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Abstract

Deep neural networks used for image classification often use convolutional filters to extract
distinguishing features before passing them to a linear classifier. Most interpretability literature
focuses on providing semantic meaning to convolutional filters to explain a model’s reasoning
process and confirm its use of relevant information from the input domain. Fully connected layers
can be studied by decomposing their weight matrices using a singular value decomposition, in
effect studying the correlations between the rows in each matrix to discover the dynamics of
the map. In this work we define a singular value decomposition for the weight tensor of a
convolutional layer, which provides an analogous understanding of the correlations between
filters, exposing the dynamics of the convolutional map. We validate our definition using recent
results in random matrix theory. By applying the decomposition across the linear layers of
an image classification network we suggest a framework against which interpretability methods
might be applied using hypergraphs to model class separation. Rather than looking to the
activations to explain the network, we use the singular vectors with the greatest corresponding
singular values for each linear layer to identify those features most important to the network. We
illustrate our approach with examples and introduce the DeepDataProfiler library, the analysis
tool used for this study.

1 Introduction

Mathematical functions and equations provide elegant and concise expression of the relationships and
dynamics of physical systems. While we might not understand the derivation or full significance of all
the parameters in a given equation, we can still be persuaded to rely on its predictive value. We can
be shown how to interpret the equation by linking its parameters to important values in the system
and by expressing their relationships in terms of the dynamics of the system. Machine learning
practitioners have long striven to obtain this same kind of interpretability for the trained neural
networks they produce, but have had limited success due to their size and complexity [8, 10, 32].
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A trained deep learning model defines a system of multivariate continuous functions or tensor
maps composed of linear and nonlinear maps referenced as layers. The success or failure of the
model depends largely on the parameters or weights found in the linear layers, which are defined
during a model’s training process. Consequentially, much interpretability literature offers methods
for discovering semantic meaning from the feature maps or activations produced by the linear layers
in order to tie them to the input domain [26, 3, 12].

Convolutional neural networks (CNNs) used for image classification provide the most accessible
opportunities to derive semantic meaning from feature maps because the features of interest are
visual objects. Image tensors can be used to probe network response by measuring their activation
values [25]. Strong responses in convolutional layers indicate strong correlation (positive or negative)
to the filters in the weight tensor, and in fully connected layers to the rows of the weight matrix.
But, what does a strong correlation mean?

The singular value decomposition (SVD) holds a special place in the heart of data science and
numerical linear algebra [36]. As a robust matrix factorization method it facilitates data compression
[39, 2] and network pruning [29]. For our purpose the unitary nature of the singular vectors make
the SVD an ideal factorization for understanding the dynamics, and hence the correlations measured
by the weight tensors.

In the case of a multi-layer perceptron, domain concepts producing activations highly correlated
to a singular vector are scaled by the corresponding singular value. Our belief is that these basic
correlations drive the success of the model so that interpretability rests largely on learning what input
features correlate most closely to the singular vectors. We define an SVD for convolutional layers
in terms of the SVD for an unfolding of the weight tensor. This echos the handling of convolutional
layers in Yoshida and Miyato [42] but differs from the approach used by Sedghi, Gupta, and Long
[34]. We describe the differences in these approaches and demonstrate that our definition is consistent
with notional ideas around correlation as well as recent empirical results on the spectral distribution
of covariance matrices associated with fully connected layers.

Our contribution brings a novel perspective to interpretability research. Much of the work of
feature attribution and visualization is focused on the channel activations generated by convolu-
tional layers [26, 12, 25, 43, 23]. We consider the linear dynamics of the convolutional layers as
transformations restricted to the subspace of receptive fields, the regions acted on by convolution.
By shifting to the receptive field space it is possible to unfold the weight tensors into matrices to
study their dynamics. This process gives mathematical meaning to the parameters and opens the
door to discovery of unanticipated features in the input domain.

The paper is organized in two parts. Sections 2 to 4 give the mathematical justification behind
our use of the SVD for convolutional layers. Sections 5 and 6 describe how the SVD might be used to
guide interpretability research. We close with examples, and introduce the DeepDataProfiler library
[28] used for this work.

2 Motivation and Background

The singular value decomposition of a real-valued matrix M is a factorization M = USV T into two
orthonormal change of basis matrices U and V , whose columns are called singular vectors, and a
diagonal matrix S of singular values. When viewed as a linear transformation, M : Rm → Rn, this
decomposition exposes the dynamical behavior of the transformation as a scaling of the subspaces
spanned by the singular vectors [6]. The eigenvalues of the correlation matrix MMT are the squares
of the singular values.

Applying random matrix theory to deep learning, Martin and Mahoney [19, 20, 21] examine the
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distribution of the eigenvalues of MMT when M is the weight matrix of a fully connected layer of
a trained neural network. They use these distributions to define a capacity metric for the model,
which correlates with the quality of the training process. Their work points to the use of the SVD to
understand training dynamics and the potential importance of the singular values in understanding
the decision process used by the model. We discuss this more in section 4.

In their study of the learning dynamics of neural networks, Saxe, McClelland, and Ganguli [33]
demonstrate that the training of a shallow multi-layer perceptron involves learning the semantic
hierarchical structure of the domain data. Moreover, this knowledge is captured by the singular
vectors and singular values learned by the network. This work is notable for its use of the projection
onto the singular vectors as a measure of the importance of a feature for an individual classification.

While many different projections of hidden layer activations appear to be semantically coherent
[37], Bau et al. [3] find evidence that the representations closer to the Euclidean (or “natural”) basis
are more meaningful than random unitary transformations. This makes sense in part due to the
element-wise nature of the activation maps following the linear transformations. But the dynamics
of the linear transformations were learned under the constraints of the model’s architecture. For
important domain features to persist as they are passed through the network, they must be scaled to
persist through regularization. In particular, Dittmer, King, and Maass [9] demonstrate that only
activations aligned to singular vectors with the largest corresponding singular values persist past
ReLU.

From the above observations we infer that not only do the singular values indicate quality of
training, but the singular vectors themselves may hold the key to understanding the latent features
of the model. For this reason we use the singular vectors of an SVD to study the influence of
convolutional and fully connected linear transformations on the network.

Both Saxe, McClelland, and Ganguli [33] and Martin and Mahoney [19, 20, 21] restrict their
analysis to the fully connected linear layers.1 To extend their work to all layers of a CNN, our
first task is to extend the singular value decomposition to the convolutional layers and project the
layer-wise activations onto the singular vectors to measure correlations.

A common approach for interpreting the activations produced by the weights of the hidden layers
is to optimize an input to the CNN that reliably produces a large response in an activation of interest.
This method has been most notably used to create feature visualizations, images optimizing a feature
map, for image classification networks [37, 18, 38, 22]. We draw on these optimization techniques
to gain an understanding of the concepts in the domain that correlate with the singular vectors for
a set of examples.

Interpretability research often depends upon linking feature maps to predetermined human iden-
tifiable concepts [3, 31, 13]. For example, Concept Activation Vectors [13] and LIME [31] start with
human-defined concepts and measure the model’s sensitivity to them. These are powerful tools for
verifying the model’s ability to recognize important domain-centric concepts. But interpretability
research starting from the premise that latent representations of trustworthy models must corre-
spond to known domain-centric concepts assumes we know in advance everything in the domain
that is meaningful. This could produce bias and eliminate the possibility that concepts used by
the model to describe class distinctions could be very different than what we expect and yet still
be domain-centric and legitimate for classification. As a consequence we will not try to incorporate
these approaches as we are interested in first discovering what the model defines as important, and
only then attaching them to something human interpretable. The subtle difference in discovering
the semantics of the network versus the sensitivity of the network to predefined concepts is discussed
extensively in Olah et al. [26, 24].

1Martin and Mahoney [19, 20, 21] address convolutional layers but do not flesh out the details.
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3 Preliminaries

Let D be a domain of images partitioned into target classes C = {Cj}Nj=1. Let M be an image
classification CNN trained and tested to classify the images in D into its N target classes. M is
composed of of multiple tensor maps called layers. As discussed in the introductory remarks, our
focus will be on a network’s linear layers (fully connected and convolutional)2, which we denote as
L . Other layers in the network, such as ReLU, batch normalization, and pooling, are fixed by the
architecture and learn any needed parameters indirectly from the layers in L . While these other
layers correspond to architectural considerations designed to constrain the learning process during
training, improving accuracy and generalizability, the latent representations of the input data used
for classification are ultimately determined by the linear layers.

The SVD expresses a linear map between vector spaces as a weighted sum of singular values
times singular vectors. The SVD is commonly used for low rank approximations in data science [6].
We are interested in the geometric properties of a linear map exposed by the SVD, which describe
the dynamics of the mapping.

The computation of the SVD of weight tensors in the fully connected layers is straightforward.
However, while the linearity properties of convolution are well-understood, there is more than one
way to express this operation using 2-tensors or matrices. The choice of representation affects the
computational complexity of generating the SVD, and more importantly, informs the perspective
from which we extract meaning from the matrix. Our goal is to choose a representation that
accurately reflects the role the operation plays in a neural network and provides us with informative
singular values within this context.

3.1 Cross-Correlation as Matrix Multiplication

First we recognize that the convolution used in a CNN is really cross-correlation, also known as a
sliding dot product. Let L be a convolutional layer in L with weight tensor W . Let X be an input
tensor to L and Y = W ?X, where ? means cross-correlation. For ease of notation and without loss
of generality, we make some basic assumptions about W and X. We assume that X is a 3-tensor of
dimensions c×m×m, W is a 4-tensor of dimensions d× c× k× k where k ≤ m, the stride is 1, and
the operation is 2-dimensional.

Let I = (i0, i1, . . . , is−1) ∈ Ns denote a tuple. Let TI be the set of real-valued s-tensors (i.e.,
s-order tensors) where I indicates the size of each of the s dimensions. Each tensor T ∈ TI is indexed
by the set

Index(TI) = {α ∈ Ns : αj < ij ,∀j < s},

and follows a row-major ordering. Following these conventions we say W ∈ T(d,c,k,k) has d filters,
each a 3-tensor with c channels and spatial dimensions of k× k. Similarly, we say X ∈ T(c,m,m) has
c channels and spatial dimensions m ×m. In this setting, Y ∈ T(d,n,n), for n = m − k + 1, has d
channels and spatial dimensions n× n. An element of Y is a valid3 sum of products:

Yh,i,j = (W ?X)h,i,j =
∑
r,s,t

Wh,r,s,t ·Xr,i+s,j+t. (1)

The channel activations of Y are its 2-dimensional slices indexed by the spatial dimensions and
referenced as Yr = Y [r, :, :]. The spatial activations are its 1-dimensional slices indexed by the

2A linear layer usually references a linear map followed by addition of a bias term and some non-linear map. For
this work we will mean only the linear map when we reference a linear layer.

3By valid we mean that every term in the sum exists. Any padding required by the model to preserve tensor size
is assumed to have already been applied to X.

4



channels and referenced as Yi,j = Y [:, i, j].
The set TI along with element-wise addition and scalar multiplication is a real-valued vector space

isomorphic to RΠI , where ΠI = Πs−1
k=0ik is the dimension of the vector space, i.e., the cardinality of

its basis. As we will see, it is helpful to have access to this isomorphism. Let {ēᾱ}ᾱ∈[0..ΠI−1] be the
standard Euclidean basis for RΠI . Define the corresponding Euclidean basis for TI using the subset
of TI given by {eIα}α∈Index(TI) such that (eIα)β = δαβ

4 for β ∈ Index(TI).
Define an isomorphism φI : TI → RΠI by pairing the basis vectors using their indices: order the

indices in Index(TI) in ascending lexicographic order and pair each index with its position in the
list. It is straightforward to check, if φI(eα) = ēᾱ then

ᾱ =

s−2∑
j=0

[
αj ·Πs−1

β=j+1iβ

]
+ αs−1. (2)

For any tensor T ∈ TI , φI(T ) is the vectorized form of T . We will often refer to this as the flattening
map. If φ−1

I (ēᾱ) = eα, then α is defined recursively using the formulas:

α0 =

⌊
ᾱ

Πs−1
β=1iβ

⌋

αj =

⌊
ᾱ−

∑j−1
γ=0 αγ ·Π

s−1
β=γ+1iβ

Πs−1
β=j+1iβ

⌋
for j < s− 1

αs−1 = ᾱ−
s−2∑
γ=0

αγ ·Πs−1
β=γ+1iβ .

(3)

This isomorphism is useful because it provides a consistent way to reshape a tensor. For suppose
J ∈ Ns′ such that ΠJ = ΠI, then φIJ = φ−1

J ◦ φI : TI → TJ is also an isomorphism. In general we
call φI , φJ and φIJ reshaping maps and reference them simply as φ when I and/or J are clear from
context.

In order to rewrite eq. (1) as a simple dot product of two 1-dimensional tensors, define a projection

map ψ
(m,k)
i,j : T(c,m,m) → T(c,k,k) as

ψ
(m,k)
i,j (X) =

∑
r≤c;s,t≤k

Xr,i+s,j+t · er,s,t.

The tensor ψ
(m,k)
i,j (X) ∈ T(c,k,k) is the receptive field associated with the spatial activation vector in

Y with spatial index (i, j). Now eq. (1) becomes:

Yh,i,j = φ(c,k,k)(Wh) · φ(c,k,k) ◦ ψ
(m,k)
i,j (X). (4)

The first term in the dot product is the flattened filter Wh. The second term in the dot product is
a flattened receptive field in X.

The inverse of the projection provides a natural embedding (ψ
(m,k)
i,j )−1 : T(c,k,k) → T(c,m,m), such

that for all T ∈ T(c,k,k):

(ψ
(m,k)
i,j )−1(T ) =

∑
r,s,t

Tr,s,t · er,i+s,j+t.

4The notation means that the βth component of the αth basis vector is equal to the Kronecker delta: δαβ = 1 if
α = β and 0 otherwise.
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T(d,c,k,k) × T(c,m,m) T(d,n,n)

T(d,ck2) × T(ck2,n2) T(d,n2)

χ

φ×Ψ φ

χ̄1

(a) Cross-correlation performed as matrix
multiplication using W 1.

T(d,c,k,k) × T(c,m,m) T(d,n,n)

T(dn2,cm2) × T(cm2) T(dn2)

χ

f×φ φ

χ̄2

(b) Cross-correlation performed as matrix
multiplication using W 2.

Figure 1: Matrization of weight tensors.

Use the embedding map to rewrite eq. (1) as:

Yh,i,j = φ(c,m,m) ◦ (ψ
(m,k)
i,j )−1(Wh) · φ(c,m,m)(X). (5)

The first term in this dot product is the filter Wh embedded in T(c,m,m) and then flattened into

Rcm2

. The second term in the dot product is the flattened input tensor X. The difference between
eqs. (4) and (5) is the domain where the dot product is being performed. In eq. (4) the vectors

belong to Rck2 , while in eq. (5) the vectors belong to Rcm2

. Typically k << m so that eq. (4) would
seem preferable.

3.2 Two Matrix Representations of Cross-Correlation

Cross-correlation can be represented as the bilinear map:

χ : T(d,c,k,k) × T(c,m,m) → T(d,n,n). (6)

The bilinear map in turn can be expressed as matrix multiplication using either of eq. (4) or eq. (5).

Equation (4) performs the dot product in Rck2 . We reshape W ∈ T(d,c,k,k) into W 1 = φ(W ) ∈
T(d,ck2), so that W 1 is a matrix, where each row is a flattened filter from W . Note that W 1 is an
unfolding of the weight tensor similar to what is described in Kolda and Bader [15]. We also reshape
Y ∈ T(d,n,n) to Y 1 = φ(Y ) ∈ T(d,n2). Define the receptive field matrix Ψ(X) ∈ T(ck2,n2) so that each
column is the flattened receptive field of X given by

Ψ(X):,i·n+j = (φ(c,k,k) ◦ ψ
(m,k)
i,j (X))T . (7)

We now represent the cross-correlation W ?X as the matrix multiplication:

W 1 ·Ψ(X) = Y 1. (8)

Let χ̄1 be the bilinear map defined by eq. (8) required to complete the commutative diagram in
fig. 1a.

Equation (5) performs the dot product in Rcm2

. We flatten X ∈ T(c,m,m) to φ(X) ∈ Rcm2

and

reshape Y ∈ T(d,n,n) to Y 2 = φ(Y ) ∈ Rdn2

. Define an embedding

f : T(d,c,k,k) → T(dn2,cm2) (9)

and let W 2 = f(W ) so that if φ(d,n,n)(Y )r = Yh,i,j then the rth row of W 2 is a reshaped embedding

of the hth filter in W into Rcm2

:

f(W )[r, :] = W 2[r, :] = φ(c,m,m) ◦ (ψ
(m,k)
i,j )−1(Wh). (10)

6



!

(a) W 1 is a reshaped weight ten-
sor.

!

(b) W 2 is a reshaped multiple embedding of the weight tensor into a
larger tensor space.

Figure 2: Illustration of the matrizations W 1 and W 2 of the weight tensor W ∈ T(3,3,2,2).
Uncolored cubes correspond to zeros and cubes of the same color correspond to elements of the same
spatial position in each filter

This gives us a second matrix representation for cross-correlation given by

W 2 · φ(X) = Y 2. (11)

Let χ̄2 be the bilinear map defined by eq. (11) required to complete the commutative diagram in
fig. 1b. Note that W 2 is a Toeplitz matrix representation of W . We illustrate the difference in the
matrization of the tensors in fig. 2.

Equations (8) and (11) produce the same output tensors up to a simple reshaping isomorphism.
Their difference lies in the coordinate systems in which their domains are represented, and in how
we view their output. The matrix W 2 can have up to cm2 singular values. This is the matrization
used in Sedghi, Gupta, and Long [34]. The matrix W 1 can have up to ck2 singular values. This is
the map used by Yoshida and Miyato [42].5 Cross-correlation computes the spatial activations of
Y independently, sharing the same dynamics with respect to the singular vectors. We claim that
eq. (11) obfuscates these dynamics by requiring the high dimensional representation, while eq. (8)
preserves the spirit of shared weights and the translation invariance of convolution by placing the
redundancies in Ψ(X).

4 The SVD in the Convolutional Layers

The unnormalized Gram matrix of the rows of W 1 is defined by the d × d matrix W 1W
T

1 . The

entries in the Gram matrix W 1W
T

1 measure correlations between the linear maps defined by the

5An interesting discussion of the differences between the perspectives can be found in [34].
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rows in W 1, i.e., the filters in W . This is analogous to the fully connected case.
In contrast, each filter is represented by n2 rows in W 2 so that its Gram matrix has dimensions

dn2 × dn2. Reordering the rows of W 2 to group the filters by their embeddings shows the Gram

matrix W 2W
T

2 to have n2 copies of W 1W
T

1 down the diagonal while the off-diagonal elements
correspond to correlations between incommensurate embeddings of the filters. It is unclear what
meaning these off-diagonal elements convey about the action of the weight tensor on X.

To better understand the difference between the two matrix representations we consider the
distribution of their singular values.

4.1 Validating the Matrix Representation of the Convolutional Layers

Martin and Mahoney [19, 20, 21] apply random matrix theory to analyze the distribution of the
singular values of the weight matrices of a typical model M. They demonstrate that well-trained
generalizable models exhibit implicit self-regularization and these properties can be used to compute
a metric for predicting test accuracy of CNNs without knowing the test data. They note that modern
models learn the correlations in the data and these correlations are stored in the weight matrices.
The empirical spectral distribution (ESD) of the Gram matrix of each linear layer L tends to exhibit
a heavy-tailed power law fit. The associated power law exponent αL provides a complexity metric
for the layer L; the smaller the value of αL the greater the regularization [20]. Using a weighted
average of these exponents, the authors define a capacity metric α̂ which is predictive of the test
performance of the neural network [19]:

α̂ =
∑
L∈L

αL log λmax
L , (12)

where λmax
L is the maximum eigenvalue for the Gram matrix for layer L. The smaller the value of

α̂ the better the test performance.
It is notable that the experimental results performed in [20] are representative of the capacity

metric restricted to fully connected layers. This is in part because the choice of matrix representation
for the convolutional layers was in question [21]. While the authors suggest the theory could be
extended to convolutional layers and use it to compute α̂ for a large number of architectures, they
do not fully extend their theoretical results to these layers. In particular, the matrices used to
compute the capacity metric α̂ in [21] were the channels of the weight kernels in the layer. Given the
small size of the individual weight channels, it is unlikely that accurate power-law fits were obtained.
Moreover, there is no a priori reason to believe that the correlations within a channel of the weight
kernel is related to network capacity.

To validate our choice of matrix representation, we calculate α̂ for three different matrizations
and across three classes of architectures (ResNeXt [40], FD-MobileNet [30], and MeNet [41] models
of varying depths) where the α̂ computed in [21] yielded mixed results.

Figures 3 and 4 show examples of the empirical spectral distributions and capacity metrics for
models trained on ImageNet [7]. Figure 3 shows the spectral distribution for the Gram matrices
associated with W 1 and W 2 for the convolutional layers of VGG-16 [35]. For the first layer of
VGG-16, the Gram matrix for W 1 has a spectral distribution consistent with the distribution found
in the fully connected layers for the models tested, while W 2 does not. In fig. 4, we find that W 1

better aligns with theory and is considerably more predictive of test accuracy than W 2. If we view
the heavy tail as corresponding to extracted correlations from the data, then the features themselves
should correlate to the corresponding singular vectors. It is with this intuition that we use W = W 1

to represent W as a matrix. Similarly, let Y = Y 1.
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0 5 10 15 20 25 30 35 40

Singular values, layer 1
0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

W1W1T (27 singular values)
W2W2T (1.51e+05 singular values)

(a) Singular values for the first layer of VGG-16

for W 1W
T
1 and W 2W

T
2 . Note that the Toeplitz

matrization W 2 does not have a heavy tail.

layer number of s-vals αL metric

W 1 W 2 W 1 W 2

2 64 3.21e6 1.66 4.63

3 128 3.21e6 1.8 3.77

4 128 6.42e6 1.87 4.48

5 256 1.61e6 3.9 5.05

6 256 3.21e6 2.07 3.42

7 256 3.21e6 4.42 2.92

8 512 3.21e6 5.58 3.27

9 512 6.42e6 4.14 2.57

10 512 1.61e6 3.03 2.28

11 512 1.61e6 4.81 2.58

12 512 1.61e6 4.09 2.48

13 512 1.61e6 4.02 1.75

(b) The number of singular values and the layer αL

metric for W 1W
T
1 and W 2W

T
2 . The Toeplitz ma-

trization W 2 has on the order of a million singular
values for each layer.

Figure 3: Validating our choice of matrix representation via the SVD for VGG-16 [35]
trained on ImageNet [7] – Comparison of ESDs. We compare the ESD of the Gram matrices
for the two matrizations W 1 and W 2 across the convolutional layers. Note the large number of
singular values for the centered Toeplitz matrization W 2, which has an unclear interpretation.

4.2 Decomposition of a Simple CNN

CNN interpretability literature tends to look to the channel and spatial activations of hidden layer
representations to explain the feature maps learned by the model [26, 12, 13]. Since the channel
and spatial activations of Y are projections onto a subset of the Euclidean basis for T(d,n,n), this
is consistent with the assertion in [3] that the projection of activations onto a basis close to the
Euclidean basis provides more meaningful representations of stored features than projections onto
a random orthonormal basis. But we have just observed there is a basis for each subspace of spatial
activations derived from the singular vectors that holds the extracted features in terms of their
singular vectors. The relationship between the channel activations and the singular vectors for a
layer L is described by the equation:

Y = W ·Ψ(X) = USV TΨ(X). (13)

The factor SV Tψ(X) in the term on the right is a d× n2 matrix such that the ith row is the vector
of correlations gotten from the receptive fields of X with the ith right singular vector. Each channel
in Y is a reshaped row of Y , which is a linear combination of these vectors of correlations.

To illustrate this relationship and other concepts in this work we use a simple CNN N for
classifying the MNIST dataset of handwritten digits [17]. The model N consists of four linear
layers: two convolutional layers, conv1 and conv2, and two fully connected layers, fc1 and fc2.6

6The full architecture is given by the sequence: conv1, ReLU, conv2, ReLU, Maxpool, fc1, ReLU, fc2, Softmax.
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45 50 55 60 65 70 75 80
top1 test Accuracy, ImageNet

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5
W1W1T

FDMobile, r2 =  0.992
ResNeXt, r2 =  0.811
MeNet, r2 =  0.91

(a) The α̂ computed with W 1 performs better than the
original matrix choices used in [19].

45 50 55 60 65 70 75 80
top1 test Accuracy, ImageNet

10

20

30

40

50

60

W2W2T

ResNeXt, r2 =  0.118
MeNet, r2 =  0.038
FDMobile, r2 =  0.064

(b) The α̂ computed with the Toeplitz matrization W 2

are considerably less predictive of test accuracy.

Figure 4: Validating our choice of matrix representation via the SVD for various models
[40, 30, 41] trained on ImageNet [7] – Comparison of α̂. We compute the α̂ metric eq. (12)
vs test accuracy for W 1 and W 2, and perform linear fits for each of the architecture classes and
matrizations.

In fig. 5 we visualize each step of the decomposition for layer conv1. Let X ∈ T(1,28,28) represent a

sample image from MNIST. Layer conv1 has weight tensor Wconv1 ∈ T32,1,3,3 and W conv1 ∈ T(32,9).

Let Uconv1Sconv1V
T
conv1 be the SVD of W conv1. Each array of images represents a 2-tensor or matrix

reshaped for visualization purposes. For example the receptive field matrix Ψ(Xconv1) ∈ T(9,262) has
9 rows, each of length 676, which are reshaped as 26×26 2-tensors and visualized as heatmaps rescaled
for consistent display. The matrix V Tconv1Ψ(X) shows the projection of the receptive fields on each of
the nine singular vectors. Matrix multiplication by Sconv1 ∈ T(32,9) rescales each row in V Tconv1Ψ(X)
and embeds the 2-tensor into T32,262 .7 Each heatmap is an indication of the strength of the signal in
the direction of the corresponding singular vectors. The matrix Y conv1 = Uconv1Sconv1V

T
conv1Ψ(X)

shows the projection of Sconv1V
T
conv1Ψ(X) onto the Euclidean basis. Each small image of Y conv1

is the heatmap of a channel of Yconv1. The rows of Y conv1 are linear combinations of the rows in
Sconv1V

T
conv1Ψ(X).

In [9], Dittmer, King, and Maass describe the relationship between the singular values pre- and
post-ReLU in the linear layers of a multi-layer perceptron. In particular they show that ReLU has
the effect of dampening signal and that only inputs strongly correlated to the right singular vectors
with the largest singular values will persist through ReLU. We can extend their observation to the
convolutional layers because the matrix multiplication of the fully connected layers is analogous to the
matrix multiplication mapping receptive fields to spatial activations. In fig. 5, ReLU(Yconv1+Bconv1)
is the tensor that passes out of the layer after ReLU is applied; it includes a small translation by
a bias term Bconv1. To see the dampening effect ReLU had on the original signals we include
UT (ReLU(Yconv1 + Bconv1)), which is the projection of the layer’s output onto the left singular
vectors corresponding to nonzero singular values and is best compared with Sconv1V

T
conv1Ψ(X).

4.3 The SVD of Weight Tensors

With the above observations, we put forth a simple definition for the SVD for the weight tensor
used in convolutional layers. Let USV T be an SVD of W . We use the reshaping isomorphisms to

7We only show the projections onto singular vectors with nonzero singular values.
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Figure 5: Steps of computation for conv1: Each array of images represents a 2-tensor or
matrix. Each small image is a heatmap of a reshaped row of the matrix, scaled for consistent display
with a blue-red color scheme to best discern contrast. The input to the layer is the tensor X and
the output after ReLU is ReLU(Y + B). The singular values are shown with the corresponding
projection above each image in SV TΨ(X). To emphasize the dampening effect of ReLU on signal
we also show the projection back onto the left singular vectors corresponding to nonzero singular
values as UT (ReLU(Y +B)). The layer subscript conv1 is not shown on any of the variables.

transform each matrix in the decomposition into a 4-tensor and replace matrix multiplication with
tensor cross-correlation. Define the reshaping maps as φV T : T(ck2,ck2) → T(ck2,c,k,k), φS : T(d,ck2) →
T(d,ck2,1,1), and φU : T(d,d) → T(d,d,1,1). Using a stride of 1 for the ? operation, it is easily checked
that for each X ∈ D

W ?X = φU (U) ?
(
φS(S) ? (φV T (V T ) ? X)

)
. (14)

While we could use this tensor SVD for the rest of the discussion, we will stick with the matrix
representation as it is more intuitive and reference the SVD for W using:

W ·Ψ(X) = USV TΨ(X) = Y . (15)

The column vectors {vi} of V form an orthonormal basis for Rck2 and the column vectors {ui}
of U form an orthonormal basis for Rd. The diagonal matrix S ∈ T(d,ck2) is non-negative and its

diagonal entries are ordered in descending order, s0 ≥ s1 ≥ · · · ≥ sr ≥ 0, such that W (vi) = siui
and r = min{d, ck2}.

The matrices U and V need not be unique as there are potentially multiple bases that could be
chosen, in particular when the {si} contains duplicates, but the subspaces corresponding to each
distinct singular value are unique. Without loss of generality we assume there are no duplicate
nonzero singular values so that each of the subspaces are 1-dimensional copies of R.8

8This assumption eases the notation without changing the arguments and has been observed to be true in practice.
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For each v ∈ Rck2 , there is a unique representation v =
∑r−1
i=0 〈v, vi〉vi, where 〈·〉 denotes the

Euclidean inner product on Rck2 , and

Wv =

r−1∑
i=0

W 〈v, vi〉vi =

r−1∑
i=0

si〈v, vi〉ui. (16)

The inner product 〈v, vi〉 is a measure of correlation between the two vectors. When v is a receptive
field (i.e. a column of Ψ(X)) we will call si〈v, vi〉 the signal of v in the direction of the singular
vector vi.

The sign of the signal indicates if the receptive field is positively or negatively correlated with
vi. The value of si indicates whether the correlation is increased or suppressed by the model before
it is passed to a nonlinear activation and on to the next layer. Since W operates independently
on each receptive field, the latent representations generated by the model are essentially defined
by these signals. From this we infer the discriminative power of a CNN lies in its singular vectors
and interpretability might be achieved by determining the features of the domain which have strong
positive correlation with the singular vectors of each layer.9

We overload our notation a bit and let X be the tensor representation for an image in D . Let
L ∈ L and WL be the weight tensor for the layer. Let XL be the latent representation for X
used as input to the layer L when passing X through the model. Let rL be the number of nonzero
singular values for WL. Define the signal vector σL(X) ∈ RrL so that the ith element of the vector
is the average signal of all of the receptive fields in Ψ(XL) in the direction of vi. The signal vectors
provide a summary of signal strength in the direction of each singular vector. We acknowledge this
is a coarse summary as it loses density information of how much signal is concentrated in one part
of the image; nevertheless, strong average signals can still provide differentiation as we will see.

5 Hypergraphs and the Model’s Semantic Hierarchy

For each X ∈ D a singular vector vi from layer L is significant for X with respect to a threshold
q if the ith element of σL(X) is greater than q. A singular vector vi from layer L is significant for
a class Cj with respect to a threshold q and a percentile p if vi is significant for at least p% of
the elements in Cj with respect to q. To be representative the signal should be significant for a
majority of the class, so p > 50. We used p = 75 for most of our examples. Our thresholds were
chosen for each layer by taking a high percentage quantile from the full distribution of signals for
a representative sampling of the latent representations for images in D . The greater the threshold,
the fewer singular vectors will be significant for each image. Singular vectors significant for multiple
classes are highly correlated to features common to those classes. Singular vectors significant for a
single class are highly correlated to some feature that is more prevalent in that class than in other
classes. By studying the many-to-many relationships between classes and the significant vectors in
each layer we begin to define the discriminatory features used by the model.

5.1 Hypergraphs

Hypergraphs are generalizations of graphs which model the many-to-many relationships within data.
Hypergraphs preserve the important mutual relationships that can be lost in ordinary graphs [4]. A
hypergraph H = (V, E) consists of a set of nodes V and a set of hyperedges E such that each e ∈ E

9We considered both positive and negative correlation but found positive correlations were the most informative
using the framework we outline here. However, further exploration of negative correlations could prove valuable.
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14:2 {7,14}

0:6 {0,1,9,10,12,36}

Figure 6: Hypergraph and semantic hierarchy induced by Hconv2. The hypergraph uses a
85%-quantile threshold and 75% majority. Along with each optimized and exemplary image are its
projections onto the subspaces spanned by the singular vectors in the equivalence class. Beside each
equivalence class in the diagram are exemplary images from the corresponding target classes and a
single image optimized using eqs. (19) and (20).

is a subset of V. While graph edges correspond to exactly two nodes, hyperedges correspond to any
number of nodes so that hypergraphs are often thought of as set systems but with more structure
[1]. We model the relationships between the target classes and the singular vectors significant for
each class using hypergraphs.

Fix a threshold q and a percentage p%. For each layer L ∈ L we construct a hypergraph HL
with hyperedges indexed by the target classes {Cj} and nodes indexed by the layer’s singular vectors
{vi}. A node vi belongs to a hyperedge Cj if the singular vector vi is defined as significant for p%
of the class Cj with respect to the threshold q. We discard the index for any empty hyperedges or
singular vectors not significant for any class. The resulting hypergraph describes differences between
classes in terms of the singular vectors most highly correlated to images in these classess.

The size of the hypergraph depends on the parameters q and p. The higher the threshold and
the percentage, the fewer nodes and hyperedges and the more specific certain singular vectors will
be to fewer classes. By varying both parameters we are able to generate a collection of hypergraphs
of differing sizes.

5.2 Semantic Hierarchy of a CNN

Let HL be the hypergraph of a linear layer L of model M defined by the parameters q and p. For
each node vi in HL, let Ĉ [vi] be the set of hyperedges to which vi belongs, i.e., the subset of target
classes for which vi is significant. Define an equivalence relation ∼ on the set of nodes in HL so that
any two nodes, vi, vj , are equivalent if and only if they belong to the same set of hyperedges. Let
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s0 = 5.27

s1 = 4.96

s12 = 1.73

s2 = 4.67 s8 = 2.7

s3 = 4.27

s5 = 3.7

s7 = 3.21

s13 = 1.68 
s6 = 3.48

s4 = 4 s15 = 1.6

Figure 7: Hypergraph and semantic hierarchy induced by Hfc1. The hypergraph uses a
a 95%-quantile threshold and 75% majority. Beside each equivalence class in the diagram are
exemplary images from the corresponding target classes and a single image optimized using eqs. (19)
and (20).

[vi] reference the equivalence class containing vi. Then

vi ∼ vj ⇐⇒ Ĉ [vi] = Ĉ [vj ] ⇐⇒ [vi] = [vj ]. (17)

The hypergraph HL defines a partial ordering on the equivalence classes given by:

[vi] > [vj ] ⇐⇒ Ĉ [vi] ⊃ Ĉ [vj ]. (18)

This partial ordering induces a semantic hierarchy based on the features positively correlating to the
singular vectors in each equivalence class. Let [vi] 6= [vj ] be two equivalence classes. The concepts
in the domain described by features positively correlated with the singular vectors in [vi] will be
considered more general than concepts from features positively correlated with the singular vectors
in vj if [vi] > [vj ]. Diagrammatically we represent this as Ĉ [vi] −→ Ĉ [vj ]. We use this notation to
diagram the semantic hierarchy induced by the hypergraph as in figs. 6, 7, and 9.

To illustrate, we construct two hypergraphs Hconv2 and Hfc1 for the model N trained on MNIST
of section 4.2. We use a test set with 50 images in each class using thresholds corresponding to the top
85%- and 95%-quantiles respectively for at least 75% of the classes. We visualize the hypergraphs in
figs. 6 and 7.10 Rather than displaying all of the nodes in the hypergraph, the nodes are grouped by
equivalence class and labeled by the index of one singular vector in the class followed by the number
of nodes in the class. Next to each hypergraph we show the corresponding diagram depicting the
semantic hierarchy induced by the hypergraph along with exemplary images from each class. We
use these diagrams to direct our interpretability analysis to the singular vectors most significant for
each class and hence most influential for discriminating the class.

6 A Suggested Framework for Interpretability

One goal of model interpretability is to identify the domain-centric features the model uses for
classification. We have seen that any enhancement or suppression of a feature from the data depends

10Hypergraph figures were generated by the HyperNetX library [27].
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on the correlation of its latent representations with the singular vectors. From the point of view of
the model, the features used for classification are the ones with latent representations most highly
correlated to the singular vectors with the greatest singular values.

In this section we suggest a methodology for interpreting image classification CNNs using the
framework defined by the hypergraphs and semantic hierarchies of the model described in section 5
and figs. 6, 7, and 9. The diagram generated by the semantic hierarchy indicates how the model
responds to images of different classes. Features corresponding to singular vectors particularly
significant for one class but not for another characterize how the model differentiates classes.

Using existing visualization techniques, we look for features highly correlated with the singular
vectors and their equivalence classes. By identifying the domain-centric features correlated to each
equivalence class we identify the features that provide linear separability within the model.

This is very much in the spirit of Olah et al. [25, 26] where features are discovered by optimizing
images with latent representations positively correlated to the channels of the weight tensors. The
difference between projecting on the Euclidean directions and the singular vectors is illustrated in
fig. 8. Projection onto the singular vectors preserves the dynamical changes imposed by the layer on
its input. Much of this information can be lost when projecting onto the Euclidean basis vectors.
By optimizing for a specific singular vector we look for features in the domain that the model either
deems important, hence increases their value in the latent representation, or unimportant, hence
decreases their value. This provides meaning to the learned parameters and explains the decision
process in terms of the dynamics of the linear layers.

Figure 8: Projections of linearly transformed circle show that the dynamics (shrinking and stretch-
ing) of the map are better captured when projecting in the direction of the singular vectors.

We generate an optimal image X with a latent representation XL, which highly correlates with
a particular singular vector vi in layer L ∈ L by computing:

Xopt = arg max
T∈T(c,m,m)

∑
j

(siv
T
i Ψ(TL))[j]

= arg max
T∈T(c,m,m)

∑
j

(uTi WΨ(TL))[j]
(19)

subject to the transformation robustness constraints from [25].
We generate an image maximally triggering a collection of singular vectors {vi} using a sum of
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weighted terms:

Xopt = arg max
T∈T(c,m,m)

∑
i

wi

∑
j

(siv
T
i Ψ(TL))[j]


= arg max
T∈T(c,m,m)

∑
i

wi

∑
j

(uTi WΨ(TL))[j]

 (20)

for some set of weights {wi}.
As tantalizing as these images can sometimes be, we must be careful. If the objective function

simply adds the signals across the spatial activations as we did in eqs. (19) and (20) it could smear
signal out across an input image and lose the density of the signal actually found in the images.
Recognizing the limitations of feature visualization, we supplement our analysis by identifying ex-
emplary images, which highly activate the signal or group of signals in an equivalence class. This is
done by restricting eqs. (19) and (20) to tensors in T(c,m,m) representing images in the model’s test
or training set. In early layers where latent representations retain much of the spatial information
of the original image, we examine the scaled projects of spatial activations from the latent represen-
tations onto the singular vectors and study the heatmap of signals produced. The heatmaps define
spatial regions with features highly correlated with the singular vectors similar to a saliency map.
By comparing optimized images and heatmaps of projections with exemplary images we hope to
gain intuition around the domain-centric features deemed important by the model. Where a dataset
has large enough image resolution, similarity overlays from [11] can also be used to relate the feature
visualizations and exemplary images.

6.1 Interpreting N with MNIST

In fig. 6, hypergraph Hconv2 has 10 nodes divided into 4 equivalence classes. Equivalence class [v0]
is at the top of the semantic hierarchy, because its elements are significant for every target class
in MNIST [17] with respect to the 85%-quantile. This means the features, which are increased or
suppressed, are common to images in all of the classes. We also show optimized and exemplary images
for each of the equivalence classes in Hconv2. We found feature visualization to be more informative
in the later layers of larger networks, where the receptive fields correspond to greater regions in the
original image. For early layers and in shallow networks, much can be learned by visualing the scaled
projections of the latent representations of exemplary images onto the significant singular vectors in
each equivalence class. For each exemplary image with tensor representation X and each significant
vector vi we compute the dot product of sivi with each of the columns of Ψ(X). The resulting
vectors are reshaped into 26 × 26 2-tensors and visualized in red, white, and blue. The color scale
is set to show strong positive correlation with dark red and strong negative correlation in dark blue
as is seen in the diagram.

Of particular interest are the features exhibited for [v14] = {v7, v14} and [v15] = {v15}. Both their
exemplary images and their projections are quite different. The scaled projections onto v14 positively
correlate with large black regions in the image and are slightly suppressed by the singular value 0.9.
The scaled projections onto v7 also positively correlate with large black regions but the signal is
stronger where the black is just to the left of the white of the image. These regions are darker red
and were slightly enhanced by the singular value 1.41. Images with high positive correlation to v15

have more white in their receptive fields and narrow bands of black around the edges. Their signals
were slightly suppressed by the singular value 0.88. This branch in the semantic hierarchy of the
first layer appears to separate images in part based on what portion of the image is background.
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Figure 9: Exploration of VGG-16 [35] on CIFAR-10 [17] – Diagram for part of the seman-
tic hierarchy induced by a hypergraph for the 7th convolutional layer. The hypergraph
was created using a significance threshold equal to the 90%-quantile of all signals and percentage
majority of greater than 50% for each class.

With deeper layers more complex shapes arise in the feature visualizations. Even in such a simple
model as N we see more discernible shapes in the optimized images for fc1 than we did in conv2. In
fig. 7 we see the greatest singular values, s0 and s1 are associated with recognizable forms including
an S -curve and figure eight.

6.2 DeepDataProfiler

We use this framework to guide our exploration of VGG-16 [35] trained on CIFAR-10 [16] and
ImageNet [7] in our DeepDataProfiler (DDP) library available on GitHub [28]. DDP is a Python
library for generating attribution graphs called profiles for convolutional neural networks. The
library includes a module for studying the SVD of convolutional layers along with Jupyter notebooks
[14] for generating hypergraphs and feature visualizations.

Our goal is to understand the features used by the network to differentiate images in each of the
datasets. The semantic hierarchy guides our inquiry by recognizing the features most strong for each
image and class. For example, fig. 9 shows part of the semantic hierarchy for the 7th convolutional
layer of VGG-16 when trained on CIFAR-10. Each level of the diagram displays an optimized image
for the corresponding equivalence class, exemplary images from CIFAR-10, and the values of the
corresponding singular vectors. One observable difference gleaned from the figure is the softer edges
in the feature visualizations connected with living things versus the objects for transportation.

Feature visualizations for singular vectors associated with VGG-16 trained on ImageNet have
superior resolution and tend to be more interpretable. Figure 10 shows a feature visualization for
a singular vector significant to two images from the dog class in ImageNet. The similarity overlay

17



Figure 10: Exploration of VGG-16 [35] on ImageNet [7] – Significant features shared by
two images. The hypergraph models the significant singular vectors for two dog images (using 50%-
quantile) from the 11th convolutional layer. Exemplary images and feature visualization are for the
singular vector v7. Similarity overlays highlight cosine similarity between the latent representations
of the three images.

highlights the cosine similarity of the spatial activations in the 11th convolutional layer between the
optimized image and the two dog images. Exemplary images and feature visualizations for each layer
of VGG-16 trained on ImageNet are available from our Streamlit application [5], which supports the
DDP library.

7 Conclusion

In this work we examine the linear transformations of the convolutional layers of a CNN. We describe
a collection of isomorphisms and embeddings on the vector space of tensors over a fixed index set
and define convolution as a bilinear map on these tensor spaces that can be represented as matrix
multiplication. Our approach, which maps a 4-dimensional weight tensor of the convolutional layers
isomorphically to a 2-dimensional matrix, provides an alternative to the commonly used Toeplitz
representation for treating convolution as matrix multiplication. This simple unfolding of the weight
tensor preserves the spirit of shared weights and exposes the dynamics of the linear map as it acts
on the space of receptive fields.

Our choice of matrization is validated both notionally by looking at the corresponding Gram
matrix and empirically by applying results from random matrix theory. The singular vectors of the
matrix representation for the weight tensors identify the features of the input domain that the model
has learned to either increase or suppress depending on their associated singular values.

We define the significance of the singular vectors to each of the target classes using two parameters
and model this relationship using hypergraphs. By varying the parameters we generate a family of
hypergraphs, each inducing a semantic hierarchy. We describe how these hierarchies might be used to
explore the model and to discover the discriminative features it uses for classification. We introduce
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the DeepDataProfiler library, which uses these matrizations to gain interpretability of CNNs.
This work brings fresh eyes to interpretability research by applying the same mathematical tools

to convolutional layers that have been used to explain linear transformations for more than a century,
giving us an opportunity to remove the black box stigma that haunts CNN models. By identifying
the features the model deems important we can study their inter-relationships and determine their
discriminatory value and relevance to the data domain. The greatest challenge moving forward will
be to refine our optimization techniques, which translate the model’s representation of these features
into something we can recognize. Future work should also explore the range of singular vectors to
better understand how the model uses negative correlation and identifies noise.

As a final note, the implication of this new perspective extends beyond the scope of this paper.
The SVD of convolutional layers offers us an opportunity to prune convolutional models and identify
misclassifications analogous to the work of Dittmer, King, and Maass [9] on multi-layer perceptrons.
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