
A THEORETICAL CONSIDERATIONS

We discuss some theoretical considerations in sketching merge trees.
In the first two steps of our framework, we represent merge trees as
metric measure networks and vectorize them via blow-up and alignment
to a Fréchet Mean using the GW framework [18]. Each merge tree
T = (V, p,W) ∈ T is mapped to a column vector a in matrix A,
where W captures the shortest path distances using function value
differences as weights. The computation of the Fréchet mean T is an
optimization process, but the blow-up of T and its alignment to T does
not change the underlying distances between the tree nodes, which are
encoded in W . Therefore, reshaping the column vector a back to a
pairwise distance matrix and computing its corresponding MST fully
recover the original input merge tree.

In the third step, we sketch the matrix A using CSS. It is also
possible to apply another matrix sketching technique, namely, non-
negative matrix factorization (NMF). Both CSS and NMF (albeit with
different constraints) aim to obtain an approximation Â = BY of A
that minimizes the error ϵ = ∥A− Â∥F . Let Ak denote the (unknown)
best rank-k approximation of A. In the case of CSS, the theoretical
upper bound is given as a multiplicative error of the form ϵ ≤ ϵk · ∥A−
Ak∥F , where ϵk depends on the choice of k [10, 21], or it is given as
an additive error ϵ ≤ ∥A − Ak∥F + ϵk,A, where ϵk,A depends on k
and ∥A∥F [22,44]. ∥A−Ak∥F is often data dependent. In the case of
NMF, a rigorous theoretical upper bound on ϵ remains unknown.

Given an approximation Â of A, the next step is to reconstruct a
sketched merge tree from each column vector â of Â. We reshape â

into an n× n matrix Ŵ and construct a sketched tree T̂ by computing
the MST of Ŵ . The distance matrix D̂ of the sketched tree T̂ thus
approximates the distance matrix W ′ of the blow-up tree T ′.

When a sketched merge tree is obtained via a MST, the theoretical
bounds on ∥Ŵ − D̂∥F are unknown, although MST does provide good
sketched trees in practice. Finally, although the smoothing process does
not alter the tree structure significantly, it does introduce some error in
the final sketched tree, whose theoretical bound is not yet established.

A practical consideration is the simplification of a sketched tree T̂ ′

coming from NMF. T̂ ′ without simplification is an approximation of the
blow-up tree T ′. It contains many more nodes compared to the original
tree T . Some of these are internal nodes with exactly one parent node
and one child node. In some cases, the distance between two nodes is
almost zero. We further simplify T̂ ′ to obtain a final sketched tree T̂
by removing internal nodes and nodes that are too close to each other;
see Appendix B for details. To return a basis tree using NMF, we obtain
each basis tree by applying MST to columns bj of B with appropriate
simplification, as illustrated in Fig. 1 (step 5).

Therefore, although we have obtained good experimental results in
sketching merge trees, there is still a gap between theory and practice
for individual sketched trees. Filling such a gap is left for future work.

B IMPLEMENTATION

In this section, we provide some implementation details for various
algorithms employed in our merge tree sketching framework.
Persistence simplification. We apply persistence simplification to each
dataset before computing the merge trees. The simplification level p is
chosen based on the persistence graph [32], where the x-axis represents
the persistence in proportion to the maximum persistence across all
instances in a dataset, the y-axis captures the number of local maxima
(in our setting), and a plateau implies a stable range of scales to separate
features from noise. We simplify the scalar field so that critical points
with persistence less than the chosen simplification level are removed.
See Fig. 17 for the persistence graph of the Heated Cylinder dataset. p
is chosen to be 9.7% of the max persistence. Similarly, p for the Corner
Flow, Vortex Street, and Square Cylinder Flow dataset is 4.85%, 2%,
6%, respectively. For the Isabel dataset, we choose p = 2% to be
consistent with the work by Pont et al. [57].
Initializing the coupling probability distribution. In Sec. 6, we
introduce the blowup procedure that transforms a merge tree T to a
larger tree T ′. This procedure optimizes the probability of coupling

Fig. 17: Heated Cylinder : Persistence simplification using a persistence
graph.

between T and T , the Fréchet mean. Since the optimization process is
finding a coupling matrix that is a local minimum of the loss function,
similar input trees may give different coupling matrices due to the
optimization process, which may affect the ordering of nodes in the
blown-up trees, leading to completely different vectorization results and
large sketch errors. Specifically for time-varying data, to ensure that
adjacent trees are initialized with similar coupling probabilities w.r.t.
T , we use the coupling probability between Ti−1 and T to initialize
the coupling probability between Ti and T , for 1 ≤ i ≤ N − 1. This
strategy is based on the assumption that merge trees from adjacent time
instances share similar structures.
Matrix sketching algorithms. In the main paper, we use two variants
of column subset selection (CSS) algorithms. We may also consider
non-negative matrix factorization (NMF) to sketch the data matrix A.
Here, we provide pseudocode for these matrix sketching algorithms.

• Modified Length Squared Sampling (LSS)

1. s← 0, B is an empty matrix, A′ = A.
2. s ← s + 1. Select column c from A′ with the largest

squared norm (or select c randomly proportional to the
squared norm) and add it as a column to B. Remove c from
A′.

3. For each remaining column c′ in A′ (i.e., c′ ̸= c), factor
out the component along c as:

(a) u← c/∥c∥
(b) c′ ← c′ − ⟨u, c′⟩u

4. While s < k, go to step 2.

• Iterative Feature Selection (IFS)

1. Choose a subset of k column indices r = {i1, i2, . . . , ik}
uniformly at random.

2. Construct subset Br = [ai1 , ai2 , . . . , aik] of A with
columns indexed by r.

3. Repeat for j = 1, 2, . . . , k:

(a) Let Xjl denote matrix formed by replacing column
aij with column al in Br , where l ∈ [n] \ r. Let X+

jl
denote its Moore-Penrose pseudoinverse.

(b) Find w = argminl∈[n]\r∥A−XjlX
+
jlA∥F .

(c) Br ← Xjw.
(d) r ← (r \ {ij})

⋃
{w}.

• Non-Negative Matrix Factorization (NMF)

1. Given A and k, initialize B ∈ Rd×k, Y = XT ∈ Rk×N

using the non-negative double singular value decomposition
algorithm of Boutsidis and Gallopoulos [9].

2. Normalize columns of B and X to unit L2 norm. Let
E = A−BXT .

3. Repeat until convergence: for j = 1, 2, . . . , k,

(a) Q← E + bjx
T
j .

(b) xj ← [QT bj]+.
(c) bj ← [Qxj]+.
(d) bj ← bj/∥bj∥.
(e) E ← Q− bjx

T
j .

Here, [Q]+ means that all negative elements of the matrix Q are
set to zero.

Merge tree simplification. To reconstruct a sketched tree, we reshape
the sketched column vector â of Â into an n×n matrix Ŵ ′, and obtain
a tree structure T̂ ′ by computing its MST. T̂ ′ is an approximation of
the blown-up tree T ′. To get a tree approximation closer to the original
input tree T , we further simplify T̂ ′ as described below.

The simplification process has two parameters. The first parameter
α is used to merge internal nodes that are too close (≤ α) to each
other. Let R be the diameter of T̂ ′ and n the number of nodes in T̂ ′.
α is set to be cαR/n2 for cα ∈ {0.5, 1, 2}. The second parameter
β = cβR/n is used to merge leaf nodes that are too close (≤ β) to the
parent node, where cβ ∈ {0.5, 1, 2}. Let Ŵ ′ be the weight matrix of
T̂ ′. The simplification process is as follows:

1. Remove from T̂ ′ all edges (u, v) where Ŵ ′(u, v) ≤ α.

2. Merge all leaf nodes u with their respective parent node v if
Ŵ ′(u, v) ≤ β.

3. Remove all the internal nodes.

The tree T̂ obtained after simplification is the final sketched tree.
Merge tree layout. To visualize both input merge trees and sketched
merge trees, we experiment with a few strategies. To draw an input
merge tree T equipped with a function defined on its nodes, f : V → R,
we set each node u ∈ V to be at location (xu, yu); where yu =
f(u), and xu is chosen within a bounding box while avoiding edge
intersections. The edge (u, v) is drawn proportional to its weight
W (u, v) = |f(u)− f(v)| = |yu − yv|.

To draw a sketched tree as a merge tree, we perform the following
steps:

1. We fix the root of the sketched tree at (0, 0).

2. The y-coordinate of each child node is determined by the weight
of the edge between the node and its parent.

3. The x-coordinate is determined by the left-to-right ordering of the
child nodes. We consider ordering the child nodes that share the
same parent node by using a heuristic strategy described below.

(a) Sort the child nodes by their size of the subtrees of which
the child node is the root in ascending order. This sorting
tries to keep larger subtrees on the right so the overall shape
of the tree is protected and straightforward to read.

(b) If the sizes of multiple subtrees are the same, we apply
the following strategy: we sort child nodes by their
distances to the parent node in descending order. Suppose
the order of child nodes after sorting is c1, c2, . . . , ct.
If t is odd, we reorder the nodes from left to right
as ct, ct−2, ct−4, . . . , c3, c1, c2, c4, . . . , ct−3, ct−1.
If t is even, we reorder the nodes as
ct−1, ct−3, ct−5, . . . , c3, c1, c2, c4, . . . , ct−2, ct.

The idea is to keep the child nodes that have a larger distance to the
parent near the center to avoid edge crossings between sibling nodes
and their subtrees.

Our layout strategy assumes that the trees are rooted. However, T̂ ,
which is our approximation of T , is not rooted. In our experiments, we
use two strategies to pick a root for T̂ and align T and T̂ for visual
comparison.

Using the balanced layout strategy, we pick the node u of T̂ that
minimizes the sum of distances to all other nodes. Set u to be the
balanced root of T̂ . Similarly, we find the balanced root v of the input
tree T . T and T̂ are drawn using the balanced roots.

Using the root alignment strategy, we obtain the root node of the
sketched tree by keeping track of the root node during the entire sketch-
ing process. We can get the root node of T ′ because it is either a
duplicate node or the same node of the root node in T . Then we can
get the root node in T̂ ′, as the labels in the sketched blown-up tree are
identical to T ′. Lastly, by keeping track of the process of merge tree
simplification, we can know the label of the root of T̂ .
Other details. Our framework is mainly implemented in Python. The
code to compute MST from a given weight matrix is implemented in
Java. For data processing and merge tree visualization, we use Python
packages, including numpy, matplotlib, and networkx. In addition, the
GW framework of Chowdhury and Needham [18] requires the Python
Optimal Transport (POT) package.

C ADDITIONAL RESULTS AND RUNTIME ANALYSIS

C.1 Vortex Street Dataset
We demonstrate the use of our framework in detecting cyclic behaviors
using the classic time-varying 2D von Kárman Vortex Street dataset.
We use the velocity magnitude field (as used in a previous work [60])
and compute its split tree. There are 157 time instances, which give
rise to a set of merge trees.
Coefficient matrix. The coefficient matrix generated with IFS is shown
in Fig. 18 (Top) using k = 3. We observe a periodicity of 36 ∼ 38
time steps. To show this periodicity, we highlight instances 14, 50, 88,
and 125 (blue boxes) in the coefficient matrix. We can see that all these
instances indicate the starting points of four long yellow blocks on the
second row of the coefficient matrix.

We further compare the corresponding scalar fields (instances 14, 50,
and 88) highlighted with local maxima (red points) and saddles (white
points) in Fig. 18 (bottom left). The scalar field visualization indicates
that instances 14 and 88 have nearly identical structures, whereas
instance 50 appears to be a mirror image of instance 14. The relation
between instances 14 and 50 is not surprising, as our measure network
formulation of the merge tree encodes only its intrinsic information,
and thus the GW distance between T14 and T50 is considered to be
near-zero within our sketching framework. For comparison, there is a
clear structural change between instance 14 and 33 in Fig. 18 (bottom
left), where instance 33 is chosen within a particular period.
GW distance matrix. The observed periodicity is further confirmed
with the GW distance matrix, as shown in Fig. 18 (bottom right). We
compute pairwise GW distances between pairs of instances and obtain
a 157 × 157 matrix, where yellow means high and blue means low
distance values. Similar to our observations with the coefficient matrix,
we clearly see a repeating pattern in the GW distance matrix with a
periodicity of 36 ∼ 38.

C.2 Square Cylinder Flow
For the Square Cylinder Flow dataset, we provide additional experimen-
tal results on the periodicity observed from the GW distance matrix.

The observed periodicity can be further validated by the GW dis-
tance matrix. As shown in Fig. 19, we zoom into this chosen period
and observe repeated patterns in the distance matrix, which indicates
structural similarities among these merge trees.

C.3 Sketch Error Plots for Alternative Approaches
We include the sketch error plots for sketching scalar fields and sketch-
ing 0-dimensional persistence images in Fig. 20 for completeness.

C.4 Runtime Analysis
We report the runtime in computing the pairwise Gromov-Wasserstein
distances between merge trees for all real-world datasets in Tab. 1. The
number of comparisons is equal to t×(t−1)

2
, where t is the number of

time steps. Average runtime is equal to total runtime
of comparisons

. All these
distances are easy and efficient to compute.

The runtime was collected using Python hosted by Jupyter Notebook
on a Windows 11 system with a 12th Gen Intel(R) Core(TM) i9-12900H
2.50 GHz CPU with 32 GB memory.

14 50 88

14

33

50

88

14 50 88

125

125

Fig. 18: Vortex Street : we highlight instance 14, 50, 88, and 125 in the coefficient matrix (TOP) to illustrate the periodicity of its topological structures,
using IFS. The periodicity is also confirmed within the GW distance matrix (bottom right). Visualizations of selected scalar fields are shown in the
Bottom Left.

52 59 66 73

Fig. 19: Square Cylinder Flow : A subset of the pairwise GW distance
matrix among T52 to T73.

Fig. 20: Sketch error plots for sketching scalar fields (left) and sketching
0-dimensional persistence images (right).

Dataset Max # of Nodes # of Comparisons Total Runtime Average Runtime
HeatedCylinder (2D) 18 465 1.2967 0.0028

CornerFlow (2D) 30 4950 21.1775 0.0043
VortexStreet (2D) 62 12246 303.5248 0.0248

SquareCylinderFlow (2D) 18 5050 12.1553 0.0024
Isabel (3D) 194 66 4.2124 0.0638

Table 1: Runtime (in seconds) for pairwise GW distances between merge
trees across all real-world datasets.

D DISCUSSIONS ON SKETCHED TREES AND NMF

In this paper, we apply matrix sketching to a set of merge trees and
utilize the basis set as a consensus set that captures the modes from
the underlying phenomena. As a byproduct, the sketching framework
also produces sketched trees. In this section, we discuss the sketched
trees, as well as additional matrix sketching techniques beyond column
subset selection.
Investigation of sketched trees. We validate the claim that given three

basis trees in S , each tree in T can be approximately reconstructed from
a linear combination of trees in S. For the Heated Cylinder dataset,
we compare a subset of input trees (blue boxes) against their sketched
versions (red boxes) using IFS in Fig. 21. Even though we use only
three basis trees, a large number of input trees—such as T7, T15—and
their sketched versions are indistinguishable with small errors. Even
though T24 is considered an outlier relative to other input trees, its
sketched version does not deviate significantly from the original tree.
We highlight the subtrees with noticeable structural differences before
and after sketching for T24, whose roots are pointed by black arrows.

7 15

7 15

24

24

Fig. 21: Heated Cylinder : Comparing each sketched tree (red box) with
its corresponding input tree (blue box), highlighting noticeable structural
differences among subtrees (whose roots are pointed by black arrows)
before and after sketching.

In Fig. 22, we further investigate the weight matrices from different
stages of the sketching pipeline for tree T = T24. From left to right,
we show the weight matrix W of the input tree, its blow-up matrix W ′

(which is linearized to a column vector a), the approximated column
vector â after sketching (reshaped into a square matrix), the weight
matrix Ŵ ′ of the MST derived from the reshaped â, the weight matrix

of the MST after simplification, and root alignment Ŵ w.r.t. T . We
observe minor changes between W (blue box) and Ŵ (red box), which
explain the structural differences before and after sketching in Fig. 21.

Fig. 22: Heated Cylinder : weight matrices associated with T24 during
the sketching process with IFS.

Sketching with NMF. For the Heated Cylinder dataset, we also discuss
the sketching results using matrix sketching techniques beyond CSS
such as non-negative matrix factorization (NMF). In NMF, the goal is
to compute non-negative matrices B and Y such that ∥A − Â∥F =
∥A − BY ∥F is minimized. We use the implementation provided in
the decomposition module of the scikit-learn package [19, 30]. The
algorithm initializes matrices B and X = Y T and minimizes the
residual Q = A − BXT + bjx

T
j alternately with respect to column

vectors bj and xj of B and X , respectively, subject to the constraints
bj ≥ 0 and xj ≥ 0.

Using NMF, we show the three basis trees together with a coef-
ficient matrix in Fig. 23. Although these basis trees are generated
by matrix factorization, that is, they do not correspond to any input
trees, they nicely pick up the structural variations in the input and
are shown to resemble the basis trees chosen by column selections
(cf., Fig. 7 and Fig. 9). This observation shows that even though these
matrix sketching techniques employ different (randomized) algorithms,
they all give rise to reasonable choices of basis trees, which leads to
reasonable sketching results.

Coefficient MatrixNMF

Fig. 23: Heated Cylinder : Coefficient matrices and basis trees used to
sketch the dataset with three basis trees using NMF.

Potential applications. Although neither the sketched trees nor NMF
are the main focus in studying the time-varying datasets discussed in
this paper, we may consider other potential applications. For instance,
our framework could be applied to a set of plant root systems (e.g.,
https://roots.ornl.gov/), where each plant root may be digital-
ized and modeled as merge trees. Our framework may be used to
characterize different root classes where NMF can be used to obtain
new representatives from the set that are not part of the original input.
Furthermore, the distance between a sketched tree and the original tree
captures how much a particular input tree could be approximated by
the basis set. This is left for future work.

E COMPARISON WITH WASSERSTEIN DISTANCES

In this section, we perform experimental comparisons with Wasser-
stein distance for merge trees [57] by Pont et al. We visualize the
distance matrices using our GW distance and the Wasserstein distance
to compare their performances in identifying topological similarities
and differences. We use the HeatedCylinder and Isabel datasets. For
fair comparisons, both methods use only split trees (describing maxima
and saddle relations).
HeatedCylinder dataset. Even though the topological changes in
the HeatedCylinder dataset are relatively simple, we observe obvious
differences between two pairwise distance matrices.

One noticeable difference is the similarity between time steps 8 and
9 (in cyan boxes) and their adjacent time steps (in green and orange
boxes, respectively); see Figure 24 (top left and top middle). The GW
distance indicates that time steps 8 and 9 are similar to time step 10 and
obviously different from time step 7, whereas the Wasserstein distance
reaches the opposite conclusion. We visualize the merge tree structures
for time steps 7 to 10, as in the green, cyan, and orange boxes on the
top right of Figure 24. Apparently, the merge tree structures among
time steps 8, 9, and 10 are similar, whereas the merge tree at time step 7
has one fewer branch. In other words, the Wasserstein distance fails to
detect the topological change from time step 7 to 8, and in the following
raises a false-positive change from time step 9 to 10.

We elaborate on such a “false-positive” from the Wasserstein dis-
tance using another example. In the pairwise distance matrix for Wasser-
stein distance (see Figure 24 top middle), the red box highlights a
topological feature change from time steps 17 to 18. However, this
transition is not detected in the GW distance matrix (Figure 24 top
left). We now use the branch decomposition layout to visualize the
merge tree at time steps 17 and 18 in Figure 24 (middle right, red solid
box). In the merge trees at both time steps, we use blue, purple, and
pink to highlight three branches; branches in the same color indicate
the same pair of critical points in the scalar field. In the transition
from time steps 17 to 18, the branch decomposition hierarchy of the
three highlighted branches is largely shifted, which is detected by the
Wasserstein distance as topological changes. However, in the binary
tree layout of these two merge trees, we see that the merge tree struc-
ture is almost unchanged, see Figure 24 (middle right, red dotted box),
indicating that the detected topological change is false-positive. In this
example, we show that even though there are only small function value
perturbations across time steps, the branch decomposition result can
change greatly. Therefore, involving branch decomposition in computa-
tion, the Wasserstein distance for merge trees suffers from instability of
branch decomposition from small-scale perturbations, which is already
mentioned by other works [68]. In comparison, our method is more
robust than the Wasserstein distance against such instabilities.
Isabel dataset. Recall that the time steps for the Isabel dataset can be
clustered into three phases of the hurricane, each of which contains four
consecutive time steps. As shown in Figure 24 (bottom left), we use
magenta-dotted boxes to identify time instances in the same phase as
the ground truth for clustering. The GW distance successfully captures
the topological variations across three known phases of the Hurricane
Isabel.

In contrast, the Wasserstein distance fails to distinguish the topologi-
cal variation between the formation (first) and the drift (second) phase
of the hurricane: there is no block structure transitioning between time
steps 5 and 30. Besides, in the MDS plot visualizing the Wasserstein

https://roots.ornl.gov/

--

17

ours Wasserstein 7 8 10

18

9

17 18

Fig. 24: Experimental comparison with Wasserstein distance for merge trees. Top row: HeatedCylinder dataset; left and middle: pairwise distance
matrix for GW distance and Wasserstein distance, respectively; right: merge tree in binary tree layout at time steps 7 to 10, and merge tree in both
branch decomposition layout and in binary tree layout at time steps 17 and 18. Bottom row: Isabel dataset; left and middle: pairwise distance matrix
for GW distance and Wasserstein distance, respectively; right: MDS scatter plot [64] using the Wasserstein distance, in which colors represent the
phase of time instances.

distance (Figure 24 bottom right), time steps 4 and 5 in the formation
phase of the hurricane are closer to the cluster of time steps 30 to 33
in the drift phase than to time steps 2 and 3 in the formation phase.
The result shows that the Wasserstein distance cannot detect the phase
transition between the formation and the drift phase of the hurricane.
On the other hand, the Wasserstein distance does provide a clearer
distinction in the landfall (third) phase compared with the GW distance.

