
Sketching Merge Trees for Scientific Data Visualization

Mingzhe Li, Sourabh Palande, Lin Yan, Bei Wang

7 8 15 24 28

7 8 15 24 28

7 8 15 24 28A

B

C

Fig. 1. We demonstrate our merge tree sketching framework with a set of 31 merge trees. Each merge tree is generated from the
vertical velocity magnitude field coming from a time-varying flow simulation called the Heated Cylinder. By combining matrix sketching –
iterative feature selection – with probabilistic matching, we show that the sketched trees (red boxes) approximate the input trees (blue
boxes) reasonably well with only three basis trees. (A) A subset of scalar fields that give rise to the input merge trees labeled 7, 8, 15,
24, and 28. (B-C) Comparing each sketched tree with its corresponding input tree, highlighting noticeable structural differences among
subtrees (whose roots are pointed by black arrows) before and after sketching.

Abstract— Merge trees are a type of topological descriptors that record the connectivity among the sublevel sets of scalar fields.
They are among the most widely used topological tools in visualization. In this paper, we are interested in sketching a set of merge
trees. That is, given a large set T of merge trees, we would like to find a much smaller basis set S such that each tree in T can be
approximately reconstructed from a linear combination of merge trees in S. A set of high-dimensional vectors can be sketched via
matrix sketching techniques such as principal component analysis and column subset selection. However, up until now, topological
descriptors such as merge trees have not been known to be sketchable. We develop a framework for sketching a set of merge trees
that combines the Gromov-Wasserstein probabilistic matching with techniques from matrix sketching. We demonstrate the applications
of our framework in sketching merge trees that arise from time-varying scientific simulations. Specifically, our framework obtains a much
smaller representation of a large set of merge trees for downstream analysis and visualization. It is shown to be useful in identifying
good representatives and outliers with respect to a chosen basis. Finally, our work shows a promising direction of utilizing randomized
linear algebra within scientific visualization.

1 INTRODUCTION

Topological descriptors such as merge trees, contour trees, Reeb graphs,
and Morse-Smale complexes serve to describe and identify characteris-

• Mingzhe Li, Lin Yan, and Bei Wang are with University of Utah. E-mails:
mingzhel@cs.utah.edu, lin.yan@utah.edu, beiwang@sci.utah.edu.

• Sourabh Palande is with Michigan State University. E-mail:
palandes@msu.edu.

tics associated with scalar fields, with many applications in the analy-
sis and visualization of scientific data (e.g., see the surveys [33, 39]).
Sketching, on the other hand, is a class of mathematical tools where
a large dataset is replaced by a smaller one that preserves its prop-
erties of interests. In this paper, we are interested in sketching a set
of topological descriptors – specifically merge trees – for scientific
visualization.

We formulate our problem as follows: given a large set T of merge
trees, we would like to find a much smaller basis set S such that each
tree in T can be approximately reconstructed from a linear combination
of merge trees in S . The set T may arise from a time-varying field or an

ensemble of scientific simulations, generated with varying parameters
and/or different instruments. Our motivation is two-fold. We are
interested in developing a merge tree sketching framework to:

• Obtain a compressed representation of a large set of merge trees
– as a much smaller set of basis trees together with a coefficient
matrix – for downstream analysis and visualization;

• Identify good representatives that capture topological variations
in a set of merge trees as well as outliers.

A sketch of T with S gives rise to a significantly smaller representation
that is a reasonable approximation of T . In addition, elements in S will
serve as good representatives of T , while elements with large sketching
errors will be considered as outliers.

We are inspired by the idea of matrix sketching. A set of high-
dimensional vectors is sketchable via matrix sketching techniques such
as principle component analysis (PCA), and column subset selection
(CSS), as illustrated in Fig. 2 (gray box). Given a dataset of N points
with d features, represented as a d×N matrix A (with row-wise zero
empirical mean), together with a parameter k, PCA aims to find a
k-dimensional subspace H of Rd that minimizes the average squared
distance between the points and their corresponding projections onto
H. Equivalently, for every input point ai (a column vector of A), PCA
finds a k-dimensional embedding yi (a column vector of Y) along the
subspace H to minimize ||A− Â||2F = ||A−BY ||2F . B is a d× k matrix
whose columns b1,b2, . . . ,bk form an orthonormal basis for H. Y is a
k×N coefficient matrix, whose column yi encodes the coefficients for
approximating ai using the basis from B. That is, ai ≈ âi = ∑

k
j=1 b jY j,i.

Another technique we discuss is CSS, whose goal is to find a small
subset of the columns in A to form B such that the projection error of A
to the span of the chosen columns is minimized, that is, to minimize
||A− Â||2F = ||A−BY ||2F , where we restrict B to come from columns of
A. Such a restriction is important for data summarization, feature selec-
tion, and interpretable dimensionality reduction [10]. Thus, with either
PCA or CSS, given a set of high-dimensional vectors, we could find a
set of basis vectors such that each input vector can be approximately
reconstructed from a linear combination of the basis vectors.

Now, what if we replace a set of high-dimensional vectors by a
set of objects that encode topological information of data, specifically
topological descriptors? Up until now, a large set of topological de-
scriptors has not been known to be sketchable. In this paper, we focus
on merge trees, which are a type of topological descriptors that record
the connectivity among the sublevel sets of scalar fields. We address
the following question: given a large set T of merge trees, can we find
a much smaller basis set S as its “sketch”?

Our overall pipeline is illustrated in Fig. 2 and detailed in Sect. 4.
In steps 1 and 2, given a set of N merge trees T = {T1,T2, · · · ,TN} as
input, we represent each merge tree Ti as a metric measure network
and employ the Gromov-Wasserstein framework of Chowdhury and
Needham [17] to map it to a column vector ai in the data matrix A. In
step 3, we apply matrix sketching techniques, in particular, column
subset selection (CSS) and non-negative matrix factorization (NMF), to
obtain an approximated matrix Â, where A≈ Â = B×Y . In step 4, we
convert each column in Â into a merge tree (referred to as a sketched
merge tree) using spanning trees, in particular, minimum spanning trees
(MST) or low-stretch spanning trees (LSST). Finally, in step 5, we
return a set of basis merge trees S by applying LSST or MST to each
column b j in B. Each entry Y j,i in the coefficient matrix Y defines the
coefficient for basis tree S j in approximating Ti. Thus, intuitively, with
the above pipeline, given a set of merge trees, we could find a set of
basis trees such that each input tree can be approximately reconstructed
from a linear combination of the basis trees.

Our contribution is two-fold. First, we combine the notion of proba-
bilistic matching via Gromov-Wasserstein distances with matrix sketch-
ing techniques to give a class of algorithms for sketching a set of
merge trees. Second, we provide experimental results that demonstrate
the utility of our framework in sketching merge trees that arise from
scientific simulations. Specifically, we show that understanding the
sketchability properties of merge trees can be particularly useful for
the study of time-varying fields and ensembles, where our framework

<latexit sha1_base64="WIGhEHFpHsPzLBEykGMguNt3GLo=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiB6DXjxGMA9JljA7mU2GzGOZmRVDyFd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63l1tb39jcym8Xdnb39g+Kh0dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6mfmtR6oNU/LejhMaCjyQLGYEWyc9lLs4SbR6KveKJb/iz4FWSZCREmSo94pf3b4iqaDSEo6N6QR+YsMJ1pYRTqeFbmpogskID2jHUYkFNeFkfvAUnTmlj2KlXUmL5urviQkWxoxF5DoFtkOz7M3E/7xOauOrcMJkkloqyWJRnHJkFZp9j/pMU2L52BFMNHO3IjLEGhPrMiq4EILll1dJs1oJLir+XbVUu87iyMMJnMI5BHAJNbiFOjSAgIBneIU3T3sv3rv3sWjNednMMfyB9/kDTzuQFA==</latexit>⇡ <latexit sha1_base64="XNq1KCjknNERdwucabvPpxoSA9o=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6LHoxWMF+wFtKJvtpl262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94CThfkSHSoSCUbRSp9JDEXFT6ZfKbtWdg6wSLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGuponaLn83vnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7HkyEJozlBNLKNPC3krYiGrK0EZUtCF4yy+vklat6l1W3ftauX6Tx1GAUziDC/DgCupwBw1oAgMJz/AKb86j8+K8Ox+L1jUnnzmBP3A+fwBxZI+S</latexit>⇥

<latexit sha1_base64="RNpPLJ9/hp7yQ9s06Eoys5nV5tY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5IURI+lXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzglRwDY7zbZW2tnd298r7lYPDo+MT+/Ssq5NMUdahiUhUPyCaCS5ZBzgI1k8VI3EgWC+Y3C/83pQpzRP5BLOUeTEZSR5xSsBIvm3XWn4e4iHwmGk8mdd8u+rUnSXwJnELUkUF2r79NQwTmsVMAhVE64HrpODlRAGngs0rw0yzlNAJGbGBoZKYRV6+vHyOr4wS4ihRpiTgpfp7Iiex1rM4MJ0xgbFe9xbif94gg+jOy7lMM2CSrhZFmcCQ4EUMOOSKURAzQwhV3NyK6ZgoQsGEVTEhuOsvb5Juo+7e1J3HRrXZKuIoowt0ia6Ri25REz2gNuogiqboGb2iNyu3Xqx362PVWrKKmXP0B9bnDzYGkrs=</latexit>

Bd⇥k

<latexit sha1_base64="l54Del0rvIkAaPCYkl93Haa5HK4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4rNLXQhrLZbtqlm03YnQil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikbZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK/hiO7+b+4xPXRiSqhZOUBzEdKhEJRtFKfrXVF9V+ueLW3AXIOvFyUoEczX75qzdIWBZzhUxSY7qem2IwpRoFk3xW6mWGp5SN6ZB3LVU05iaYLo6dkQurDEiUaFsKyUL9PTGlsTGTOLSdMcWRWfXm4n9eN8PoJpgKlWbIFVsuijJJMCHzz8lAaM5QTiyhTAt7K2EjqilDm0/JhuCtvrxO2vWad1VzH+qVxm0eRxHO4BwuwYNraMA9NMEHBgKe4RXeHOW8OO/Ox7K14OQzp/AHzucP4wiOEg==</latexit>

Ti

<latexit sha1_base64="a3bMqSMFVMLU+3POKRYY3IhbeCk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4rmLbQhjLZbtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJSyeZosyniUhUJ0TNBJfMN9wI1kkVwzgUrB2O7+Z++4kpzRP5aCYpC2IcSh5xisZKfhX7vNovV9yauwBZJ15OKpCj2S9/9QYJzWImDRWodddzUxNMURlOBZuVeplmKdIxDlnXUokx08F0ceyMXFhlQKJE2ZKGLNTfE1OMtZ7Eoe2M0Yz0qjcX//O6mYlugimXaWaYpMtFUSaIScj8czLgilEjJpYgVdzeSugIFVJj8ynZELzVl9dJq17zrmruQ73SuM3jKMIZnMMleHANDbiHJvhAgcMzvMKbI50X5935WLYWnHzmFP7A+fwB9uOOHw==</latexit>ai

<latexit sha1_base64="MMaL/Q1M66VdkodgO/tnguiizmc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00kP5utwrltyKOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1rxLirufbVUu8niyMMJnMI5eHAJNbiDOjSAwQCe4RXeHOm8OO/Ox6I152Qzx/AHzucPRP2NHw==</latexit>=

<latexit sha1_base64="cDcVKo3ZElhbtQQGhkQZqfVJAUc=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4r2A9oQ9lsN+3STTbsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNirVjLeYkkp3A2q4FDFvoUDJu4nmNAok7wSTu7nfeeLaCBU/4jThfkRHsQgFo2ilXrU/ppjR2UBUB+WKW3MXIOvEy0kFcjQH5a/+ULE04jEySY3peW6CfkY1Cib5rNRPDU8om9AR71ka04gbP1ucPCMXVhmSUGlbMZKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPRJykyGO2XBSmkqAi8//JUGjOUE4toUwLeythY6opQ5tSyYbgrb68Ttr1mndVcx/qlcZtHkcRzuAcLsGDa2jAPTShBQwUPMMrvDnovDjvzseyteDkM6fwB87nD8mKkOw=</latexit>

âi

1

3

<latexit sha1_base64="OK2GvYdDZUcPTEcrgt6noBD2o9o=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiB6DXjxGyENIljA7mU2GzD6c6Q2EZb/DiwdFvPox3vwbJ8keNLGgoajqprvLi6XQaNvfVmFjc2t7p7hb2ts/ODwqH590dJQoxtsskpF69KjmUoS8jQIlf4wVp4Enedeb3M397pQrLaKwhbOYuwEdhcIXjKKR3Gp/TDFtZYNUZNVBuWLX7AXIOnFyUoEczUH5qz+MWBLwEJmkWvccO0Y3pQoFkzwr9RPNY8omdMR7hoY04NpNF0dn5MIoQ+JHylSIZKH+nkhpoPUs8ExnQHGsV725+J/XS9C/cVMRxgnykC0X+YkkGJF5AmQoFGcoZ4ZQpoS5lbAxVZShyalkQnBWX14nnXrNuarZD/VK4zaPowhncA6X4MA1NOAemtAGBk/wDK/wZk2tF+vd+li2Fqx85hT+wPr8AYC5kes=</latexit>

T̂i

<latexit sha1_base64="E0TU784zLYRYAjZVFNeFyiascCA=">AAAB7HicbVBNS8NAEJ34WetX1aOXxVbwVJKC6LHoxWMF0xbaUDbbabt2swm7G6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTATXxnW/nbX1jc2t7cJOcXdv/+CwdHTc1HGqGPosFrFqh1Sj4BJ9w43AdqKQRqHAVji+nfmtJ1Sax/LBTBIMIjqUfMAZNVbyK2HvsdIrld2qOwdZJV5OypCj0St9dfsxSyOUhgmqdcdzExNkVBnOBE6L3VRjQtmYDrFjqaQR6iCbHzsl51bpk0GsbElD5urviYxGWk+i0HZG1Iz0sjcT//M6qRlcBxmXSWpQssWiQSqIicnsc9LnCpkRE0soU9zeStiIKsqMzadoQ/CWX14lzVrVu6y697Vy/SaPowCncAYX4MEV1OEOGuADAw7P8ApvjnRenHfnY9G65uQzJ/AHzucP+e+OIQ==</latexit>

bj

<latexit sha1_base64="jWFCd1DtJ+yLE/M9zUDuHcuNrVY=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHZJjB6JXjxidIEENqRbulDptpu2a0I2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HNzO//USVZlI8mElCgxgPBYsYwcZKfvW+/1jtlytuzZ0DrRIvJxXI0eyXv3oDSdKYCkM41rrruYkJMqwMI5xOS71U0wSTMR7SrqUCx1QH2fzYKTqzygBFUtkSBs3V3xMZjrWexKHtjLEZ6WVvJv7ndVMTXQUZE0lqqCCLRVHKkZFo9jkaMEWJ4RNLMFHM3orICCtMjM2nZEPwll9eJa16zbuouXf1SuM6j6MIJ3AK5+DBJTTgFprgAwEGz/AKb45wXpx352PRWnDymWP4A+fzB+MGjhI=</latexit>

Sj

Input
Merge Tree

Sketched
Merge Tree

Basis
Merge Tree

2

<latexit sha1_base64="wKir74qOzpoR1L9mo7U144yY6bw=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GWwFVyUpiC6rblxJBfuAJoTJdNIOnTyYuRFKzMJfceNCEbf+hjv/xmmbhbYeuHA4517uvcdPBFdgWd/G0vLK6tp6aaO8ubW9s2vu7bdVnErKWjQWsez6RDHBI9YCDoJ1E8lI6AvW8UfXE7/zwKTicXQP44S5IRlEPOCUgJY887DqDAlkl7mX9bEDPGQK3+ZVz6xYNWsKvEjsglRQgaZnfjn9mKYhi4AKolTPthJwMyKBU8HyspMqlhA6IgPW0zQiepGbTe/P8YlW+jiIpa4I8FT9PZGRUKlx6OvOkMBQzXsT8T+vl0Jw4WY8SlJgEZ0tClKBIcaTMHCfS0ZBjDUhVHJ9K6ZDIgkFHVlZh2DPv7xI2vWafVaz7uqVxlURRwkdoWN0imx0jhroBjVRC1H0iJ7RK3oznowX4934mLUuGcXMAfoD4/MH+DeVag==</latexit>

Âd⇥N
<latexit sha1_base64="TozikI6wecKv1MtTW4NV6hylYMM=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCp5IURI9VL56kgrWFNoTNZtMu3WzC7qZQQv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZF6ScKe0431ZpbX1jc6u8XdnZ3ds/sA+PnlSSSULbJOGJ7AZYUc4EbWumOe2mkuI44LQTjG5nfmdMpWKJeNSTlHoxHggWMYK1kXzbrl37eYj6msVUoftpzberTt2ZA60StyBVKNDy7a9+mJAspkITjpXquU6qvRxLzQin00o/UzTFZIQHtGeowGaRl88vn6Izo4QoSqQpodFc/T2R41ipSRyYzhjroVr2ZuJ/Xi/T0ZWXM5FmmgqyWBRlHOkEzWJAIZOUaD4xBBPJzK2IDLHERJuwKiYEd/nlVfLUqLsXdeehUW3eFHGU4QRO4RxcuIQm3EEL2kBgDM/wCm9Wbr1Y79bHorVkFTPH8AfW5w8IRpKd</latexit>

Ad⇥N

<latexit sha1_base64="+O0fjaAKGMR4QJbT7sC96p+2QMc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4rmLbQhrLZbtqlm92wuxFC6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjpapItQnkkvVC7GmnAnqG2Y47SWK4jjktBtO7+Z+94kqzaR4NFlCgxiPBYsYwcZKfj0bsvqwWnMb7gJonXgFqUGB9rD6NRhJksZUGMKx1n3PTUyQY2UY4XRWGaSaJphM8Zj2LRU4pjrIF8fO0IVVRiiSypYwaKH+nshxrHUWh7YzxmaiV725+J/XT010E+RMJKmhgiwXRSlHRqL552jEFCWGZ5Zgopi9FZEJVpgYm0/FhuCtvrxOOs2Gd9VwH5q11m0RRxnO4BwuwYNraME9tMEHAgye4RXeHOG8OO/Ox7K15BQzp/AHzucPG5qONw==</latexit>yi

<latexit sha1_base64="nFCGpBe/5/aZqV73AIqwEL5ujjw=">AAAB+XicbVDLSgNBEOyNrxhfqx69DCaCp7AbED0GvXiSCCZGkmWZnUySIbMPZnoDYcmfePGgiFf/xJt/4yTZgyYWNBRV3XR3BYkUGh3n2yqsrW9sbhW3Szu7e/sH9uFRS8epYrzJYhmrdkA1lyLiTRQoeTtRnIaB5I/B6GbmP4650iKOHnCScC+kg0j0BaNoJN+2K09+NiJdFCHX5G5a8e2yU3XmIKvEzUkZcjR8+6vbi1ka8giZpFp3XCdBL6MKBZN8WuqmmieUjeiAdwyNqFnkZfPLp+TMKD3Sj5WpCMlc/T2R0VDrSRiYzpDiUC97M/E/r5Ni/8rLRJSkyCO2WNRPJcGYzGIgPaE4QzkxhDIlzK2EDamiDE1YJROCu/zyKmnVqu5F1bmvlevXeRxFOIFTOAcXLqEOt9CAJjAYwzO8wpuVWS/Wu/WxaC1Y+cwx/IH1+QM435K8</latexit>

Yk⇥N

<latexit sha1_base64="AnkIWaquQYn9QENZEgVPWYpKKLo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCBym7BdFj0YvHCvaLdinZNNvGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB+Hbmt56o0iySD2YSU1/goWQhI9hYqVPu9NPHCzYt94slt+LOgVaJl5ESZKj3i1+9QUQSQaUhHGvd9dzY+ClWhhFOp4VeommMyRgPaddSiQXVfjo/eIrOrDJAYaRsSYPm6u+JFAutJyKwnQKbkV72ZuJ/Xjcx4bWfMhknhkqyWBQmHJkIzb5HA6YoMXxiCSaK2VsRGWGFibEZFWwI3vLLq6RZrXiXFfe+WqrdZHHk4QRO4Rw8uIIa3EEdGkBAwDO8wpujnBfn3flYtOacbOYY/sD5/AHitY/N</latexit>

Yj,i

Matrix Sketching

4 5

Fig. 2. The overall pipeline for sketching a set of merge trees.

can be used to obtain compact representations for downstream analysis
and visualizaiton, and to identify good representatives and outliers.

2 RELATED WORK

We review relevant work on merge trees, Gromov-Wasserstein dis-
tances, graph alignment, matrix sketching, and spanning trees.
Merge trees. Merge trees are a type of topological descriptors that
record the connectivity among the sublevel sets of scalar fields (see
e.g., [8,15]). They are rooted in Morse theory [48], which characterizes
scalar field data by the topological changes in its sublevel sets at isolated
critical points. In this paper, instead of a direct comparison between a
pair of merge trees using existing metrics for merge trees or Reeb graphs
(e.g., [8, 28, 54]), we treat merge trees as metric measure networks and
utilize the Gromov-Wasserstein framework described in Sect. 3 to
obtain their alignment and vector representations.
Gromov-Wasserstein (GW) distances. Gromov introduced Gromov-
Hausdorff (GH) distances [30] while presenting a systematic treatment
of metric invariants for Riemannian manifolds. GH distances can be
employed as a tool for shape matching and comparison (e.g., [13, 41,
42, 45, 46]), where shapes are treated as metric spaces, and two shapes
are considered equal if they are isometric. Memoli [43] modified
the formulation of GH distances by introducing a relaxed notion of
proximity between objects, thus generalizing GH distances to the notion
of Gromov-Wasserstein (GW) distances for practical considerations.
Since then, GW distances have had a number of variants based on
optimal transport [56,57] and measure-preserving mappings [44]. Apart
from theoretical explorations [43, 55], GW distances have been utilized
in the study of graphs and networks [34, 59, 60], machine learning [14,
26], and word embeddings [6]. Recently, Memoli et al. [47] considered
the problem of approximating (sketching) metric spaces using GW
distance. Their goal was to approximate a (single) metric measure
space modeling the underlying data by a smaller metric measure space.
The work presented in this paper instead focuses on approximating a
large set of merge trees – modeled as a set of metric measure networks
– with a much smaller set of merge trees.
Aligning and averaging graphs. Graph alignment or graph matching
is a key ingredient in performing comparisons and statistical analysis on
the space of graphs (e.g., [25, 31]). It is often needed to establish node
correspondences between graphs of different sizes. The approaches that
are most relevant here are the ones based on the GW distances [17, 50],
which employ probabilistic matching (“soft matching”) of nodes. Infor-

mation in a graph can be captured by a symmetric positive semidefinite
matrix that encodes distances or similarities between pairs of nodes.
Dryden et al. [23] described a way to perform statistical analysis and
to compute the mean of such matrices. Agueh et al. [4] considered
barycenters of several probability measures, whereas Cuturi et al. [19]
and Benamou et al. [9] developed efficient algorithms to compute such
barycenters. Peyre et al. [50] combined these ideas with the notion
of GW distances [43] to develop GW averaging of distance/similarity
matrices. Chowdhury and Needham [17] built upon the work in [50]
and provided a GW framework to compute a Frechét mean among these
matrices using measure couplings. In this paper, we utilize the GW
framework [17] for probabilistic matching among merge trees.
Matrix sketching. Many matrix sketching techniques build upon nu-
merical linear algebra and vector sketching. For simplicity, we formu-
late the problem as follows: Given a d×N matrix A, we would like
to approximate A using fewer columns, as a d× k matrix B such that
A and B are considered to be close with respect to some problem of
interest. Basic approaches for matrix sketching include truncated SVD,
column or row sampling [21, 22], random projection [53], and frequent
directions [29, 38]; see [51, 58] for surveys.

The column sampling approach carefully chooses a subset of the
columns of A proportional to their importance, where the importance
is determined by the squared norm (e.g., [21]) or the (approximated)
leverage scores (e.g., [22]). The random projection approach takes
advantage of the Johnson-Lindenstrauss (JL) Lemma [36] to create
an N× k linear projection matrix S (e.g., [53]), where B = AS. The
frequent directions approach [29, 38] focuses on replicating properties
of the SVD. The algorithm processes each column of A at a time while
maintaining the best rank-k approximation as the sketch.
Spanning trees of weighted graphs. Given an undirected, weighted
graph G, a spanning tree is a subgraph of G that is a tree that connects
all the vertices of G with a minimum possible number of edges. We
consider two types of spanning trees: the minimal spanning tree (MST)
and the low stretch spanning tree (LSST) [1–3]. Whereas the MST
tries to minimize the sum of edge weights in the tree, LSST tries to
minimize the stretch (relative distortion) of pairwise distances between
the nodes of G. LSSTs were initially studied in the context of road
networks [5]. They also play an important role in fast solvers for
symmetric diagonally dominant (SDD) linear systems [24, 37].

3 TECHNICAL BACKGROUND

We begin by reviewing the notion of a merge tree that arises from a
scalar field. We then introduce the technical background needed to map
a merge tree to a column vector in the data matrix. Our framework
utilizes the probabilistic matching from the Gromov-Wasserstein (GW)
framework of Chowdhury and Needham [17], with a few ingredients
from Peyre et al. [50].

Fig. 3. An examples of a merge tree from a height field. From left to
right: 2D scalar fields visualization, merge trees embedded in the graphs
of the scalar fields, and abstract visualization of merge trees as rooted
trees equipped with height functions.

Merge trees. Let f : M→ R be a scalar field defined on the domain
of interest M, where M can be a manifold or a subset of Rd . For our
experiments in Sect. 5, M⊂ R2. Merge trees capture the connectivity
among the sublevel sets of f , i.e., Ma = f−1(−∞,a]. Formally, two
points x,y ∈M are equivalent, denoted by x ∼ y, if f (x) = f (y) = a,
and x and y belong to the same connected component of a sublevel set
Ma. The merge tree, T (M, f) =M/∼, is the quotient space obtained
by gluing together points in M that are equivalent under the relation
∼. To describe a merge tree procedurally, as we sweep the function

value a from −∞ to ∞, we create a new branch originating at a leaf
node for each local minimum of f . As a increases, such a branch is
extended as its corresponding component in Ma grows until it merges
with another branch at a saddle point. If M is connected, all branches
eventually merge into a single component at the global maximum of f ,
which corresponds to the root of the tree. For a given merge tree, leaves,
internal nodes, and root node represent the minima, merging saddles,
and global maximum of f , respectively. Fig. 3 displays a scalar field
with its corresponding merge tree embedded in the graph of the scalar
field. Abstractly, a merge tree T is a rooted tree equipped with a scalar
function defined on its node set, f : V → R.
Gromov-Wasserstein distance for measure networks. The GW dis-
tance was proposed by Memoli [42, 43] for metric measure spaces.
Peyre et al. [50] introduced the notion of a measure network and de-
fined the GW distance between such networks. The key idea is to find
a probabilistic matching between a pair of networks by searching over
the convex set of couplings of the probability measures defined on the
networks.

A finite, weighted graph G can be represented as a measure network
using a triple (V,W, p), where V is the set of n nodes, W is a weighted
adjacency matrix, and p is a probability measure supported on the
nodes of G. For our experiments, p is taken to be uniform, that is,
p = 1

n 1n, where 1n = (1,1, . . . ,1)T ∈ Rn.
Let G1(V1,W1, p1) and G2(V2,W2, p2) be a pair of graphs with

n1 and n2 nodes, respectively. Let [n] denote the set {1,2, . . . ,n}.
V1 = {xi}i∈[n1] and V2 = {y j} j∈[n2]. A coupling between probability
measures p1 and p2 is a joint probability measure on V1×V2 whose
marginals agree with p1 and p2. That is, a coupling is represented as
an n1×n2 non-negative matrix C such that C1n2 = p1 and CT 1n1 = p2.
Given matrix C, its binarization is an n1×n2 binary matrix, denoted as
1C>0: this matrix has 1 where C > 0, and 0 elsewhere.

The distortion of a coupling C with an arbitrary loss function L is
defined as [50]

E(C) = ∑
i,k∈[n1], j,l∈[n2]

L(W1(i,k),W2(j, l))Ci, jCk,l . (1)

Let C = C(p1, p2) denote the collection of all couplings between p1
and p2. The Gromov-Wasserstein discrepancy [50] is defined as

D(C) = min
C∈C

E(C). (2)

In this paper, we consider the quadratic loss function L(a,b) =
1
2 |a−b|2. The Gromov-Wasserstein distance [17, 43, 50] dGW between
G1 and G2 is defined as

dGW (G1,G2) =
1
2

min
C∈C ∑

i,k∈[n1], j,l∈[n2]

|W1(i,k)−W2(j, l)|2Ci, jCk,l .

(3)

It follows from the work of Sturm [55] that such minimizers always
exist and are referred to as optimal couplings.
Alignment and blowup. Given a pair of graphs G1 = (V1,W1, p1)
and G2 = (V2,W2, p2) with n1 and n2 nodes respectively, a coupling
C ∈ C(p1, p2) can be used to align their nodes. In order to do this, we
will need to increase the size of G1 and G2 appropriately into their
respective blowup graphs G′1 and G′2, such that G′1 and G′2 contain
the same n number of nodes (where n1,n2 ≤ n). Roughly speaking,
let x be a node in G1, and let nx be the number of nodes in G2 that
have a nonzero coupling probability with x. The blowup graph G′1 =
(V ′1,W

′
1, p′1) is created by making nx copies of node x for each node

in G1, generating a new node set V ′1. The probability distribution p′1
and the weight matrix W ′1 are updated from p1 and W1 accordingly.
Similarly, we can construct the blowup G′2 = (V ′2,W

′
2, p′2) of G2.

An optimal coupling C expands naturally to a coupling C′ between
p′1 and p′2. After taking appropriate blowups, C′ can be binarized to
be an n× n permutation matrix, and used to align the nodes of the

two blown-up graphs. The GW distance is given by a formulation
equivalent to Equation 3 based on an optimal coupling,

dGW (G1,G2) =
1
2 ∑

i, j
|W ′1(i, j)−W ′2(i, j)|2 p′1(i)p′1(j). (4)

Fréchet mean. Given a collection of graphs G = {G1,G2, . . . ,GN}, a
Fréchet mean [17] G of G is a minimizer of the functional F(H,G) =
1
N ∑

N
i=1 dGW (Gi,H) over the space N of measure networks,

G = min
H∈N

1
N

N

∑
i=1

dGW (Gi,H). (5)

Chowdhury and Needham [17] defined the directional derivative and
the gradient of the functional F(H,G) at H and provided a gradient
descent algorithm to compute the Fréchet mean. Their iterative opti-
mization begins with an initial guess H0 of the Fréchet mean. At the
kth iteration, there is a two-step process: each Gi is first blown-up and
aligned to the current Fréchet mean, Hk; then Hk is updated using the
gradient of the functional F(Hk,G) at Hk. Such a two-step process is re-
peated until convergence where the gradient vanishes. For the complete
algorithmic and implementational details, see [17]. If G = (V ,W , p) is
the Fréchet mean, then we have

W (i, j) =
1
N

N

∑
k=1

W ′k(i, j),

where W ′k is the weight matrix obtained by blowing-up and aligning
Gk ∈ G to G. That is, when all the graphs in G are blown-up and aligned
to G, the weight matrix of G is given by a simple element-wise average
of the weight matrices of the graphs.

A

B C

2
66666666664

0 0 0 0 0 0.12
0 0 0.04 0 0.08 0
0 0 0.12 0 0 0
0 0.12 0 0 0 0

0.08 0.04 0 0 0 0
0 0 0 0 0.08 0.04

0.08 0 0 0.04 0 0
0 0 0 0.12 0 0

3
77777777775

<latexit sha1_base64="Fvkze7glVMJouv6SmkMNJllmIHQ=">AAAC5nicbVLLSsNAFJ3Ed3xVXboZLIqrkhTBLkU3LhVsKzShTKa37eBkEmYmYgl+gBsXirj1m9z5MYKTNNKHXjLM4Z5zbu7cmTDhTGnX/bLshcWl5ZXVNWd9Y3Nru7Kz21JxKik0acxjeRsSBZwJaGqmOdwmEkgUcmiHdxc5374HqVgsbvQogSAiA8H6jBJtUt3Kt99x/BAGTGRhRLRkD4+Oi49wscotXzWv7vsTpuaeTGAj32ZYr46nvL/UXBofFUzpn6o47zPC8VdIC+WUsVQU/t+aeLbzUuL4IHqTY/qB061UjbEI/Bd4JaiiMq66lU+/F9M0AqEpJ0p1PDfRQUakZpSDqZkqSAi9IwPoGChIBCrIimt6xIcm08P9WJolNC6y046MREqNotAoTY9DNc/lyf+4Tqr7jSBjIkk1CDr+UT/lWMc4v3PcYxKo5iMDCJXM9IrpkEhCtXkZ+RC8+SP/Ba16zTOzvK5Xz87LcayifXSAjpGHTtEZukRXqImoRa0n68V6tYf2s/1mv4+ltlV69tBM2B8/VXm/Cg==</latexit><latexit sha1_base64="Fvkze7glVMJouv6SmkMNJllmIHQ=">AAAC5nicbVLLSsNAFJ3Ed3xVXboZLIqrkhTBLkU3LhVsKzShTKa37eBkEmYmYgl+gBsXirj1m9z5MYKTNNKHXjLM4Z5zbu7cmTDhTGnX/bLshcWl5ZXVNWd9Y3Nru7Kz21JxKik0acxjeRsSBZwJaGqmOdwmEkgUcmiHdxc5374HqVgsbvQogSAiA8H6jBJtUt3Kt99x/BAGTGRhRLRkD4+Oi49wscotXzWv7vsTpuaeTGAj32ZYr46nvL/UXBofFUzpn6o47zPC8VdIC+WUsVQU/t+aeLbzUuL4IHqTY/qB061UjbEI/Bd4JaiiMq66lU+/F9M0AqEpJ0p1PDfRQUakZpSDqZkqSAi9IwPoGChIBCrIimt6xIcm08P9WJolNC6y046MREqNotAoTY9DNc/lyf+4Tqr7jSBjIkk1CDr+UT/lWMc4v3PcYxKo5iMDCJXM9IrpkEhCtXkZ+RC8+SP/Ba16zTOzvK5Xz87LcayifXSAjpGHTtEZukRXqImoRa0n68V6tYf2s/1mv4+ltlV69tBM2B8/VXm/Cg==</latexit><latexit sha1_base64="Fvkze7glVMJouv6SmkMNJllmIHQ=">AAAC5nicbVLLSsNAFJ3Ed3xVXboZLIqrkhTBLkU3LhVsKzShTKa37eBkEmYmYgl+gBsXirj1m9z5MYKTNNKHXjLM4Z5zbu7cmTDhTGnX/bLshcWl5ZXVNWd9Y3Nru7Kz21JxKik0acxjeRsSBZwJaGqmOdwmEkgUcmiHdxc5374HqVgsbvQogSAiA8H6jBJtUt3Kt99x/BAGTGRhRLRkD4+Oi49wscotXzWv7vsTpuaeTGAj32ZYr46nvL/UXBofFUzpn6o47zPC8VdIC+WUsVQU/t+aeLbzUuL4IHqTY/qB061UjbEI/Bd4JaiiMq66lU+/F9M0AqEpJ0p1PDfRQUakZpSDqZkqSAi9IwPoGChIBCrIimt6xIcm08P9WJolNC6y046MREqNotAoTY9DNc/lyf+4Tqr7jSBjIkk1CDr+UT/lWMc4v3PcYxKo5iMDCJXM9IrpkEhCtXkZ+RC8+SP/Ba16zTOzvK5Xz87LcayifXSAjpGHTtEZukRXqImoRa0n68V6tYf2s/1mv4+ltlV69tBM2B8/VXm/Cg==</latexit><latexit sha1_base64="Fvkze7glVMJouv6SmkMNJllmIHQ=">AAAC5nicbVLLSsNAFJ3Ed3xVXboZLIqrkhTBLkU3LhVsKzShTKa37eBkEmYmYgl+gBsXirj1m9z5MYKTNNKHXjLM4Z5zbu7cmTDhTGnX/bLshcWl5ZXVNWd9Y3Nru7Kz21JxKik0acxjeRsSBZwJaGqmOdwmEkgUcmiHdxc5374HqVgsbvQogSAiA8H6jBJtUt3Kt99x/BAGTGRhRLRkD4+Oi49wscotXzWv7vsTpuaeTGAj32ZYr46nvL/UXBofFUzpn6o47zPC8VdIC+WUsVQU/t+aeLbzUuL4IHqTY/qB061UjbEI/Bd4JaiiMq66lU+/F9M0AqEpJ0p1PDfRQUakZpSDqZkqSAi9IwPoGChIBCrIimt6xIcm08P9WJolNC6y046MREqNotAoTY9DNc/lyf+4Tqr7jSBjIkk1CDr+UT/lWMc4v3PcYxKo5iMDCJXM9IrpkEhCtXkZ+RC8+SP/Ba16zTOzvK5Xz87LcayifXSAjpGHTtEZukRXqImoRa0n68V6tYf2s/1mv4+ltlV69tBM2B8/VXm/Cg==</latexit>

<latexit sha1_base64="vNU8pzlTEVT52Y1W54hNS3eMlQk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4rNLXQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJWyeZYuizRCSqE1KNgkv0DTcCO6lCGocCH8Px3dx/fEKleSJbZpJiENOh5BFn1FjJr7b6XrVfrrg1dwGyTrycVCBHs1/+6g0SlsUoDRNU667npiaYUmU4Ezgr9TKNKWVjOsSupZLGqIPp4tgZubDKgESJsiUNWai/J6Y01noSh7YzpmakV725+J/XzUx0E0y5TDODki0XRZkgJiHzz8mAK2RGTCyhTHF7K2EjqigzNp+SDcFbfXmdtOs176rmPtQrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fjfCN2g==</latexit>

T1

<latexit sha1_base64="nHpdbC9mkPGsWpjUZUtPgaibaDk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCp7JbED0WvXis0C9pl5JNs21okl2SrFCW/govHhTx6s/x5r8x3e5BWx8MPN6bYWZeEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3i387hNVmkWyZWYx9QUeSxYygo2VHquDAKu0Na8OyxW35mZA68TLSQVyNIflr8EoIomg0hCOte57bmz8FCvDCKfz0iDRNMZkise0b6nEgmo/zQ6eowurjFAYKVvSoEz9PZFiofVMBLZTYDPRq95C/M/rJya88VMm48RQSZaLwoQjE6HF92jEFCWGzyzBRDF7KyITrDAxNqOSDcFbfXmddOo176rmPtQrjds8jiKcwTlcggfX0IB7aEIbCAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/KQSP+w==</latexit>

T̄

<latexit sha1_base64="8LKpJW9tRiXQgFuF6V/wxkk3op8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4rNLXQhrLZbtulm03YnQgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM+6zWMa6E1LDpVDcR4GSdxLNaRRK/hhO7ub+4xPXRsSqhdOEBxEdKTEUjKKV/GqrX6/2yxW35i5A1omXkwrkaPbLX71BzNKIK2SSGtP13ASDjGoUTPJZqZcanlA2oSPetVTRiJsgWxw7IxdWGZBhrG0pJAv190RGI2OmUWg7I4pjs+rNxf+8borDmyATKkmRK7ZcNEwlwZjMPycDoTlDObWEMi3srYSNqaYMbT4lG4K3+vI6addr3lXNfahXGrd5HEU4g3O4BA+uoQH30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/j3WN2w==</latexit>

T2

Fig. 4. An optimal coupling between two simple merge trees T1 and T2.
The coupling matrix is visualized in (A): yellows means high and dark
blue means low probability. Couplings between the Fréchet mean T with
T1 and T2 are shown in (B) and (C), respectively.

A simple example. We give a simple example involving a pair of
merge trees in Fig. 4. T1 and T2 contain 8 and 6 nodes, respectively
(nodes are labeled starting with a 0 index). The optimal coupling C
obtained by the gradient descent algorithm is visualized in Fig. 4(A). C
is an 8×6 matrix, and it shows that node 0 in T1 is matched to node
5 in T2 with the highest probability (0.12, red stars). Node 4 in T1 is
coupled with both node 0 (with a probability 0.08) and node 1 (with a
probability 0.04) in T2 (green stars).

Now, we compute the Fréchet mean T of T1 and T2, which has 12
nodes. We align both T1 and T2 to T via their blowup graphs. This
gives rise to a coupling matrix between T and T1 (of size 12× 8) in
Fig. 4(B), and a coupling matrix between T and T2 (of size 12× 6)
in Fig. 4(C), respectively. As shown in Fig. 4, root node 10 of T is
matched with root node 0 of T1 and root node 5 of T2 (red stars). Node
0 of T is matched probabilistically with node 4 in T1 and nodes 0 and
1 in T2 (green stars). Now both trees T1 and T2 are blown-up to be T ′1
and T ′2 , each with 12 nodes, and can be vectorized into column vectors
of the same size.

4 METHODS

Given a set T of N merge trees as input, our goal is to find a basis set S
with k� N merge trees such that each tree in T can be approximately
reconstructed from a linear combination of merge trees in S. We
propose to combine the GW framework [17] with techniques from
matrix sketching to achieve this goal. We detail our pipeline to compute
S, as illustrated in Fig. 2.
Step 1: Representing merge trees as measure networks. The first
step is to represent merge trees as metric measure networks as described
in Sect. 3. Each merge tree T ∈ T can be represented using a triple
(V,W, p), where V is the node set, W is a matrix of pairwise distances
between its nodes, and p is a probability distribution on V .

In this paper, we define p as a uniform distribution, i.e., p = 1
|V |1|V |.

Recall that each node x in a merge tree is associated with a scalar value
f (x). For a pair of nodes x,x′ ∈ V , if they are adjacent, we define
W (x,x′) = | f (x)− f (x′)|, i.e., their absolute difference in function
value; otherwise, W (x,x′) is the shortest path distance between them in
T . By construction, a shortest path between two nodes goes through
their lowest common ancestor in T . We define W in such a way to
encode information in f , which is inherent to a merge tree.
Step 2: Merge tree vectorization via alignment to the Fréchet
mean. The second step is to convert each merge tree into a column
vector of the same size via blowup and alignment to the Fréchet mean.
Having represented each merge tree as a metric measure network, we
can use the GW framework to compute a Fréchet mean of T , denoted
as T = (V ,W , p). Let n = |V |. In theory, n may become as large as
∏

N
i=1 |Vi|. In practice, n is chosen to be much smaller; in our experi-

ment, we choose n to be a small constant factor (2 or 3) times the size
of the largest input tree. The optimal coupling C between T and Ti is an
n×ni matrix with at least n nonzero entries. If the number of nonzero
entries in each row is greater than n, we keep only the largest value.
That is, if a node of T has a nonzero probability of coupling with more
than one node of T , we consider the mapping with only the highest
probability, so that each coupling matrix C has exactly n nonzero en-
tries. We then blow up each T to obtain T ′ = (V ′,W ′, p′), and align T
with T ′. The above procedure ensures that each blown-up tree T ′ has
exactly n nodes, and the binarized coupling matrix C′ between T and
T ′ induces a node matching between them.

We can now vectorize (i.e., flatten) each W ′ (an n× n matrix) to
form a column vector a ∈Rd of matrix A (where d = n2), as illustrated
in Fig. 2 (step 2)1. Each a is a vector representation of the input tree T
with respect to the Fréchet mean T .
Step 3: Merge tree sketching via matrix sketching. The third step
is to sketch merge trees by applying matrix sketching to the data matrix
A, as illustrated in Fig. 2 (step 3). By construction, A is a d×N matrix
whose column vectors ai are vector representations of Ti. We apply
matrix sketching techniques to approximate A by Â = B×Y . In our
experiments, we use two linear sketching techniques, namely, column
subset selection (CSS) and non-negative matrix factorization (NMF).
See Appendix C for implementation details.

Using CSS, the basis set is formed by sampling k columns of A. Let
B denote the matrix formed by k columns of A and let Π = BB+ denote
the projection onto the k-dimensional space spanned by the columns
of B. The goal of CSS is to find B such that ‖A−ΠA‖F is minimized.
We experiment with two variants of CSS.

1In practice, d = (n+1)n/2 as we store only the upper triangular matrix.

0 1 2

4

3

5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

118 9 10

Fig. 5. Visualizing a time-varying mixture of Gaussian functions (left) together with (right) their corresponding merge trees.

In the first variant of CSS, referred to as Length Squared Sampling
(LSS), we sample (without replacement) columns of A with proba-
bilities qi proportional to the square of their Euclidean norms, i.e.,
qi = ‖ai‖2

2/‖A‖2
F . We modify the algorithm slightly such that before

selecting a new column, we factor out the effects from columns that are
already chosen, making the chosen basis as orthogonal as possible.

In the second variant of CSS, referred to as the Iterative Feature
Selection (IFS), we use the algorithm proposed by Ordozgoiti et al. [49].
Instead of selecting columns sequentially as in LSS, IFS starts with a
random subset of k columns. Then each selected column is either kept
or replaced with another column, based on the residual after the other
selected columns are factored out simultaneously.

In the case of NMF, the goal is to compute non-negative matrices
B and Y such that ‖A− Â‖F = ‖A−BY‖F is minimized. We use the
implementation provided in the decomposition module of the scikit-
learn package [18, 27]. The algorithm initializes matrices B and X =
Y T and minimizes the residual Q = A−BXT +b jxT

j alternately with
respect to column vectors b j and x j of B and X , respectively, subject to
the constraints b j ≥ 0 and x j ≥ 0.

Step 4: Reconstructing sketched merge trees. For the fourth step,
we convert each column in Â as a sketched merge tree. Let Â = BY ,
where matrices B and Y are obtained using CSS or NMF. Let â = âi
denote the ith column of Â. We reshape â as an n×n weight matrix Ŵ ′.
We then obtain a tree structure T̂ ′ from Ŵ ′ by computing its MST or
LSST.

A practical consideration is the simplification of a sketched tree T̂ ′
coming from NMF. T̂ ′ without simplification is an approximation of the
blow-up tree T ′. It contains many more nodes compared to the original
tree T . Some of these are internal nodes with exactly one parent node
and one child node. In some cases, the distance between two nodes is
almost zero. We further simplify T̂ ′ to obtain a final sketched tree T̂
by removing internal nodes and nodes that are too close to each other;
see Appendix C for details.

Step 5: Returning basis trees. Finally, we return a set of basis merge
trees S using information encoded in the matrix B. Using CSS, each
column b j of B corresponds directly to a column in A; therefore, the set
S is trivially formed by the corresponding merge trees from T . Using
NMF, we obtain each basis tree by applying MST or LSST to columns
b j of B with appropriate simplification, as illustrated in Fig. 2 (step 5).

Error analysis. For each of our experiments, we compute the global
sketch error ε = ‖A− Â‖2

F , as well as column-wise sketch error εi =

‖ai− âi‖2
2, where ε = ∑

N
i=1 εi. By construction, εi ≤ ε . For merge trees,

we measure the GW distance between each tree Ti and its sketched
version T̂i, that is τi = dGW (Ti, T̂i), referred to as the column-wise GW
loss. The global GW loss is defined to be τ = ∑

N
i=1 τi. For theoretical

considerations, see discussions in Appendix B.

A simple synthetic example. We give a simple synthetic example
to illustrate our pipeline. A time-varying scalar field f is a mixture
of 2D Gaussians that translate and rotate on the plane. We obtain a
set T = {T0, . . . ,T11} of merge trees from 12 consecutive time steps,
referred to as the Rotating Gaussian dataset. In Fig. 5, we show the
scalar fields and the corresponding merge trees, respectively. Each
merge tree is computed from − f ; thus, its leaves correspond to the
local maxima (red), internal nodes are saddles (white), and the root
node is the global minimum (blue) of f .

<latexit sha1_base64="RNpPLJ9/hp7yQ9s06Eoys5nV5tY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5IURI+lXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzglRwDY7zbZW2tnd298r7lYPDo+MT+/Ssq5NMUdahiUhUPyCaCS5ZBzgI1k8VI3EgWC+Y3C/83pQpzRP5BLOUeTEZSR5xSsBIvm3XWn4e4iHwmGk8mdd8u+rUnSXwJnELUkUF2r79NQwTmsVMAhVE64HrpODlRAGngs0rw0yzlNAJGbGBoZKYRV6+vHyOr4wS4ihRpiTgpfp7Iiex1rM4MJ0xgbFe9xbif94gg+jOy7lMM2CSrhZFmcCQ4EUMOOSKURAzQwhV3NyK6ZgoQsGEVTEhuOsvb5Juo+7e1J3HRrXZKuIoowt0ia6Ri25REz2gNuogiqboGb2iNyu3Xqx362PVWrKKmXP0B9bnDzYGkrs=</latexit>

Bd⇥k
<latexit sha1_base64="TozikI6wecKv1MtTW4NV6hylYMM=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCp5IURI9VL56kgrWFNoTNZtMu3WzC7qZQQv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZF6ScKe0431ZpbX1jc6u8XdnZ3ds/sA+PnlSSSULbJOGJ7AZYUc4EbWumOe2mkuI44LQTjG5nfmdMpWKJeNSTlHoxHggWMYK1kXzbrl37eYj6msVUoftpzberTt2ZA60StyBVKNDy7a9+mJAspkITjpXquU6qvRxLzQin00o/UzTFZIQHtGeowGaRl88vn6Izo4QoSqQpodFc/T2R41ipSRyYzhjroVr2ZuJ/Xi/T0ZWXM5FmmgqyWBRlHOkEzWJAIZOUaD4xBBPJzK2IDLHERJuwKiYEd/nlVfLUqLsXdeehUW3eFHGU4QRO4RxcuIQm3EEL2kBgDM/wCm9Wbr1Y79bHorVkFTPH8AfW5w8IRpKd</latexit>

Ad⇥N

<latexit sha1_base64="wKir74qOzpoR1L9mo7U144yY6bw=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GWwFVyUpiC6rblxJBfuAJoTJdNIOnTyYuRFKzMJfceNCEbf+hjv/xmmbhbYeuHA4517uvcdPBFdgWd/G0vLK6tp6aaO8ubW9s2vu7bdVnErKWjQWsez6RDHBI9YCDoJ1E8lI6AvW8UfXE7/zwKTicXQP44S5IRlEPOCUgJY887DqDAlkl7mX9bEDPGQK3+ZVz6xYNWsKvEjsglRQgaZnfjn9mKYhi4AKolTPthJwMyKBU8HyspMqlhA6IgPW0zQiepGbTe/P8YlW+jiIpa4I8FT9PZGRUKlx6OvOkMBQzXsT8T+vl0Jw4WY8SlJgEZ0tClKBIcaTMHCfS0ZBjDUhVHJ9K6ZDIgkFHVlZh2DPv7xI2vWafVaz7uqVxlURRwkdoWN0imx0jhroBjVRC1H0iJ7RK3oznowX4934mLUuGcXMAfoD4/MH+DeVag==</latexit>

Âd⇥N

<latexit sha1_base64="nFCGpBe/5/aZqV73AIqwEL5ujjw=">AAAB+XicbVDLSgNBEOyNrxhfqx69DCaCp7AbED0GvXiSCCZGkmWZnUySIbMPZnoDYcmfePGgiFf/xJt/4yTZgyYWNBRV3XR3BYkUGh3n2yqsrW9sbhW3Szu7e/sH9uFRS8epYrzJYhmrdkA1lyLiTRQoeTtRnIaB5I/B6GbmP4650iKOHnCScC+kg0j0BaNoJN+2K09+NiJdFCHX5G5a8e2yU3XmIKvEzUkZcjR8+6vbi1ka8giZpFp3XCdBL6MKBZN8WuqmmieUjeiAdwyNqFnkZfPLp+TMKD3Sj5WpCMlc/T2R0VDrSRiYzpDiUC97M/E/r5Ni/8rLRJSkyCO2WNRPJcGYzGIgPaE4QzkxhDIlzK2EDamiDE1YJROCu/zyKmnVqu5F1bmvlevXeRxFOIFTOAcXLqEOt9CAJjAYwzO8wpuVWS/Wu/WxaC1Y+cwx/IH1+QM435K8</latexit>

Yk⇥N

<latexit sha1_base64="WIGhEHFpHsPzLBEykGMguNt3GLo=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiB6DXjxGMA9JljA7mU2GzGOZmRVDyFd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63l1tb39jcym8Xdnb39g+Kh0dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6mfmtR6oNU/LejhMaCjyQLGYEWyc9lLs4SbR6KveKJb/iz4FWSZCREmSo94pf3b4iqaDSEo6N6QR+YsMJ1pYRTqeFbmpogskID2jHUYkFNeFkfvAUnTmlj2KlXUmL5urviQkWxoxF5DoFtkOz7M3E/7xOauOrcMJkkloqyWJRnHJkFZp9j/pMU2L52BFMNHO3IjLEGhPrMiq4EILll1dJs1oJLir+XbVUu87iyMMJnMI5BHAJNbiFOjSAgIBneIU3T3sv3rv3sWjNednMMfyB9/kDTzuQFA==</latexit>⇡

<latexit sha1_base64="XNq1KCjknNERdwucabvPpxoSA9o=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6LHoxWMF+wFtKJvtpl262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94CThfkSHSoSCUbRSp9JDEXFT6ZfKbtWdg6wSLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGuponaLn83vnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7HkyEJozlBNLKNPC3krYiGrK0EZUtCF4yy+vklat6l1W3ftauX6Tx1GAUziDC/DgCupwBw1oAgMJz/AKb86j8+K8Ox+L1jUnnzmBP3A+fwBxZI+S</latexit>⇥

<latexit sha1_base64="MMaL/Q1M66VdkodgO/tnguiizmc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00kP5utwrltyKOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1rxLirufbVUu8niyMMJnMI5eHAJNbiDOjSAwQCe4RXeHOm8OO/Ox6I152Qzx/AHzucPRP2NHw==</latexit>=

Coefficient matrix

8 93

8 93

Fig. 6. Rotating Gaussian dataset: Examples of input merge trees (blue
boxes) with their sketched versions (red boxes). Visualizing data matrices
associated with the sketching, while highlighting the coefficient matrix.

Since the dataset is quite simple, a couple of basis trees are sufficient
to obtain very good sketching results. Using k = 2, IFS select S =
{T4,T7}. In Fig. 5, we highlight the two basis trees selected with IFS
and their corresponding scalar fields, respectively, with green boxes.
The topological structures of T1 and T6 are noticeably distinct among
the input trees. They clearly capture the structural variations and serve
as good representatives of the set T .

We also show a few input trees T3,T8,T9 (blue boxes) and their
sketched versions (red boxes) in Fig. 6. The input and the sketched tree
for T3 are almost indistinguishable. However, there are some structural
differences between the input and sketched trees for T8 and T9 due to
randomized approximations. We also visualize the data matrix A, Â,
B, and highlight the coefficient matrix Y in Fig. 6. The Frechét mean
tree T contains 11 nodes. The coefficient matrix, shows that each input
tree (column) is well represented (with high coefficient) by one of the
two basis trees. In particular, columns in the coefficience matrix with
high (yellow or light green) coefficients (w.r.t. the given basis) may
be grouped together, forming two clusters {T0,T2,T3,T5,T6,T7.T8} and

{T1,T4,T9,T10,T11} whose elements look structurally similar.

Coefficient matrix

Fig. 7. Rotating Gaussian data set: coefficient matrices together with
basis trees returned by NMF.

On the other hand, using NMF, when k= 2, we display the coefficient
matrix together with basis trees (obtained via MST) in Fig. 7. The most
interesting aspect of using NMF is that the basis trees (green boxes) are
not elements of T ; however, they very much resemble the basis trees
obtained by IFS. In addition, columns in the coefficient matrix with
high coefficients (w.r.t. the same basis) may be grouped together that
show the same two clusters as before.

5 EXPERIMENTAL RESULTS

We demonstrate the applications of our sketching framework with
merge trees that arise from three time-varying datasets from scientific
simulations. The key takeaway is that, using matrix sketching and
probabilistic matching between the merge trees, a large set T of merge
trees is replaced by a much smaller basis set S such that trees in T are
well approximated by trees in S . Such a compressed representation can
then be used for downstream analysis and visualization. In addition,
our framework makes each large dataset simple to understand, where
elements in S serve as good representatives that capture structural
variations among the time instances, and elements with large sketching
errors are considered as outliers (w.r.t. a chosen basis).
Parameters. To choose the appropriate k number of basis trees for
each dataset, we use the “elbow method” to determine k, similar to
cluster analysis. We plot the global GW loss and global sketch error as a
function of k, and pick the elbow of the curve as the k to use. As shown
in Fig. 8, k is chosen to be 3, 15 and 30 for the Heated Cylinder, Corner
Flow, and Red Sea2 datasets respectively. In subsequent sections,
element-wise GW losses and sketch errors also reaffirm these choices.

Fig. 8. Global GW losses and global sketch errors for varying k, the
number of basis trees. From left to right, Heated Cylinder, Corner Flow,
and Red Sea datasets.

For our experiments shown in Fig. 8, IFS and LSS give sketched
trees with lower GW losses than NMF, in particular, for datasets with

2Admittedly, Red Sea dataset is the hardest to sketch, even 30 (basis trees)
may not be the optimal.

smaller merge trees or smaller amount of topological changes, such
as Heated Cylinder and Corner Flow datasets. While NMF performs
better for Red Sea dataset with lower sketch errors when individual
input trees do not capture the complex topological changes across time
instances. Furthermore, IFS (blue curve) performs slightly better than
LSS (orange curve), based on error analysis (see Fig. 8 and Appendix D
for details). In term of merge tree reconstruction from distance matrices,
MST generally gives more visually appealing sketched trees and basis
trees in practice than LSST, thus we discuss MSTs throughout this
section and include some results on LSST in Appendix A.

5.1 Heated Cylinder Dataset
Two of our datasets come from numerical simulations available online3.
The first dataset, referred to as the Heated Cylinder with Boussinesq
Approximation (Heated Cylinder in short), comes from the simulation
of a 2D flow generated by a heated cylinder using the Boussinesq ap-
proximation [32,52]. The dataset shows a time-varying turbulent plume
containing numerous small vortices. We convert each time instance
of the flow (a vector field) into a scalar field using the magnitude of
its vertical (y) velocity component. We generate a set of merge trees
from these scalar fields based on 31 time steps – they correspond to
steps 600-630 from the original 2000 time steps. This set captures the
evolution of small vortices over time.

GW loss

Sketch error

12 203

8 24 287 153 Basis Trees

2 Basis Trees

Coefficient matrix

3 22

A

B

C
GW loss

Sketch error

D

Coefficient matrix

Fig. 9. Sketching the Heated Cylinder dataset with three (A-B) and two
(C-D) basis trees. (A, C) column-wise sketch error and GW loss, (B, D)
coefficient matrix. Orange boxes highlight basis trees. Magenta and
teal boxes highlight trees with large and small sketch error/GW loss,
respectively. Configuration: IFS with MST.

Given 31 merge trees T = {T0, . . . ,T30} from the Heated Cylinder
dataset, we apply both CSS (specifically, IFS and LSS) and NMF to
obtain a set of basis trees S and reconstruct the sketched trees. We first
demonstrate that with only three basis trees, we could obtain visually
appealing sketched trees with small errors. We then describe how the
basis trees capture structural variations among the time-varying input.
Sketched trees with IFS. We first illustrate our sketching results using
IFS. Based on our error analysis using the “elbow method”, three basis
trees appear to be the appropriate choice that strikes a balance between
data summarization and structural preservation. The coefficient matrix,
column-wise sketch error and GW loss (Fig. 9) are used to guide our
investigation into the quality of individual sketched trees. Trees with
small GW losses or sketch errors are considered well sketched, whereas
those with large errors are considered outliers. We give examples of a
couple of well-sketched tree – T7 and T15 (teal boxes) – with several
outliers – T8, T24, and T28 (magenta boxes) – w.r.t. the chosen basis.

As illustrated in Fig. 1, we compare a subset of input trees (B, blue
boxes) against their sketched versions (C, red boxes). Even though
we only use three basis trees, a large number of input trees – such as
T3, T15 – and their sketched versions are indistinguishable with small
errors. Even though T8, T24, and T28 are considered outliers relative to
other input trees, their sketched versions do not deviate significantly
from the original trees. We highlight subtrees with noticeable structural

3https://cgl.ethz.ch/research/visualization/data.php

differences before and after sketching in Fig. 1(C), whose roots are
pointed by black arrows.

Fig. 10. Heated Cylinder : weight matrices associated with T24 during the
sketching process. Configuration: IFS with MST.

In Fig. 10, we further investigate the weight matrices from different
stages of the sketching pipeline for tree T = T24. From left to right,
we show the weight matrix W of the input tree, its blow-up matrix W ′
(which is linearized to a column vector a), the approximated column
vector â after sketching (reshaped into a square matrix), the weight
matrix Ŵ ′ of the MST derived from the reshaped â, the weight matrix
of the MST after simplification, and root alignment Ŵ w.r.t. T . We
observe minor changes between W (blue box) and Ŵ (red box), which
explain the structural differences before and after sketching in Fig. 1.
Basis trees as representatives. As shown in Fig. 11(A), IFS produces
three basis trees, S = {T3,T12,T20}, which capture noticeable structural
variations among the input merge trees. Specifically, moving from T3
to T12, and T12 to T20, a saddle-minima pair appears in the merge trees
respectively (highlighted by orange circles). These changes in the basis
trees reflect the appearances of critical points in the domain of the
time-varying fields, see Fig. 11(B). In Fig. 11(C), we highlight (with
orange balls) the appearances of these critical points in the domain.

Furthermore, the coefficient matrix in Fig. 9(B) contains a number
of yellow or light green blocks, indicating that consecutive input trees
share similar coefficients w.r.t. the chosen basis and thus grouped
together into clusters. Again, such a blocked structure indicates that
the chosen basis trees appear to be good representatives of the clusters.
In comparison, using just two basis trees does not capture the structural
variations as well, where we see a slight degradation in the blocked
structure thus sketching quality in Fig. 9(C-D).
Sketching with LSS and NMF. Additionally, we include the sketch-
ing results using LSS and NMF as alternative strategies, again with
three basis trees. LSS gives basis trees T2,T10 and T27 in Fig. 12 (Top),
which are similar to the ones obtained by IFS (Fig. 11). Using NMF, we
show the three basis trees together with a coefficient matrix in Fig. 12
(Bottom). Although these basis trees are generated by non-negative
matrix factorization, that is, they do not correspond to any input trees;
nevertheless they nicely pick up the structural variations in data and are
shown to resemble the basis trees chosen by column selections. This
shows that even through these matrix sketching techniques employ dif-
ferent (randomized) algorithms, they all give rise to reasonable choices
of basis trees, which lead to good sketching results.

5.2 Corner Flow Dataset

The second dataset, referred to as the Cylinder Flow Around Corners
(Corner Flow in short), arises from the simulation of a viscous 2D
flow around two cylinders [7, 52]. The channel into which the fluid is
injected is bounded by solid walls. A vortex street is initially formed at
the lower left corner, which then evolves around the two corners of the

3 12 20

3 12 20

a b

c d

a b c d

A

B

C

Fig. 11. Sketching the Heated Cylinder dataset with 3 basis trees:
(A) basis trees where orange circles highlight topological changes w.r.t.
nearby basis trees, (B) scalar fields that give rise to these basis trees,
areas with critical points appearances/disappearances are shown with
zoomed views in (C). Configuration: IFS with MST.

LSS

27102

Coefficient Matrix

Coefficient MatrixNMF

Fig. 12. Coefficient matrices and basis trees used to sketch the Heated
Cylinder dataset with 3 basis trees with LSS (top) and NMF (bottom).

bounding walls. We generate a set of merge trees from the magnitude
of the velocity fields of 100 time instances, which correspond to steps
801-900 from the original 1500 time steps. This dataset describes the
formation of a one-sided vortex street on the upper right corner.

Given a set of 100 merge trees from the Corner Flow dataset, we first
demonstrate that a set of 15 basis trees chosen with IFS gives visually
appealing sketched trees with small error, based on the coefficient

matrices and error analysis.

GW loss

Sketch error

A

B

Coefficient matrix

10 Basis Trees

15 Basis Trees
GW loss

Sketch error

Coefficient matrix

C

D

7

3

19 994

12 20 2528 32 36 40

44

48

51

53 60 65 74 81 92

Fig. 13. Sketching the Corner Flow dataset with 15 (A, B) and 10 (C,
D) basis trees. (A, C) column-wise sketch error and GW loss, (B, D)
coefficient matrix. Orange boxes highlight basis trees. Magenta and
teal boxes highlight trees with large and small sketch error/GW loss,
respectively. Red boxes in (D) indicate trees that are better sketched
with 15 basis trees. Configuration: IFS with MST.

Coefficient matrices. Using the “elbow method” in the error analysis,
we set k = 15. We first compare the coefficient matrices generated
using IFS, for k = 10,15, respectively. Comparing Fig. 13(A) and (C),
we see in general improved column-wise GW loss and sketch error
using 15 instead of 10 basis trees. Furthermore, the coefficient matrix
with 15 basis trees (B) contains better block structure than the one with
10 basis trees (D). Particularly, using additional basis trees improves
upon the sketching results in regions enclosed by red boxes in (D).

Basis trees as representatives. We thus report the sketching results
with 15 basis trees under IFS. The basis trees are selected with labels
3, 12, 21, 25, 28, 32, 36, 40, 48, 53, 60, 65, 74, 81, 92. Similar to the
Heated Cylinder, we observe noticeable structural changes among pairs
of adjacent basis trees, which lead to a partition of the input trees into
clusters with similar structures; see the block structure in Fig. 13(B).
Thus the basis trees serve as good cluster representatives, as they are
roughly selected one per block. We highlight the structural changes
(with black arrows pointing at the roots of subtrees) among a subset of
adjacent basis trees in Fig. 15 (green boxes).

Fig. 14. Sketching the Corner Flow dataset with 15 basis trees. Weight
matrices associated with T99 during the sketching process. Configuration:
IFS with MST.

Sketched trees. Finally, we investigate individual sketched trees
in Fig. 15. We utilize the column-wise errors to select well-sketched
trees (trees 4, 44, and 51) and outliers (trees 7, 19, and 99). Trees with
lower GW loss and sketch error are structurally similar to the chosen
basis trees, and thus have a good approximation of their topology. For
instance, the sketched tree 4 (red box) is almost indistinguishable w.r.t.

to the original (blue box); the only difference is that the node pointed
by the black arrow has a slightly higher function value.

On the other hand, we observe that each outlier tree (e.g., T7,T99) is
less visually appealing and has a higher sketch error. For instance, T99
is shown to be a linear combination of two basis trees (T74 and T92), see
also Fig. 13(B). Its weight matrices before, during, and after sketching
are shown in Fig. 14, their differences before (blue box) and after (red
box) sketching explain the observed structural discrepancies.

5.3 Red Sea Dataset
The third dataset, referred to as the Red Sea eddy simulation (Red Sea in
short) dataset, originates from the IEEE Scientific Visualization Contest
20204. The dataset is used to study the circulation dynamics and eddy
activities of the Red Sea (see [35, 61, 62]). For our analysis, we use
merge trees that arise from velocity magnitude fields of an ensemble
(named 001.tgz) with 60 times steps. Latter time steps capture the
formation of various eddies, which are circular movements of water
important for transporting energy and biogeochemical particles in the
ocean.

The Red Sea dataset comes with 60 merge trees. The input does
not exhibit natural clustering structures because many adjacent time
instances give rise to trees with a large number of structural changes. In
this case, NMF performs better than IFS and LSS in providing visually
appealing sketched trees since individual input trees do not capture
these complex topological changes.

w
Coefficient matrices. Using both NMF and LSS, we compare the
coefficient matrices for k = 15 and 30, respectively; see Fig. 16 (Top).
For LSS, the input trees appear to have very diverse structures without
clear large clusters. This phenomenon is evident by the lack of block
structure (e.g., long yellow rows) in the coefficient matrices. It is also
interesting to notice that for LSS, there exists a subset of consecutive
columns that contain few selected basis (e.g., red boxes for k = 15,30).
On the other hand, using NMF, we obtain a slightly better block struc-
ture in the coefficient matrices. In general, the global sketch error and
GW loss improve as we increase the number of basis.
Sketched trees. In general, the Red Sea dataset exhibits complex
topological changes across time, thus it is not an easy dataset to sketch.
We investigate the sketched individual trees with NMF and k = 30
in Fig. 16 (Bottom). We visualize a number of sketched trees (trees
labeled 1, 2, 3, 6, 36, 52) with varying errors together with their
corresponding scalar fields. Given the diversity of the input trees,
with 30 basis, we obtain a number of visually appealing sketched trees
with minor structural differences (pointed by black arrows) w.r.t. to
the original input trees. This show a great potential in using matrix
factorization approaches to study and compress large collections of
scientific datasets while preserving their underlying topology.

6 CONCLUSION

In this paper, we present a framework to sketch merge trees. Given a
set T of merge trees of (possibly) different sizes, we compute a basis
set of merge trees S such that each tree in T can be approximately
reconstructed using S. We demonstrate the utility of our framework in
sketching merge trees that arise from scientific simulations. Our frame-
work can be used to obtain compact representations for downstream
analysis and visualization, and to identify good representatives and
outliers. Our approach is flexible enough to be generalized to sketch
other topological descriptors such as contour trees, Reeb graphs, and
Morse–Smale graphs (e.g., [16]), which is left for future work.

ACKNOWLEDGMENTS

This work was partially funded by DOE DE-SC0021015. We thank Jeff
Phillips for discussions involving column subset selection and Benwei
Shi for his implementation on length squared sampling. We also thank
Ofer Neiman for sharing the code on low stretch spanning tree.

4https://kaust-vislab.github.io/SciVis2020/

4 4

44 44

51 51

74

44

51

19

99

7

19

99

7

19

99

3 12 21 25 28 8174 9265

Fig. 15. Individual sketched trees for the Corner Flow dataset with 15 basis trees. Configuration: IFS and MST. Green boxes are basis trees. Blue
boxes are input trees while red boxes are sketched trees.

1

2

3

6

52

36

3

2

11

2

3

6

52

36

6

52

36

GW loss

Sketch error

NMF LSS 15 Basis

30 Basis

15 Basis

30 Basis GW loss

Sketch error

GW loss

GW loss

Sketch error

Coefficient matrix

Coefficient matrix

Sketch error

Coefficient matrix

Coefficient matrix

Fig. 16. Top: Coefficient matrices, column-wise sketch error and GW loss, for sketching the Red Sea dataset with 15 and 30 basis trees using
NMF (left) and LSS (right), respectively. Bottom: Individual sketched trees for the Red Sea dataset together with their corresponding scalar fields.
Configuration: 30 basis trees, NMF and MST. Blue boxes are input trees and red boxes are sketched trees.

REFERENCES

[1] I. Abraham, Y. Bartal, and O. Neiman. Embedding metrics into ultra-
metrics and graphs into spanning trees with constant average distortion.
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 502–511, 2007.

[2] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning
trees. IEEE Symposium on Foundations of Computer Science, pages
781–790, 2008.

[3] I. Abraham and O. Neiman. Using petal-decompositions to build a low
stretch spanning tree. ACM Symposium on Theory of Computing, pages
395–406, 2012.

[4] M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM
Journal on Mathematical Analysis, 43(2):904–924, 2011.

[5] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game
and its application to the k-server problem. SIAM Journal on Computing,
24(1):78–100, 1995.

[6] D. Alvarez-Melis and T. Jaakkola. Gromov-Wasserstein alignment of
word embedding spaces. Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 1881–1890, 2018.

[7] I. Baeza Rojo and T. Günther. Vector field topology of time-dependent
flows in a steady reference frame. IEEE Transactions on Visualization and
Computer Graphics, 26(1):280–290, 2020.

[8] K. Beketayev, D. Yeliussizov, D. Morozov, G. Weber, and B. Hamann.
Measuring the distance between merge trees. Topological Methods in
Data Analysis and Visualization III: Theory, Algorithms, and Applications,
Mathematics and Visualization, pages 151–166, 2014.

[9] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Itera-
tive Bregman projections for regularized transportation problems. SIAM
Journal on Scientific Computing, 37(2):A1111–A1138, 2015.

[10] A. Bhaskara, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghaddam. Resid-
ual based sampling for online low rank approximation. IEEE 60th Annual
Symposium on Foundations of Computer Science, 2019.

[11] C. Boutsidis and E. Gallopoulos. SVD based initialization: A head start for
nonnegative matrix factorization. Pattern Recognition, 41(4):1350–1362,
2008.

[12] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation
algorithm for the column subset selection problem. Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 968–977,
2009.

[13] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Efficient computa-
tion of isometry-invariant distances between surfaces. SIAM Journal on
Scientific Computing, 28(5):1812–1836, 2006.

[14] C. Bunne, D. Alvarez-Melis, A. Krause, and S. Jegelka. Learning gener-
ative models across incomparable spaces. International Conference on
Machine Learning, pages 851–861, 2019.

[15] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimen-
sions. Computational Geometry, 24(2):75–94, 2003.

[16] M. J. Catanzaro, J. M. Curry, B. T. Fasy, J. Lazovskis, G. Malen, H. Riess,
B. Wang, and M. Zabka. Moduli spaces of Morse functions for persistence.
Journal of Applied and Computational Topology, 4:353–385, 2020.

[17] S. Chowdhury and T. Needham. Gromov-Wasserstein averaging in a
Riemannian framework. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages 842–843,
2020.

[18] A. Cichocki and A.-H. Phan. Fast local algorithms for large scale nonnega-
tive matrix and tensor factorizations. IEICE transactions on fundamentals
of electronics, communications and computer sciences, 92(3):708–721,
2009.

[19] M. Cuturi and A. Doucet. Fast computation of Wasserstein barycenters.
Proceedings of the 31st International Conference on Machine Learning,
PMLR, 32(2):685–693, 2014.

[20] A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank ma-
trix approximation. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 292–303, 2006.

[21] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms
for matrices ii: Computing a low-rank approximation to a matrix. SIAM
Journal on Computing, 36:158–183, 2006.

[22] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. Fast
approximation of matrix coherence and statistical leverage. Journal of
Machine Learning Research, 13:3441–3472, 2012.

[23] I. L. Dryden, A. Koloydenko, and D. Zhou. Non-Euclidean statistics for
covariance matrices, with applications to diffusion tensor imaging. Annals

of Applied Statistics, 3(3):1102–1123, 2009.
[24] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng. Lower-stretch

spanning trees. Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, 2005.

[25] F. Emmert-Streib, M. Dehmer, and Y. Shi. Fifty years of graph matching,
network alignment and network comparison. Information Sciences, 346–
347:180–197, 2016.

[26] D. Ezuz, J. Solomon, V. G. Kim, and M. Ben-Chen. GWCNN: A metric
alignment layer for deep shape analysis. Computer Graphics Forum,
36:49–57, 2017.

[27] C. Févotte and J. Idier. Algorithms for nonnegative matrix factorization
with the β -divergence. Neural computation, 23(9):2421–2456, 2011.

[28] E. Gasparovic, E. Munch, S. Oudot, K. Turner, B. Wang, and
Y. Wang. Intrinsic interleaving distance for merge trees. arXiv preprint
arXiv:1908.00063, 2019.

[29] M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodruff. Frequent
directions: Simple and deterministic matrix sketching. SIAM Journal of
Computing, 45(5):1762–1792, 2016.

[30] M. Gromov. Metric Structures for Riemannian and Non-Riemannian
Spaces, volume 152 of Progress in mathematics. Birkhäuser, Boston,
USA, 1999.

[31] S. Gu and T. Milenković. Data-driven network alignment. PLoS ONE,
15(7):e0234978, 2020.

[32] T. Günther, M. Gross, and H. Theisel. Generic objective vortices for flow
visualization. ACM Transactions on Graphics, 36(4):141:1–141:11, 2017.

[33] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-based
methods in visualization. Computer Graphics Forum, 35(3):643–667,
2016.

[34] R. Hendrikson. Using Gromov-Wasserstein distance to explore sets of
networks. Master’s thesis, University of Tartu, 2016.

[35] I. Hoteit, X. Luo, M. Bocquet, A. Köhl, and B. Ait-El-Fquih. Data
assimilation in oceanography: Current status and new directions. In E. P.
Chassignet, A. Pascual, J. Tintoré, and J. Verron, editors, New Frontiers in
Operational Oceanography. GODAE OceanView, 2018.

[36] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. Contemporary Mathematics, 26:189–206, 1984.

[37] I. Koutis, G. L. Miller, and R. Peng. A nearly-m logn time solver for
SDD linear systems. Procedings of the IEEE 52nd Annual Symposium on
Foundations of Computer Science, 2011.

[38] E. Liberty. Simple and deterministic matrix sketching. Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 581–588, 2013.

[39] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci. Visualizing
high-dimensional data: Advances in the past decade. IEEE Transactions
on Visualization and Computer Graphics, 23(3):1249–1268, 2017.

[40] M. W. Mahone and P. Drineas. Structural properties underlying high-
quality randomized numerical linear algebra algorithms. In M. K.
P. Buhlmann, P. Drineas and M. van de Laan, editors, Handbook of Big
Data, pages 137–154. Chapman and Hall, 2016.

[41] F. Mémoli. Estimation of distance functions and geodesics and its use for
shape comparison and alignment: theoretical and computational results.
PhD thesis, University of Minnesota, 2005.

[42] F. Mémoli. On the use of Gromov-Hausdorff distances for shape compar-
ison. Eurographics Symposium on Point-Based Graphics, pages 81–90,
2007.

[43] F. Mémoli. Gromov-Wasserstein distances and the metric approach to
object matching. Foundations of Computational Mathematics, 11(4):417–
487, 2011.

[44] F. Mémoli and T. Needham. Gromov-Monge quasi-metrics and distance
distributions. arXiv preprint arXiv:1810.09646, 2020.

[45] F. Mémoli and G. Sapiro. Comparing point clouds. Proceedings of
the Eurographics/ACM SIGGRAPH Symposiumon Geometry Processing,
pages 32–40, 2004.

[46] F. Mémoli and G. Sapiro. A theoretical and computational framework
for isometry invariant recognition of point cloud data. Foundations of
Computational Mathematics, 5:313–347, 2005.

[47] F. Memoli, A. Sidiropoulos, and K. Singhal. Sketching and clustering
metric measure spaces. arXiv preprint arXiv:1801.00551, 2018.

[48] J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.
[49] B. Ordozgoiti, S. G. Canaval, and A. Mozo. A fast iterative algorithm

for improved unsupervised feature selection. IEEE 16th International
Conference on Data Mining, pages 390–399, 2016.

[50] G. Peyré, M. Cuturi, and J. Solomon. Gromov-Wasserstein averaging
of kernel and distance matrices. Proceedings of the 33rd International
Conference on Machine Learning, PMLR, 48:2664–2672, 2016.

[51] J. M. Phillips. Coresets and sketches. In Handbook of Discrete and
Computational Geometry, chapter 48. CRC Press, 3rd edition, 2016.

[52] S. Popinet. Free computational fluid dynamics. ClusterWorld, 2(6), 2004.
[53] T. Sarlós. Improved approximation algorithms for large matrices via

random projections. Proceedings of 47th IEEE Symposium on Foundations
of Computer Science, pages 143–152, 2006.

[54] R. Sridharamurthy, T. B. Masood, A. Kamakshidasan, and V. Natarajan.
Edit distance between merge trees. IEEE Transactions on Visualization
and Computer Graphics, 2018.

[55] K.-T. Sturm. The space of spaces: curvature bounds and gradient flows
on the space of metric measure spaces. arXiv preprint arXiv:1208.0434,
2012.

[56] V. Titouan, N. Courty, R. Tavenard, and R. Flamary. Optimal transport for
structured data with application on graphs. International Conference on
Machine Learning, pages 6275–6284, 2019.

[57] V. Titouan, R. Flamary, N. Courty, R. Tavenard, and L. Chapel. Sliced
Gromov-Wasserstein. Advances in Neural Information Processing Systems,
pages 14726–14736, 2019.

[58] D. P. Woodruff. Sketching as a tool for numerical linear algebra. Founda-
tions and Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

[59] H. Xu, D. Luo, and L. Carin. Scalable Gromov-Wasserstein learning
for graph partitioning and matching. Advances in Neural Information
Processing Systems, pages 3046–3056, 2019.

[60] H. Xu, D. Luo, H. Zha, and L. Carin. Gromov-Wasserstein learning
for graph matching and node embedding. International Conference on
Machine Learning, pages 6932–6941, 2019.

[61] P. Zhan, G. Krokos, D. Guo, and I. Hoteit. Three-dimensional signature
of the Red Sea eddies and eddy-induced transport. Geophysical Research
Letters, 46(4):2167–2177, 2019.

[62] P. Zhan, A. C. Subramanian, F. Yao, and I. Hoteit. Eddies in the red
sea: A statistical and dynamical study. Journal of Geophysical Research,
119(6):3909–3925, 2014.

A EXPERIMENTAL RESULTS WITH LSST
For comparative purposes, we describe sketching results for Heated
Cylinder dataset using low-stretch spanning trees (LSST). The recon-
structed sketched trees and basis trees using LSST are visually less ap-
pealing compared to the reconstruction using MST. As shown in Fig. 17,
the star-like features in the sketched trees are most likely a consequence
of the petal decomposition algorithm of LSST [3].

7 8

207

20

8

Fig. 17. Sketched trees from the Heated Cylinder dataset constructed
with LSST based on IFS.

On the other hand, the weight matrices show that the LSST preserves
some structures within the distance matrices, e.g., for T20, before (blue
box) and after (red box) sketching, see Fig. 18.

Fig. 18. Sketching the Heated Cylinder dataset with 3 basis trees. Weight
matrices associated with T20 during the sketching process. Configuration:
IFS with LSST.

B THEORETICAL CONSIDERATIONS

We discuss some theoretical considerations in sketching merge trees.
In the first two steps of our framework, we represent merge trees as
metric measure networks and vectorize them via blow-up and alignment
to a Fréchet Mean using the GW framework [17]. Each merge tree
T = (V,W, p) ∈ T is mapped to a column vector a in matrix A, where
W captures the shortest path distances using function value differences
as weights. The computation of the Fréchet mean T is an optimization
process, but the blow-up of T and its alignment to T does not change
the underlying distances between the tree nodes, which are encoded

in W . Therefore, reshaping the column vector a back to a pairwise
distance matrix and computing its corresponding MST fully recovers
the original input merge tree.

In the third step, we sketch the matrix A using either NMF or CSS.
Both matrix sketching techniques (albeit with different constraints)
aim to obtain an approximation Â = BY of A that minimizes the error
ε = ‖A− Â‖F . Let Ak denote the (unknown) best rank-k approximation
of A. In the case of CSS, the theoretical upper bound is given as a
multiplicative error of the form ε ≤ εk · ‖A−Ak‖F , where εk depends
on the choice of k [12, 20], or it is given as an additive error ε ≤ ‖A−
Ak‖F + εk,A, where εk,A depends on k and ‖A‖F [21, 40]. ‖A−Ak‖F is
often data dependent. In the case of NMF, a rigorous theoretical upper
bound on ε remains unknown.

Given an approximation Â of A, the next step is to reconstruct a
sketched merge tree from each column vector â of Â. We reshape â
into an n×n matrix Ŵ and construct a sketched tree T̂ by computing
the MST or the LSST of Ŵ . The distance matrix D̂ of the sketched tree
T̂ thus approximates the distance matrix W ′ of the blow-up tree T ′.

When a sketched merge tree is obtained via a LSST, there is a theo-
retical upper bound on the relative distortion of the distances [3], that
is, θ ≤ O(logn log logn) for θ = 1

(n
2)

∑x,x′
(
D̂(x,x′)/Ŵ (x,x′)

)
. When

a sketched merge tree is obtained via a MST, the theoretical bounds
on ‖Ŵ − D̂‖F are unknown, although, in practice, MST typically pro-
vides better sketched trees in comparison with LSST, as demonstrated
in Sect. 5. Finally, although the smoothing process does not alter the
tree structure significantly, it does introduce some error in the final
sketched tree, whose theoretical bound is not yet established.

Therefore, while we have obtained good experimental results in
sketching merge trees, there is still a gap between theory and practice
for individual sketched trees. Filling such a gap is left for future work.

C IMPLEMENTATION DETAILS

In this section, we provide some implementation details for various
algorithms employed in our merge tree sketching framework.
Initializing the coupling probability distribution. In Sect. 4, we
introduce the blowup procedure that transforms a merge tree T to a
larger tree T ′. This procedure optimizes the probability of coupling
between T and T , the Fréchet mean. Since the optimization process is
finding a coupling matrix that is a local minimum of the loss function,
similar input trees may give different coupling matrices due to the
optimization process. This may affect the ordering of nodes in the
blown-up trees, leading to completely different vectorization results
and large sketch errors. Specifically for time-varying data, to ensure
that adjacent trees are initialized with similar coupling probabilities
w.r.t. T , we use the coupling probability between Ti−1 and T to initialize
the coupling probability between Ti and T , for 1 ≤ i ≤ N− 1. This
strategy is based on the assumption that merge trees from adjacent time
instances share similar structures.
Matrix sketching algorithms. We use two variants of column subset
selection (CSS) algorithms, as well as non-negative matrix factorization
(NMF) to sketch the data matrix A. Here, we provide pseudocode for
these matrix sketching algorithms.

• Modified Length Squared Sampling (LSS)

1. s← 0, B is an empty matrix, A′ = A.

2. s← s+1. Select column c from A′ with the largest squared
norm (or select c randomly proportional to the squared
norm) and add it as a column to B. Remove c from A′.

3. For each remaining column c′ in A′ (i.e., c′ 6= c), factor out
the component along c as:

(a) u← c/‖c‖
(b) c′← c′−〈u,c′〉u

4. While s < k, go to step 2.

• Iterative Feature Selection (IFS)

1. Choose a subset of k column indices r = {i1, i2, . . . , ik}
uniformly at random.

2. Construct subset Br = [ai1 ,ai2 , . . . ,aik] of A with columns
indexed by r.

3. Repeat for j = 1,2, . . . ,k:

(a) Let X jl denote matrix formed by replacing column ai j

with column al in Br, where l ∈ [n]\ r. Let X+
jl denote

its Moore-Penrose pseudoinverse.
(b) Find w = argminl∈[n]\r‖A−X jlX

+
jl A‖F .

(c) Br← X jw.
(d) r← (r \{i j})

⋃{w}.

• Non-Negative Matrix Factorization (NMF)

1. Given A and k, initialize B ∈ Rd×k, Y = XT ∈ Rk×N us-
ing the non-negative double singular value decomposition
algorithm of Boutsidis and Gallopoulos [11].

2. Normalize columns of B and X to unit L2 norm. Let E =
A−BXT .

3. Repeat until convergence: for j = 1,2, . . . ,k,

(a) Q← E +b jxT
j .

(b) x j← [QT b j]+.
(c) b j← [Qx j]+.
(d) b j← b j/‖b j‖.
(e) E← Q−b jxT

j .

Here, [Q]+ means that all negative elements of the matrix Q are
set to zero.

LSST algorithm. We construct low stretch spanning trees (LSST)
using the petal decomposition algorithm of Abraham and Neiman [3].
Given a graph G, its LSST is constructed by recursively partitioning
the graph into a series of clusters called petals. Each petal P(x0, t,r) is
determined by three parameters: the center of the current cluster x0, the
target node of the petal t, and the radius of the petal r.

A cone C(x0,x,r) is the set of all nodes v such that d(x0,x) +
d(x,v)−d(x0,v)≤ r. A petal is defined as a union of cones of varying
radii. Suppose x0 → x1 → ·· · → xk = t is the sequence of nodes on
the shortest path between nodes x0 and t. Let dk denote the distance
d(xk, t). Then the petal P(x0, t,r) is defined as the union of cones
C(x0,xk,(r−dk)/2) for all xk such that dk ≤ r.

Beginning with a vertex x0 specified by the user, the algorithm
partitions the graph into a series of petals. When no more petals can be
obtained, all the remaining nodes are put into a cluster called the stigma.
A tree structure, rooted in the stigma, is constructed by connecting the
petals and the stigma using some of the intercluster edges. All other
edges between clusters are dropped. This process is applied recursively
within each petal (and the stigma) to obtain a spanning tree structure.
Merge tree simplification. To reconstruct a sketched tree, we reshape
the sketched column vector â of Â into an n×n matrix Ŵ ′, and obtain a
tree structure T̂ ′ by computing its MST or LSST. T̂ ′ is an approximation
of the blown-up tree T ′. To get a tree approximation closer to the
original input tree T , we further simplify T̂ ′ as described below.

The simplification process has two parameters. The first parameter
α is used to merge internal nodes that are too close (≤ α) to each other.
Let R be the diameter of T̂ ′ and n the number of nodes in T̂ ′. α is set
to be cα R/n2 for cα ∈ {0.5,1,2}. A similar parameter was used in
simplifying LSST in [3]. The second parameter β = cβ R/n is used to
merge leaf nodes that are too close (≤ β) to the parent node, where
cβ ∈ {0.5,1,2}. Let Ŵ ′ be the weight matrix of T̂ ′. The simplification
process is as follows:

1. Remove from T̂ ′ all edges (u,v) where Ŵ ′(u,v)≤ α .

2. Merge all leaf nodes u with their respective parent node v if
Ŵ ′(u,v)≤ β .

3. Remove all the internal nodes.

The tree T̂ obtained after simplification is the final sketched tree.
Merge tree layout. To visualize both input merge trees and sketched
merge trees, we experiment with a few strategies. To draw an input
merge tree T equipped with a function defined on its nodes, f : V → R,
we set each node u ∈V to be at location (xu,yu); where yu = f (u), and
xu is chosen within a bounding box while avoiding edge intersections.
The edge (u,v) is drawn proportional to its weight W (u,v) = | f (u)−
f (v)|= |yu− yv|.

To draw a sketched tree as a merge tree, we perform the following
steps:

1. Fix the root of the sketched tree at (0,0).
2. The y-coordinate of each child node is determined by the weight

of the edge between the node and its parent.
3. The x-coordinate is determined by the left-to-right ordering of the

child nodes. We consider to order the child nodes that share the
same parent node by using a heuristic strategy described below.

(a) Sort the child nodes by their size of the subtrees of which
the child node is the root in ascending order. This is trying
to keep larger subtrees on the right so the overall shape of
the tree is protected and straightforward to read.

(b) If the sizes of multiple subtrees are the same, we
apply the following strategy: we sort child nodes
by their distances to the parent node in descending
order. Suppose the order of child nodes after sorting is
c1,c2, . . . ,ct . If t is odd, we reorder the nodes from left to
right as ct ,ct−2,ct−4, . . . ,c3,c1,c2,c4, . . . ,ct−3,ct−1.
If t is even, we reorder the nodes as
ct−1,ct−3,ct−5, . . . ,c3,c1,c2,c4, . . . ,ct−2,ct .

The idea is to keep the child nodes that have a larger distance to the
parent near the center to avoid edge crossings between sibling nodes
and their subtrees.

Our layout strategy assumes that the trees are rooted. However, T̂ ,
which is our approximation of T , is not rooted. In our experiments, we
use two different strategies to pick a root for T̂ and align T and T̂ for
visual comparison.

Using the balanced layout strategy, we pick the node u of T̂ that
minimizes the sum of distances to all other nodes. Set u to be the
balanced root of T̂ . Similarly, we find the balanced root v of the input
tree T . T and T̂ are drawn using the balanced roots.

Using the root alignment strategy, we obtain the root node of the
sketched tree by keeping track of the root node during the entire sketch-
ing process. We can get the root node of T ′ because it is either a
duplicate node or the same node of the root node in T . Then we can
get the root node in T̂ ′, as the labels in the sketched blown-up tree are
identical to T ′. Lastly, by keeping track of the process of merge tree
simplification, we can know the label of the root of T̂ .
Other implementation details. Our framework is mainly imple-
mented in Python. The code to compute LSST and MST from a
given weight matrix is implemented in Java. For data processing and
merge tree visualization, we use Python packages, including numpy,
matplotlib, and networkx. In addition, the GW framework of Chowd-
hury and Needham [17] requires the Python Optimal Transport (POT)
package.

D DETAILED ERROR ANALYSIS

In Fig. 8, we see that all global sketch errors and most global GW
losses decrease as the number of basis trees k increases. The decrease
of global sketch errors is not surprising as this is a direct consequence
of matrix sketching when k increases. For the Heated Cylinder dataset,
we see that the global GW loss does not decrease drastically for k ≥ 3.
This is because that almost all input trees are well sketched at k = 3,

Sketching Method k GW loss Sketch errorMST LSST

NMF

2 1.4435 0.5233 123.1844
3 0.3420 0.5138 38.1245
4 0.4892 0.4992 27.7735
5 0.2927 0.3906 12.1199

IFS

2 0.4581 0.7500 156.4803
3 0.1756 0.5422 46.8917
4 0.1514 0.5453 28.1174
5 0.1159 0.4944 10.0892

LSS

2 1.7292 0.6311 247.4370
3 0.1574 0.6258 52.3285
4 0.1157 0.6743 34.1059
5 0.1416 0.5837 14.4842

Table 1. GW losses and sketch errors of sketching the Heated Cylinder
dataset with increasing k.

Sketching Method k GW loss Sketch errorMST LSST

NMF

5 46.0725 16.6348 23217.9002
10 27.2971 13.3785 10359.9521
15 21.2988 12.4028 5119.7659
20 14.7962 12.2321 2724.0766
25 13.3384 11.9885 1781.4510
30 13.2442 12.0104 1189.0048

IFS

5 37.9071 16.9597 29547.6731
10 12.8413 13.2241 12332.1347
15 6.5156 12.7953 4780.1059
20 4.5175 9.4656 2023.8101
25 3.3680 7.5935 888.4257
30 2.9452 5.9000 412.4219

LSS

5 71.8523 19.8988 39499.2563
10 33.5862 15.0740 21475.1222
15 8.6099 11.5266 8254.5006
20 5.5886 9.2652 3041.7406
25 4.0473 8.2447 1280.3685
30 2.9364 9.4942 725.1093

Table 2. GW losses and sketch errors of sketching the Corner Flow
dataset with increasing k.

resulting in small column-wise GW losses. This is the intuition behind
our “elbow method”.

In terms of the global sketch error, LSS strategy appear to have the
worst performance when k is small, while NMF consistently performs
the best for the Red Sea dataset with the most complicated topologi-
cal variations. IFS and LSS overall have similar performances in all
datasets, while IFS usually performs slightly better than LSS when k is
small. We report below the exact errors for a single run (with a fixed
seed for the randomization) across increasing k values for the three
datasets. We compare across three sketching techniques, NMF, LSS,
and IFS. We compare GW losses obtained using both MST and LSST
strategy.
Heated Cylinder. In Table 1, we see that global GW losses with MST
become stable for k ≥ 3. However, the global GW losses with LSST
do not converge as k increases to 5. This is partially due to the fact that
LSST does not recover the merge tree as well as the MST. Among three
sketching methods, at k = 3, IFS and LSS have better performance than
NMF for k≥ 3 w.r.t. the GW loss, while NMF has the best performance
on the sketch error.
Corner Flow. In Table 2, sketch errors decrease drastically as k
increases. For the two CSS sketching methods – IFS and LSS – the
“elbow” point of the GW loss with MST is at k = 15. Therefore we
report our results using k = 15 basis trees. Based on the performance of
GW loss for k ≥ 15, IFS performs the best among the three sketching

Sketching Method k GW loss Sketch errorMST LSST

NMF

5 6.9777 0.6956 933.3919
10 4.9383 0.5673 627.3957
15 2.8533 0.5011 440.2140
20 2.5431 0.5047 329.9397
25 1.5934 0.4128 246.5278
30 1.3152 0.3717 183.8884

IFS

5 3.7679 0.7960 1230.5378
10 2.1023 0.5802 830.7574
15 2.3979 0.5181 553.0398
20 1.4692 0.3485 397.0191
25 1.0142 0.2724 283.8923
30 0.7326 0.2579 201.8570

LSS

5 3.8604 0.8583 1629.3500
10 2.2035 0.5904 910.2818
15 2.3660 0.4774 603.2064
20 1.6389 0.4137 437.7015
25 1.1700 0.3275 313.6370
30 0.8721 0.3665 220.9125

Table 3. GW losses and sketch errors of sketching the Red Sea dataset
with increasing k.

Dataset Sketching Method k Avg. GW loss Avg. Sketch errorMST LSST

Heated Cylinder

NMF 3 0.3420 0.4825 38.1245
5 0.2927 0.4247 12.1199

IFS 3 0.1756 0.5981 46.8917
5 0.1159 0.4736 10.0892

LSS 3 0.1574 0.7299 52.3285
5 0.1416 0.5152 14.4842

Corner Flow

NMF 15 21.9481 12.8625 5119.6605
30 13.2744 12.1794 1188.9742

IFS 15 6.5156 12.0558 4780.1059
30 2.9452 6.0414 412.4219

LSS 15 8.6099 11.0902 8254.5006
30 2.9364 9.1941 725.1093

Red Sea

NMF 15 3.2322 0.4936 442.6564
30 1.3653 0.4398 188.4722

IFS 15 2.3979 0.5362 553.0398
30 0.7600 0.2706 201.8789

LSS 15 2.3660 0.5181 603.2064
30 0.8721 0.3512 220.9125

Table 4. Average GW loss and Sketch error of 10 different runs for the
sketching algorithms.

methods.
Red Sea. In Table 3, the “elbow” point is not as obvious. This is
because the Red Sea dataset is the hardest to sketch, as the input trees
contain significantly diverse topological structures. Similar to the
results of other two datasets, IFS has overall the best performance w.r.t.
the GW loss, LSS the second, and NMF the worst.
Average performance across multiple runs. Our pipeline includes
randomization to set initial states, including NMF, IFS, and the LSST
algorithm. Therefore, we report the average GW loss and sketch error
across 10 runs, each with a distinct random seed. By comparing Table 4
with Table 1, Table 2, and Table 3, we see that the average GW losses
and sketch errors across 10 different runs are close to the results of a
single run with a fixed random seed. This shows that our pipeline has a
reasonably stable performance on sketching merge trees.

	Introduction
	Related Work
	Technical Background
	Methods
	Experimental Results
	Heated Cylinder Dataset
	Corner Flow Dataset
	Red Sea Dataset

	Conclusion
	Experimental Results with LSST
	Theoretical Considerations
	Implementation Details
	Detailed Error Analysis

