP has a higher global LEDA compared with stitching GDAP to
Ghumidity (see Fig. 10b and Fig. 10c), indicating that humidity is a more important
variable than DAP for capturing the topological structure of the point cloud data.
The scatter plot matrix Fig. 10a shows that the two variables are not correlated.

a

b

c

Fig. 10: KS/NE dataset: Top: the scatter plot matrix. Bottom: the mapper graph
matrix with LEDA; graph nodes are colored by LE restricted to interval sets.
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7.9 NKI dataset

Weexplore another real-world dataset, the breast cancer dataset that provides progno-
sis and gene expression information of patients. This dataset is referred to as the NKI
dataset [46], which was previously studied by Lum et al. [31] and Zhou et al. [50]
to identify subgroups in breast cancer patients. It contains 272 rows, with each row
corresponding to the information of a patient. The columns consist of 1554 gene
expression levels, and variables of medical records or physiological measures such
as event_death (whether a patient survived or not), survival_time, recurrence_time,
etc. We construct the point cloud using the 1500 mostly varying genes, and choose
the variable event_death together with the infinity norm (L∞) of the point cloud to
compute the mapper graphsGevent_death,GL∞ andG(event_death,L∞), as well as
the boundary mapper graphs. The mapper parameters are n = 18, p = 68%.

As shown in Fig. 11, we observe that the bivariate mapper graphs have positive
LEDD both globally and locally, indicating the bivariate mapper graphs have more
topological gains than the univariate mapper graphs. In particular, stitching GL∞
to Gevent_death has a higher global LEDD compared with stitching Gevent_death to
GL∞ (see Fig. 11b and Fig. 11c), indicating that L∞ is a more important variable
than event_death for capturing the topological structure of the point cloud data. The
scatter plot matrix Fig. 11a shows that the two variables are not correlated.

8 Discussion

Westudy amethod of stitching (composing) a pair of univariatemappers together into
a bivariatemapper. By tracking the STITCH and FIX steps of the construction process,
it is possible to quantify the relationship between filter functions. We further propose
measures of topological gains that quantify the changes in topological content during
the stitching process.

With such measures in hand, we return to our topological analogues of the step-
wise regression [20] and scatter plot matrix [21], which help to navigate topological
relationships among multiple filter functions. A method for stepwise stitching would
produce a mapper with optimal topological information by iteratively building a
multivariate mapper from topologically independent filter functions. A topological
scatter plot matrix can reveal information about the filter functions such as topolog-
ical dependencies and outliers by providing a visualization of the most information-
rich filter functions. Our visualization tool provides a playground for such types of
future work. Furthermore, based on various datasets analyzed in Sect. 7, we observe
that stitching the mapper graphs of highly correlated variables typically gives rise
to smaller changes in entropy (LED) than stitching the mapper graphs of uncorre-
lated variables. Studying the relation between topological correlations (via mapper
graphs) and statistical correlations will be an interesting future direction.
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a

c

b

Fig. 11: NKI dataset: Top: the scatter plot matrix. Bottom: the mapper graph matrix
with LEDD; graph nodes are colored by LE restricted to interval sets.
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