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Abstract
We present a state-of-the-art report on time-dependent flow topology. We survey representative papers in visualization and
provide a taxonomy of existing approaches that generalize flow topology from time-independent to time-dependent settings.
The approaches are classified based upon four categories: tracking of steady topology, reference frame adaption, pathline
classification or clustering, and generalization of critical points. Our unique contributions include introducing a set of desirable
mathematical properties to interpret physical meaningfulness for time-dependent flow visualization, inferring mathematical
properties associated with selective research papers, and utilizing such properties for classification. The five most important
properties identified in the existing literature include coincidence with the steady case, induction of a partition within the
domain, Lagrangian invariance, objectivity, and Galilean invariance.

1. Introduction

Motivation. Vector field topology has seen widespread applica-
tions since its introduction to visualization by Helman and Hes-
selink [HH89] more than 30 years ago. For steady flows, it is one
of the most promising tools to extract relevant information from the
data. It is utilized from two important perspectives, first to com-
press the data in a structure-preserving way with little information
loss, and second to reduce occlusion in visualization.

A considerable amount of research has focused on the topol-
ogy of time-independent (steady) vector fields via the notion of the
topological skeleton, which consists of critical points and specific
streamlines called separatrices that partition the domain into areas
of uniform flow behavior. While vector field topology works well
for electric and magnetic vector fields, it looses physical meaning
for time-dependent (unsteady) flows. In particular, it is difficult to
interpret flow topology in the time-dependent setting.

On the other hand, an instantaneous snapshot of a vector field
and the streamlines arising from it do not describe time-dependent
behavior. This is a problem that is not exclusive to flow topology.
For example, Lugt [Lug79] encounters a similar problem while try-
ing to define a vortex.
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An instantaneous streamline picture does not give enough
information to identify a vortex and, thus, cannot be used to
define a vortex.

Lugt [Lug79]

Similarly, Perry and Chong [PC94a] describe that it is difficult
to interpret vector field topology in unsteady flows.

In the study of the topology of flow patterns and eddying
motions, instantaneous streamlines have found considerable
use even though they are not Galilean invariant and appear to
lose physical meaning if the flow is unsteady.

Perry and Chong [PC94a]

Due to the limited applicability of vector field topology, the
study of time-dependent flow topology remains heterogeneous and
fragmentary. This topic is also embedded in the larger context of
dynamical systems, in particular for the purpose of visualization.
Even though some mature techniques and systematic methodolo-
gies have been developed for the study of time-dependent flow
topology, we hope to impose mathematical structures on existing
techniques to ease their access for researchers and practitioners.

Contributions. In this paper, we survey and organize the scattered
literature on time-dependent flow topology, discuss recent results,
and identify research gaps.

It is our intention to assist both beginners and experts in navi-
gating the field of flow visualization in a time-dependent setting.
In particular, our work is motivated by the following two questions
essential to time-dependent flow topology:
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• How can time-independent vector field topology be generalized
to the time-dependent setting in a physically meaningful way?
• How can the notion of physical meaningfulness for flow visual-

ization be characterized rigorously?

To addressing these questions, our contributions are:

• We provide a survey and a classification of approaches used to
generalize vector field topology from the time-independent to
the time-dependent settings, based on four categories: tracking of
steady topology, reference frame adaption, pathline classification
or clustering, and generalization of critical points.
• We collect desirable mathematical properties to interpret the no-

tion of physical meaningfulness for time-dependent flow visual-
ization, namely: coincidence with the steady topology, induction
of a partition, Lagrangian invariance, objectivity, and Galilean
invariance.
• We analyze and infer mathematical properties associated with

selected approaches, making it easy to identify current chal-
lenges and opportunities.

Overall, we provide an organized classification of the literature for
time-dependent flow topology. As a majority of works address the
2D case, we give it proportionally more attention.

Admittedly, there is not a single, general, and universally agreed
upon definition for the notion of "physically meaningfulness". By
talking to physicists, we have learned that the meaning of this no-
tion changes from problem to problem in the sense that “if a method
answers my question, then it is physically meaningful." We will try
to narrow down what this notion means by collecting mathemat-
ical concepts that are used in the literature in the sense that "this
method is not physically meaningful because it does not satisfy a
particular set of mathematical properties." However, it is important
to note that the properties we collect are not exhaustive, and they
do not define but rather interpret physical meaningfulness.

Our contributions are summarized in Tables 1- 4. Each table con-
tains the related works that belong to one of the four categories of
approaches. The columns correspond to the five desirable proper-
ties. Each table cell is color-coded to indicate whether a method
satisfies a particular property and contains a reference for a more
detailed example or theorem.

Related surveys. Topology-based techniques have received sub-
stantial attention from survey authors in recent years. The surveys
by Laramee et al. [LHZP07] and Wang et al. [WWL16] both con-
tain discussions on unsteady flows in terms of topology extraction.
Furthermore, Pobitzer et al. [PPF∗11a] and Heine et al. [HLH∗16a]
provide classifications of time-dependent vector field topology.
Laramee et al. [LCJK∗09] also give an overview of the application
of flow topology in science and engineering.

Our approach differs fundamentally from these earlier efforts. In
addition to classifying available techniques, we organize relevant
works by the problems they try to address, and collect mathematical
properties that encompass the notion of physical meaningfulness. In
many practical scenarios, the notion of physical meaningfulness is
problem-specific and application-driven; here, we collect and apply
mathematically rigorous definitions that are desirable with respect
to such a notion. Our core contribution and the most important

difference with respect to earlier surveys is that we embed all rele-
vant approaches from the literature into a mathematical framework
encoding desirable properties of physical meaningfulness. For a
surveyed technique, if a description regarding a particular prop-
erty of interest is not readily available, we infer such a property
on the basis of mathematical reasoning. Subsequently, we are able
to clearly identify gaps, challenges, and opportunities in current re-
search, which complement existing state-of-the-art reports in vector
field visualization.

We explicitly exclude discussions on Lagrangian coherent struc-
tures and feature detection in flow fields (such as vortices), since
these topics belong to large fields of study that have been surveyed
recently, see [HFB∗17, PVH∗03, GT18].

Outline. This paper is organized as follows. Sec. 2 describes our
survey procedure and classification guidelines. Sec. 3 briefly re-
views the technical foundations of flow topology. Sec. 4 details
the classification of current approaches involving time-dependent
flow topology; and Sec. 5 describes flow characteristics relevant
to time-dependent data and proves their associated mathematical
properties. Sec. 6 reviews relevant papers in time-dependent flow
topology beyond visualization, such as fluid dynamics and dynamic
systems. Sec. 7 gives a discussion on emerging research directions.
Sec. 8 concludes the paper.

2. Literature Research Procedure and Classification

We review representative papers in the field of visualization that
contain methods that generalize (or can be extended to general-
ize) vector field topology from the time-independent to the time-
dependent settings. The annotation of each paper is guided primar-
ily by a set of four categories that classify common approaches (re-
lated to existing surveys [PPF∗11a, HLH∗16a]), see Sec. 2.1.1 to
Sec. 2.1.4; and secondarily by a set of five desirable properties that
are mathematically definable (untreated in previous works), which
encompass Sec. 2.2.1 to Sec. 2.2.5.

2.1. Classification Based on the Approach

Our comprehensive literature review allows us to identify four ma-
jor categories of time-dependent flow topology approaches, accord-
ing to which we classify the literature. Some papers fit into more
than one category as they are hybrid methods or suggest several ap-
proaches. They will be listed multiple times here, but they will be
treated in detail only once in Sec. 4.

We define an “approach" as the main principle upon which a
method is based. The four categories we choose have been proven
useful in existing literature, and research papers that fall into each
category perform similar analysis tasks or share similar mathemat-
ical foundations.

2.1.1. Tracking of Steady Topology

The straightforward approach to extend flow topology to un-
steady case applies the classical (steady) vector field topology to
each time step [HH89, HH90, WSH01, TSH01, TWSH02, TS03,
TWHS04, TWHS05, WTVGP11, RKWH12, GTS04, SW14]. We
collect methods in this category if they perform feature tracking in
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the time-dependent setting where features are coming from time-
independent vector field topology, see Sec. 4.1.

2.1.2. Reference Frame Adaption

As pointed out in the quote by Perry and Chong [PC94a] (Sec. 1),
a (chosen) frame of reference is key in flow analysis. Even though
reference frame adaption is not specifically designed for flow topol-
ogy, it is a promising approach for a physically meaningful gener-
alization [WGS02, BPB14, BPKB14, FKS∗10, BHJ16, WBPRH17,
HMTR18, GGT17, RG20].

We call an approach frame of reference (FOR) adaptive if spe-
cific global or local FORs are chosen with the goal of making
streamlines meaningful in a time-dependent setting, see Sec. 4.2.

2.1.3. Pathline Classification or Clustering

Pathlines are considered to have a clear physical meaning in the
sense that they describe the movement of massless particles and
coincide with streamlines for steady fields. Therefore the classifi-
cation of pathlines is a very promising approach to generalize flow
topology [TWHS04,TWHS05,SW10,USE12,WCW∗11,MBES16,
HKTH16, WRT18, BDBR∗19, BDZG19].

An approach is considered to classify or cluster pathlines if it
chooses distinguished pathlines, labels them, or groups them to-
gether based on their properties. The difference between pathline
classification and pathline clustering is that classification is super-
vised learning where predefined labels are assigned to instances
based on their characteristics, whereas clustering is unsupervised
learning where similar instances are grouped together based on
similarity measures or metrics, see Sec. 4.3.

2.1.4. Generalization of Critical Points

Another popular approach uses derived characteristics of the flow,
usually Galilean invariant scalar fields, and makes use of struc-
turally or topologically significant points, like zeros or extrema, in
these scalar fields [SW10, USE12, KHNH11, RKWH12, KRH∗16,
FKS∗10, BHJ16, MBES16, WBPRH17].

We say an approach generalizes the definition of a critical point
from the time-independent setting if it uses flow characteristics
other than the zeros of the velocity. Techniques in this category
can make use of the scalar field topology to derive segmentations
and simplifications, frame of reference adaptions for visualizations
that are related to the classical ones, or Lagrangian smoothing to
highlight Lagrangian behavior, see Sec. 4.4.

2.2. Classification Based on Desirable Properties

We survey existing research works not only for how they general-
ize flow topology from time-independent to time-dependent fields,
but also for which mathematical properties these works possess or
imply. Certain methods enjoy a subset of the following five math-
ematical properties, which have been identified as important to es-
tablish physical meaningfulness. We chose these properties because
they are the most popular ones suggested in the existing literature.
These properties have been motivated in scattered places, whereas
our paper systematically specifies and investigates these properties
and their relations to relevant mathematical concepts.

2.2.1. Coincidence With the Steady Flow Topology

Taking one step back, the overall goal is to find methods that
can give comparable answers for unsteady flow as vector field
topology (VFT) for steady flow...

Pobitzer et al. [PPF∗11b]

Our literature search did not come across many explicit state-
ments of the desirable property for a method to coincide with the
steady vector field topology, except a few [PPF∗11a, KHNH11,
FKS∗10, RG20]. Perhaps this is a basic requirement that previous
authors did not feel the need to explicitly state.

Assuming the input to a method is a steady flow field, i.e., it does
not change over time, then the features extracted by this method are
identical to the critical points and separatrices of the steady setting.
Mathematically speaking, let v : Rd → Rd be a steady flow field
and let F(·) be an operator that extracts time-independent topology.
Suppose we have an unsteady flow field vt : Rd ×R→ Rd that is
defined over space and time, but not changing over time, that is,
there exists a steady field v : Rd → Rd such that ∀t ∈ R : vt(x, t) =
v(x). Let Ft(·) be an operator that extracts time-dependent topology.
Then for a method designed to extract features of an unsteady field,
we would like its output to coincide with the steady flow topology
when it is applied to vt , that is, Ft(vt(x, t)) = F(v(x)) for (x, t) ∈
Rd×R.

2.2.2. Induction of a Partition of the Domain

...namely to segment the flow domain into parts with coherent
properties in terms of their temporal evolution.

Pobitzer et al. [PPF∗11b]

One of the most important properties of the steady vector field
topology is that it implies a partition of the domain into areas of
coherent flow behavior. Such an induced partition is also a desirable
property for its generalizations in the unsteady setting [PPF∗11b,
HLH∗16a, RG20].

We say that a method induces a partition of the domain in the
time-dependent setting if it has a concept of generalized sepa-
ratrices that segment the domain of space and time into subsets
Si ⊂ Rd ×R. The set {Si} forms a partition if ∀i 6= j : Si ∩ S j = ∅
and

⋃
i Si = Rd ×R. We explicitly require that the partition is not

generally trivial for finite times, i.e., Si 6=Rd×R. The difference is
illustrated in Fig. 6.

2.2.3. Lagrangian Invariance

Therefore, we can require the boundaries of a time-dependent
topological skeleton to be material surfaces and the unsteady
critical points to be fluid particles.

Fuchs et al. [FKS∗10]

Pathlines describe the paths of fluid particles. It is a popular cri-
terion for physical meaningfulness to demand the extracted features
to be Lagrangian invariant [SLM05, FKS∗10, Hal15, HKTH16,
HFB∗17, BDBR∗19, BDZG19].
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A method is Lagrangian invariant if the features it extracts
move over time as if they were advected by the flow. Explicitly,
let S(t) : R→ Rd be an extracted feature over time and Ft

t0(x0) :
R×R×Rd → Rd the flowmap (Sec. 5.1.6) indicating where a
massless particle starting at time t0 at location x0 moves to until
time t. Then, S(t) is Lagrangian invariant if ∀t : Ft

t0(S(t0)) ⊆ S(t).
For line features, this is equivalent to the extracted line to be tan-
gential to the flow ∀t ∈ R : Ṡ(t)× v(S(t), t) = 0.

2.2.4. Objectivity

Frame-invariance is particularly important in truly unsteady
flows, which have no distinguished frame of reference.

Hadjighasem et al. [HFB∗17]

One of the most popular properties used in the literature
to indicate that a concept is physically meaningful is objec-
tivity [TN04, Hal05, RSM16, HFB∗17, GGT17, HMTR18, RG20,
BDBR∗19, BDZG19].

A method is objective if the extracted features do not change
under a Euclidean change of the reference frame. Precisely, let
χS(t)(x, t) : Rd ×R → {0,1} be the characteristic function indi-
cating if a point in spacetime belongs to an extracted feature over
time (x, t) ∈ S(t). Furthermore, let x′ = Q(t)x + r(t) ∈ Rd be a
change of coordinates with a time-dependent orthogonal matrix
Q : R→ SO(d) and a time-dependent vector r : R→ Rd . Then,
the feature is objective if χ

′
S(t)(x

′, t) = χS(t)(x, t), see Sec. 5.1.

2.2.5. Galilean Invariance

It is only when Galilean frame of reference can be found
which gives an almost steady velocity field that we have a
velocity pattern with some useful physical meaning.

Perry and Chong [PC94a]

Galilean invariance is a special case of objectivity, where the ex-
tracted features do not change under a Galilean change of the refer-
ence frame. It is often used as a minimal requirement to ensure that
something has physical meaning [PC94b, SH95, SWTH07, Wie08,
KHNH11, FKS∗10, PPF∗11b, SW10, USE12, MBES16, BHJ16,
WBPRH17].

A concept is Galilean invariant if two observers in moving ref-
erence frames with relatively constant velocity relative to each
other observe a phenomenon in the same way. Mathematically,
this is a special case of objectivity where the rotation is a constant
Q ∈ SO(d) and the translation is linear ṙ = const ∈Rd in the trans-
formation x′ = Qx+ r(t), see Sec. 5.1.

3. Technical Foundations on Vector Field Topology

Vector fields are used to model physical phenomena of interest
across many scientific fields. The field of fluid dynamics, in par-
ticular, gives rise to large and complex flow fields. Initiated by Hel-
man and Hesselink [HH89], vector field topology has developed
into an integral part of the analysis and visualization of flow fields.
However, since vector field topology considers only the behavior

of streamlines, it is especially appropriate to capture structures in
steady flow fields. In this section, we briefly review main ingredi-
ents of steady vector field topology. After introducing topological
features for 2D and 3D vector fields, we give a generalized perspec-
tive from dynamic systems.

3.1. 2D Vector Field Topology

A 2D vector field v : D ⊆ R2 → R2 assigns a 2D vector to each
point in the domain D, where v is assumed to be continuous and
differentiable. In the steady setting, v can be expressed as

v(x,y) =
(

v1(x,y)
v2(x,y)

)
. (1)

2D vector field topology consists of critical points, periodic orbits,
and separatrices.

A critical point x ∈ D is an isolated zero in the vector field, that
is, v(x) = (0,0)T = 0, and v(y) 6= 0 for any y 6= x in a small neigh-
borhood of x. Critical points can be classified with respect to their
Poincaré indices. The Poincaré index of a critical point x counts the
positive field rotations while traveling along a simple closed curve
containing x in a positive direction. In 2D, critical points such as
sources, sinks, and centers have indices +1, whereas saddles have
indices −1.

Figure 1: Categories of classical critical points based on the eigen-
values of the Jacobian. From left to right: spiral sink and source
(also known as attracting/repelling foci), node sink and source
(also known as attracting/repelling nodes), center, and saddle.
Flows are visualized via arrow glyphs and line integral convolu-
tion (LIC) [CL93]; color represents speed from low (blue) to high
(red) values. Image reproduced from Bujack et al. [BHJ16].

An alternative classification of critical points is based on the
eigenvalues of the Jacobian matrix Jv containing the first deriva-
tives of the vector field

Jv(x,y) = (
∂v
∂x

,
∂v
∂y

,) =

(
∂v1(x,y)

∂x
∂v1(x,y)

∂y
∂v2(x,y)

∂x
∂v2(x,y)

∂y

)
(2)

The determinant of Jv is called the Jacobian of the vector field. A
critical point x is a first-order critical point if the Jacobian does
not vanish in x; otherwise, it is called a high-order critical point.
The classification of critical points could be further refined based
on eigenvalues of Jv to include attracting nodes/foci and repelling
nodes/foci, centers, and saddles, see Fig. 1 and [HH89, Fig. 5].

A streamline is a line that is tangential to the instantaneous ve-
locity direction, see Fig. 2. Mathematically, a streamline s(t) is a
curve in the domain of v, where for any t,

ṡ(t) = v(s(t)). (3)

Here, t is not the time but refers to an arbitrary parameterization of
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Saddle

Center

Source

Saddle

Sink

Figure 2: Topology of a simple vector field. The yellow area is a
region where all streamlines start in the same source and end in
the same sink. The brown streamlines are separatrices.

the curve. Closed orbits are closed streamlines, which means there
is a parameter τ such that s(t) = s(t + τ),∀t ∈ R.

Separatrices are the bounding streamlines that separate the re-
gions of uniform streamline behavior. Assuming only first-order
critical points, they emerge from the saddle points along the di-
rections of the eigenvectors of the Jacobian. Finally, vector field
topology consists of critical points and separatrices that segments
the domain in regions of uniform streamline behavior, see Fig. 2.

3.2. 3D Vector Field Topology

A 3D vector field v : D ⊆ R3 → R3 assigns a 3D vector to each
point in the domain D, where v is assumed to be continuous and
differentiable. 3D vector field topology consists of critical features
and separating features. Critical features are critical points, peri-
odic orbits, and complex 2D structures such as strange attractors.
The separatrices become separating surfaces emerging from saddle
points, compare Fig. 3.

(a) source node (b) spiral sink (c) spiral saddle (d) saddle

Figure 3: Examples of critical points in 3D linear vector fields. In
3D, separating surfaces emerge from saddle points (c,d).

Critical points are defined similarily to the 2D case as isolated
zeros in the vector field, that is, v(x) = (0,0,0)T = 0, and v(y) 6= 0
for any y 6= x in a small neighborhood of x. Critical points are com-
monly classified based on the eigenvalues of the Jacobian matrix
Jv. A critical point x is a first-order critical point if the Jacobian
does not vanish in x; otherwise, it is called a high-order critical
point. First-order critical points include attracting source and sink
nodes/spiral, and saddles, see Fig. 3.

3.3. From the Perspectives of Dynamical Systems

The main ingredients of vector field topology have been studied in
dynamical systems, namely, limit sets, separating lines, and sepa-

rating surfaces. Let v : D⊆ Rd → Rd denote a d-dimensional vec-
tor field. Let cp denote a streamline passing through a point p ∈ D.
In its most general form, the limit sets of a streamline, referred to
as α-limit set and ω-limit set, are defined as

A(cp) =
{

q ∈ D|∃(tn)∞n=0 ⊂ R with lim
n→∞

tn =−∞

such that lim
n→∞

cp(tn) = q
}

Ω(cp) =
{

q ∈ D|∃(tn)∞n=0 ⊂ R with lim
n→∞

tn =∞

such that lim
n→∞

cp(tn) = q
} (4)

The explicit form of the limit sets varies depending on the dimen-
sion of the vector field. These sets are best researched for the 2D
case, where the limit sets consist of critical points; which are clas-
sified according to the streamline behavior in their vicinity (see
Sec. 3.1). Streamlines are considered to be equivalent if their limit
sets coincide, meaning a streamline has the same origin set (α-limit
set) and the same end set (ω-limit set). In 2D, streamlines that are
on the boundary of equivalent streamlines are the separating lines;
in 3D, they become separating surfaces; in higher-dimensions, they
are separating manifolds. The topological skeleton therefore con-
sists of limit sets and separating manifolds in high dimensions.

4. Classification

The core contribution of this paper is the classification of existing
works, which are summarized in Tables 1 – 4. Each table contains
the papers that belong primarily to one of the four approaches (see
Sec. 2.1). Based on the underlying mathematical concepts of each
paper, each row contains our inference of its mathematical proper-
ties. For each cell (i, j), green means that the paper in row i satis-
fies the property in column j, red means that it does not satisfy the
property; teal means that it mostly satisfies the property; and purple
means that it mostly does not satisfy the property, see Fig. 4. The
text in each cell provides either a short sketch of the mathematical
reasoning behind our decision or a reference to a counter example
or a theorem in Sec. 5.

Yes. Mostly yes. Mostly no. No.

Figure 4: Legend for Tables 1 – 4. The colors indicate if a method
does or does not satisfy a mathematical property.

The best way to explore our classification is to use each table
as a roadmap, which leads to specific examples and theorems in
Sec. 5. In other words, the tables serve as an overview, whereas the
examples and theorems are details on demand [Shn03].

Disclaimer. For each surveyed paper, we use our best judgement
to infer mathematical properties associated with its proposed tech-
niques. Our inference is based on the technical formulations from
each paper and sometimes its code (if available). However, we do
not claim that we have perfectly captured the authors’ intentions.

We summarize the properties of different methods in Tables 1–
4 by connecting them with the mathematical concepts upon which
they are mainly based. We did not implement the algorithms of
surveyed papers. The proofs and counterexamples we provide are
designed for mathematical concepts, not for specific methods. The
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proofs provided in each cell are not always rigorous; they are
sometimes sketches of the underlying ideas using simple examples,
e.g., a vector field in 1D. It is important to also note that different
methods require different properties of the underlying data, such as
smoothness or piecewise linearity, which we do not explicitly treat
to keep the presentation concise.

4.1. Tracking of Steady Topology

Given the success of vector field topology in the steady case, it is
natural to track topological features over time in the unsteady case.
The goal is to correctly associate features from one time step to
the next, as well as to detect and represent events that change the
topology, such as merges, splits, births, and deaths of critical points.

Helman and Hesselink [HH89, HH90] provide a tracking algo-
rithm over time. They compute the singularities (critical points) for
separate time steps, and connect them graphically based on proxim-
ity and region connectedness. Wischgoll et al. [WSH01] describe
an algorithm to track closed streamlines in time-dependent planar
flows. Based on an earlier algorithm [WS01] that uses the Poincaré-
Bendixson theorem, their tracking scheme assumes linear interpo-
lation between two time steps and detects bifurcations. Tricoche et
al. [TSH01,TWSH02] provide a precise tracking algorithm, assum-
ing a linear interpolation between time steps. The linear interpola-
tion in their spacetime grid guarantees the existence of one critical
point in each cell. Therefore, it is sufficient to analyze the cell faces
to detect changes in the topology over time. Inside each cell, they
employ analytical paths between singularities.

Theisel and Seidel [TS03] derive Feature Flow Fields (FFF) that
recast the tracking of critical points in a 2D vector field as an inte-
gration problem in a 3D field. They show that their technique can be
utilized to track other topological features and vortices. Weinkauf
et al. [WTVGP11] improve upon the FFF and present a more sta-
ble FFF formulations for tracking critical points. Reininghaus et
al. [RKWH12] propose a combinatorial version of this concept.

Theisel et al. [TWHS04, TWHS05] follow two approaches to
the generalization of topology to unsteady vector fields. In their
streamline-based method, they track the topology of each time step
interpreted as steady flow, see Fig. 5.

Garth et al. [GTS04] provide a singularity tracking algorithm for
3D time-dependent vector fields. Analogously to [TSH01], they use
piecewise linear fields to guarantee that topological changes can
occur only on the boundary of cells. They also use the principal
axis of all singularity to reduce visual clutter, and a diagram over
time to capture the evolution of the underlying topology.

Skraba and Wang [SW14] infer correspondences between criti-
cal points based on their closeness in stability, measured by robust-
ness, instead of just distance proximities within the domain. Intu-
itively, the robustness of a critical point is the minimum amount
of perturbation necessary to cancel it. They prove formally that ro-
bustness helps us understand the sampling conditions under which
we can resolve the correspondence problem based on region over-
lap techniques, and the uniqueness and uncertainty associated with
such techniques. These conditions also provide a theoretical basis
for visualizing the piecewise linear realizations of critical point tra-
jectories over time.

(a) Tracking of the classical
streamline-based vector field topology.

(b) Partition generated by the
pathline-based topology.

Figure 5: Examples of the streamline- and pathline-based vector
field topology. Image reproduced from Theisel et al. [TWHS04,
TWHS05].

All the above methods share a similar goal in terms of feature
tracking, which induces identical mathematical properties. These
mathematical properties are summarized in Table 1. The surveyed
methods trivially coincide with the steady case and segment the do-
main of the flow; however, they are neither Lagrangian nor Galilean
invariant, and therefore are not objective. Table 1 highlights the
shortcomings of the steady vector field topology, which some au-
thors refer to as being“unphysical".

4.2. Reference Frame Adaption

Most methods that adapt the frame of reference (FOR) are not
specifically targeting flow topology, but they provide derived vec-
tor fields, which can be visualized or processed. For this survey,
we analyze these methods assuming that we apply classical steady
vector field topology to the derived fields. Please note that most of
the methods in this section do not actually suggest a conservative
coordinate transform of the form x′ = Q(t)x+ r(t). What they all
have in common with a classical FOR adaption is that they try to
compensate for or subtract out the influence of a potential common
underlying movement of regions in the flow.

Wiebel et al. [WGS02] suggest a segmentation of the flow
field into a potential, a divergence, and a rotation part, using the
Helmholtz Hodge decomposition (HHD). The potential part is
identical to the flow on the boundary and therefore correlates with
the influence of the outer flow onto a region. Its removal reveals
local structures in the flow that would otherwise be hidden. Bhatia
et al. [BPB14,BPKB14] suggest a flow decomposition method that
follows the HHD, which decomposes the flow into irrotational, in-
compressible, and harmonic parts. Whereas Wiebel et al. [WGS02]
assume the boundary flow to be zero, Bhatia et al. do not require
boundary conditions to be unique, thereby reducing the complexity
of their method for compressible flows. Bhatia et al.compute the
HHD of a derived field that is identical to the flow inside the region
but drops to zero at infinity. Its harmonic component is zero, which
makes the HHD unique. They then utilize only the irrotational and
incompressible parts restricted to the region in question.

Günther et al. [GGT17] provide an algorithm to locally assume
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Tracking of steady topology
paper coincide with

steady case
segment areas
of coherent be-
havior

Lagrangian Galilean
invariant

objective

[HH89, HH90, WSH01, TSH01,
TWSH02, TS03, WTVGP11, GTS04,
SW14], [TWHS04, TWHS05] (streamline-
based), [RKWH12] (using v = 0)

each time step
is the steady
case

separatrices
as (hyper-)
surfaces in
d +1

Example 1 dependence on
velocity (8),
Example 2

dependence on
velocity (8),
Example 2

Table 1: Mathematical properties and references to examples for papers primarily classified under tracking of steady topology. Color coding
is explained in Fig. 4.

(a) Generalized streaklines pro-
duce trivial decomposition.

(b) A nontrivial segmentation of
the same data.

Figure 6: Generalized streaklines that start at a saddle-type path-
line are used (for example, in [SW10, USE12, MBES16, BDBR∗19,
BDZG19]) to separate regions of different behavior locally. These
streamlines produce a trivial segmentation overall if the field is
given for only a finite time and a comparable nontrivial decom-
position. In this spacetime representation: saddles are yellow, cen-
ters are green, generalized separatrices are red, and pathlines are
purple. Image reproduced from Rojo et al. [RG20, Fig. 3].

the FOR that makes the field appear mostly steady. Such a local
FOR is considered the best frame to view flow patterns, for exam-
ple, by Lugt [Lug79] and Perry and Chong [PC94a]. Günther et
al.decompose the minimization requirement so that they need to
solve only a system of linear equations. Later, Rojo et al. [RG20]
extract steady topology using similar local FOR, see Fig. 6. They
provide a pathline-based visualization for context.

Hadwiger et al. [HMTR18] propose a time-dependent velocity
field describing the motion of a set of observers adapted to the input
flow. The observer field is defined such that all observers perceive
the flow to be “as steady as possible" with almost vanishing time

Figure 7: Reference frame “steadification". Top: spacetime repre-
sentation; bottom: space representation. Instantaneous velocity is
visualized through LIC [CL93] in grey; pathlines are visualized in
color. Image reproduced from Hadwiger et al. [HMTR18].

derivatives. An observer-related time derivative is defined, which
builds on the concept of Lie derivatives. The observer field mini-
mizes this observed time derivative using global optimization, see
Fig. 7. Based on this observer field, notions of observed stream-
lines, pathlines, streaklines, and timelines are introduced. Hadwiger
et al. prove that the flow perceived by the observer field is objec-
tive, making the derived flow features, such as vortices, objective
as well. Even though a topological segmentation is not explicitly
discussed in the paper, the derived field can be used to define an
objective flow topology.

The above papers follow two main objectives. Wiebel et
al. [WGS02] and Bhatia et al. [BPB14, BPKB14] make use of the
HHD because of its useful properties and applications. They are
less focused on the frame invariance and do not show Galilean in-
variance in their papers. Günther et al. [GGT17, RG20] and Had-
wiger et al. [HMTR18], on the other hand, specifically design refer-
ence frame adaptions to meet frame invariance. Whereas the former
coincides with the steady case, the latter produces smooth results
due to its global nature. We can see in Table 2 how the methods
satisfy more desirable properties. An obvious observation is the
apparent lack of Lagrangian invariance for methods in the current
category of reference frame adaption.

4.3. Categorize or Cluster Pathlines

Pathlines are tangential to a vector field everywhere in time, but
streamlines are tangential for one fixed point in time. In a steady
vector field, pathlines and streamlines coincide, which motivates
researchers to select, categorize, and cluster pathlines to generalize
flow topology. Pathlines describe the movement of particles, which
gives them direct physical meaning.

Theisel et al. [TWHS05] categorize areas of convergent behav-
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Reference frame adaption
paper coincide with

steady case
segment areas
of coherent
behavior

Lagrangian Galilean invariant objective

[WGS02] Example 3 separatrices
as (hyper-)
surfaces in
d +1

Example 6 Theorem 1 Example 4

[BPB14,
BPKB14]

Example 3 separatrices
as (hyper-)
surfaces in
d +1

Example 6 Theorem 1 Example 5

[HMTR18] Theorem 2, Ex-
ample 7

separatrices
as (hyper-)
surfaces in
d +1

Example 8 Sec. 4.3 in their paper refers
to proof in [TN04]

Sec. 4.3 in their paper refers
to proof in [TN04]

[GGT17,
RG20]

vt = 0 is al-
ready optimum

separatrices
as (hyper-)
surfaces in
d +1

Example 9 Sec. 3.1 of the additional
material of [RG20], but not
for linear fields, Sec. 7.10
in [GGT17]

Sec. 3.2 of the additional
material of [RG20], but not
for linear fields, Sec. 7.10
in [GGT17]

Table 2: Mathematical properties and references to proofs for papers classified as primarily reference frame adaption. Most of the reference
frame adaption techniques were derived for general visualization techniques, and the papers do not specifically mention flow topology. For
the purpose of this report, we categorize them under the assumption that the classical vector field topology is applied to the frame adapted
field. Color coding is explained in Fig. 4.

ior, divergent behavior, or neither using pathlines as extensions of
sinks, sources, and saddles, see Fig. 5.

Figure 8: First generalization of separatrices to generalized
streaklines. Spacetime visualization with slices are color-coded by
FTLE: attracting manifolds are in blue, repelling manifolds are in
red. Image reproduced from Sadlo and Weiskopf et al. [SW10].

Inspired by Haller’s hyperbolic trajectories [Hal00], Sadlo and
Weiskopf [SW10] generalize the concept of saddle-type critical
points to time-dependent vector fields using the intersections of
ridges in the forward and backward finite-time Lyapunov exponent
field (FTLE) [Hal02a]. FTLE is a scalar measure describing the
amount of stretching of neighboring pathlines during a time in-
terval [t, t + t′] respective to [t, t − t′]. The motivation behind this
choice is the same as that for saddles: these areas show divergent
behavior in forward as well as backward direction in time. They
use these points as seeds for generalized streaklines as introduced
by Wiebel et al. [WTS∗07], which form a generalization of sep-
aratrices to time-dependent flows, see Fig. 8. They also look into

ridges in the hyperbolicity time fields, but discard the approach as
unsatisfactory in practice. The work of Sadlo and Weiskopf is an
important step toward a time-dependent flow topology. The coun-
terparts of centers, sources, and sinks are, however, still missing.

Figure 9: Particle accumulation over time indicates a sink in the fa-
mous Petri-dish dataset. Particles are color-coded by time of seed-
ing. Image reproduced from Wiebel et al. [WCW∗11].

Wiebel et al. [WCW∗11] start pathlines at a set of timepoints.
At any given end time, they compute the density of endpoints of
pathlines and track the local maxima of this histogram-like scalar
field as the time-varying analog of sinks. Their approach provides
a physically meaningful visualization of a very complicated dataset
involving a rotating Petri dish, see Fig. 9.
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Üffinger et al. [USE12] extend earlier work [SW10] to a 3D case
by computing streak-based separatrices from 1D seeding curves.
The latter are obtained from path surfaces emanating from 2D
ridges in forward and reverse FTLE fields.

Figure 10: Example of a recirculation surface. This method pro-
duces truly steady visualizations, i.e., features that do not depend
on time. Color encodes start time (left) and integration time (right).
Image reproduced from Wilde et al. [WRT18, Fig. 1].

Wilde et al. [WRT18] present a method to extract recirculation
surfaces for 3D unsteady flow fields. The key idea is to embed the
flow in a higher dimensional manifold for the line extraction and
then project the results back to the 3D space. A recirculation line
is defined as a pathline that returns to the same location after some
time. There is no requirement that the flow direction is the same
after returning to the point, see Fig. 10. Wilde et al.’s paper is an
exception in this category of methods as it does not aim to gener-
alize vector field topology. However, we include this paper in the
survey, because the idea of a 5D displacement field could hypothet-
ically be used for categorize or cluster pathlines, even though the
displacement field is frame dependent.

Figure 11: Spacetime representation of a nontrivial segmentation
over time of a rotating field into regions with source-like (red),
sink-like (blue), and saddle-like behavior (white). Other regions are
transparent. Image reproduced from [BDZG19].

Bujack et al. [BDBR∗19] follow the work of Sadlo and
Weiskopf [SW10] to extract pathlines of strong hyperbolic behavior
as finite-time saddles. In contrast to earlier work, they introduce a
Lagrangian definition using the full range of time moments that are
captured in the dataset. They further suggest a more robust classifi-
cation based on forward and backward integration time separately
and show that it is a sufficient criterion for its Lagrangian coun-
terpart. Later they extend this definition and categorize pathlines
as sinks, sources, or saddles based on their finite time expansion
or contraction behavior over the whole simulation time [BDZG19],
see Fig. 11. The results are areas that segment the domain and nar-
row down toward the true critical point locations if a longer inte-
gration time is available.

Table 3 shows the mathematical properties of these approaches.
We see that even though the first use of pathline-based topology
by Theisel et al. [TWHS05] is a great idea, the actual implemen-
tation does not improve the frame independence or Lagrangian
shortcomings of the classical topology. The works followed satisfy
frame independence by concentrating on certain types of features,
such as only saddles and separatrices [SW10, USE12, BDBR∗19],
and only sinks [WCW∗11], until the theoretical concepts are uni-
fied in a framework spanning saddle-, source-, and sink-type re-
gions [BDZG19]. The methods in this category are partly not La-
grangian even though they are pathline-based, because they do not
use the whole time available. This choice can be motivated by one
of the two following reasons. First, a sliding window approach may
produce more intuitive and visually pleasing results, because it does
not capture the chaotic folding and mixing. Second, a Lagrangian
method may exhibit issues w.r.t. robustness or stability because it
requires integration on an unstable manifold for a long time. These
methods can be made Lagrangian if they are applied to the full time
interval of the data.

4.4. Generalization of Critical Points

This section comprises a direction of research that explicitly fol-
lows the goal of generalizing the classical vector field topology to
unsteady fields or changing frames of reference. These methods
make use of scalar fields and utilize their extrema (or zeros) to de-
fine generalized critical points.

Figure 12: Acceleration magnitude is shown as a colored height
map and the extracted minima (spheres) serve as generalized criti-
cal points. Image reproduced from Kasten et al. [KHNH11].

Kasten et al. [KHNH11, KRH∗16] extend the concept of criti-
cal points to the minima of the acceleration field. This extension
includes the classical definition of critical points in steady fields,
but is Galilean invariant. They filter these candidates using a ver-
sion of Lagrangian filtering. They track two scalar properties over
parts of a pathline: the acceleration and the minimality. When a
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Categorize or cluster pathlines
paper coincide with

steady case
segment areas of
coherent behavior

Lagrangian Galilean invariant objective

[TWHS04,
TWHS05]
(pathline-based)

extracts regions,
instead of critical
points

each point is as-
signed one category

Fig. 5b shows path-
lines intersect the
boundaries

Example 10 Example 10

[SW10, USE12] saddles only, but
Example 11

Fig. 6 (a) sliding time win-
dow, Sec. 2.3
in [Hal15]

eigenvalues of the
Cauchy Green ten-
sor, Sec. 5.1.9

eigenvalues of the
Cauchy Green ten-
sor, Sec. 5.1.9

[WCW∗11] sinks only, but Ex-
ample 11

not intended or dis-
cussed

sliding time win-
dow, Sec. 2.3
in [Hal15]

density propor-
tional to distance
between particles,
Sec. 5.1.7

density propor-
tional to distance
between particles,
Sec. 5.1.7

[WRT18] critical points only surfaces do not in-
duce partition, self-
intersection

method does not
produce time-
dependent features,
but can be extended

distance between
particles in dif-
ferent times,
Sec. 5.1.10

distance between
particles in dif-
ferent times,
Sec. 5.1.10

[BDBR∗19] saddles only, but
Example 11

Fig. 6 (a) sufficient con-
dition, Sec. 4.2
in [BDZG19]

eigenvalues of the
Cauchy Green ten-
sor, Sec. 5.1.9

eigenvalues of the
Cauchy Green ten-
sor, Sec. 5.1.9

[BDZG19] extracts regions,
instead of critical
points

Fig. 17, but not
for incompressible
flow

sufficient con-
dition, Sec. 4.2
in [BDZG19]

eigenvalues of the
Cauchy Green ten-
sor, Sec. 5.1.9

eigenvalues of the
Cauchy Green ten-
sor, Sec. 5.1.9

Table 3: Mathematical properties and references to proofs for papers classified as primarily categorize or cluster pathlines. Color coding is
explained in Fig. 4.

pathline violates one of the thresholds, they stop considering it crit-
ical. Then, they consider only those pathlines that have a life-time
above a given threshold. A major problem is that the time param-
eter needs to be much smaller for saddle-like critical points than
for centers, see Fig. 12. Related to that is the work by Reininghaus
et al. [RKWH12], who propose a combinatorial tracking algorithm
for critical points in scalar fields. They apply the method to track
classical critical points of flows as well as the generalized critical
points from the acceleration minima by Kasten et al. [KRH∗16].
In theory, the tracking method itself is independent of the FOR as
long as the scalar field used for the definition of the critical points
is Galilean invariant. In practice, however, the required temporal
sampling density of the flow filed depends on the strength of the
background flow. Consequently, the tracking of critical points from
steady vector field topology is not Galilean invariant, and the track-
ing of zeros in the acceleration is invariant if the temporal sampling
density is high enough.

Fuchs et al. [FKS∗10] extend the concepts of the steady-state
critical points to time-varying data in four different ways. They
first look at the zeros of the acceleration. Then they suggest that
each detected point adapts the FOR to become a classical critical
point. They classify these points in the classical sense, which al-
lows for locally meaningful separatrices. To compensate for more
complex FOR changes, Fuchs et al. suggest selecting particles that
observe an almost steady velocity in their vicinity and have a small
acceleration. To this end, they introduce the concept of unsteadi-
ness as the material derivative of the Jacobian. Further, they apply
Lagrangian smoothing to both unsteadiness and the velocity. They

show that Lagrangian filtering applied to the velocity magnitude,
acceleration magnitude, and unsteadiness provides results that are
comparable to the FTLE in the double gyre. For an analytic ver-
sion of the Petri dish, on the other hand, only Lagrangian smoothed
unsteadiness gives results similar to those of the FTLE.

Figure 13: The local reference frames (right) of the generalized
critical points reveal the individual components (left, small) of a
supercomposition (left, big) of different fields. The vector field is
visualized by LIC [CL93] and colored by speed on the left: blue
means low and red means high values. The vector field is colored
by determinant of the Jacobian on the right: blue means negative,
red means positive, and white means zero values. Image reproduced
from Bujack et al. [BHJ16].

Bujack et al. [BHJ16] suggest dropping the requirement of a crit-
ical point to have zero velocity because a FOR always exists that
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can make it critical. Since the categorization of the critical points
into sink, sources, saddles, and centers is Galilean invariant, they
suggest critical points be generalized as extrema of the determinant
of the Jacobian. Then, they locally assume FOR for these points in
the visualization, see Fig. 13.

Wang et al. [WRS∗13] use the topological concept of robust-
ness, which is related to persistence in the scalar case. This concept
reflects how much a vector field needs to be perturbed such that
a critical point gets canceled. They track the robustness of critical
points over time. However, since the physical meaning of classical
critical points is doubtful under reference frame changes, they ap-
ply the measure of robustness not only to critical points but also
to any point in its own reference [WBPRH17], which makes the
method Galilean invariant.

Machado et al. [MBES16] extract hyperbolic trajectories as
pathlines close to bifurcation lines in the extended phase space,
i.e., the spacetime representation of the vector field. They argue
that these pathlines and their invariant manifolds produce LCS like
the intersection of forward and backward FTLE ridges and like the
material surfaces started at these intersections (from [SW10] but
faster). For the definition of bifurcation lines, they follow Roth et
al. [Rot00, RP98] and use the loci where the velocity v is parallel
to either the steady formulation of acceleration a = (∇v)v or the
jerk vector b = (∇a)v. They refine the results to form streamlines
as in their prior work [MSE13]. Because the results were poor, they
abandon the jerk vector approach and use the acceleration. For the
case of the spacetime field, the condition x×a = 0 is equivalent to
loci with vanishing acceleration a = 0, which shows the relation to
previous techniques [KPH∗09, FKS∗10].

Table 4 summarizes the techniques from this section and their
properties. The table shows that the scalar characteristics were cho-
sen to be Galilean invariant, but not objective. The method by
Machado et al. [MBES16] stands out, particularly because it consti-
tutes a hybrid approach between these scalar-field-based techniques
and the pathline-based methods from Sec. 4.3.

5. Theory

In this section, we provide a detailed mathematical analysis sum-
marized in Tables 1–4. The tables provide an overview of our clas-
sification results. Each table cell refers to a part in this section,
which provides details on demand in the form of a proof sketch
or a (counter) example. We first revisit the behaviors associated
with basic flow characteristics that are frequently used by the sur-
veyed methods under coordinate transformations. Then, we provide
examples and theorems to infer the properties of these methods.
Again, the surveyed papers are classified by approaches as detailed
in Sec. 2.1.

5.1. Coordinate Transformations

In this section, we collect the mathematical concepts and flow
characteristics that are used to generalize the classical (i.e., time-
independent) vector field topology to time-dependent data and ana-
lyze their properties under changes of the reference frame. We then
focus on determining for which one of the desirable properties a

suggested method suffices. An introduction to the physical princi-
ples can be found, for example, in [Liu02, SJ06].

We look at Euclidean transformations of coordinates (x, t) ∈
Rd×R, i.e., transformations of the form

x′ = Q(t)x+ r(t) (5)

with a time-dependent orthogonal matrix Q :R→ SO(d) and a time
dependent vector r : R→ Rd [TN04].

A Galilean transformation is a subset of (5) with the additional
restriction of r depending only linearly on time, ṙ = const.

A scalar field s(x, t), a vector field v(x, t), and a matrix field
M(x, t) are called objective, i.e., invariant with respect to a coor-
dinate transformation, [Son13] if they suffice

s′(x′, t) = s(x, t),

v′(x′, t) = Q(t)v(x),

M′(x′, t) = Q(t)M(x, t)QT (t).

(6)

5.1.1. Velocity Field

The classical steady vector field topology and the tacking of topo-
logical features [HH89, HH90, WSH01, TSH01, TWSH02, TS03,
WTVGP11,GTS04,SW14,TWHS04,TWHS05,RKWH12] use the
definition of critical points as zeros in the velocity field

v(x, t) =
dx(t)

dt
= ẋ. (7)

The velocity field is not invariant under the transformation (5) as

v′(x′, t)
(7)
=

dx′

dt
(5)
=

d
dt

(Q(t)x+ r(t))

= Q̇(t)x+Q(t)ẋ+ ṙ(t)
(7)
= Q̇(t)x+Q(t)v(x, t)+ ṙ(t).

(8)

Therefore, (8) means that v is neither objective nor Galilean invari-
ant.

5.1.2. Galilean Invariant Vector Field

Some methods [FKS∗10, BHJ16, WBPRH17] use the Galilean in-
variant vector field (GIVF) following a Galilean transform to per-
ceive a given point x0 as critical

vx0(x, t) = v(x, t)− v(x0, t). (9)

Transformation (5) transforms v′(x′, t) via

v′x′0(x
′, t)

(8)
= v′(x′, t)− v′(x′0, t)

(8)
= Q̇(t)x+Q(t)v(x, t)+ ṙ(t)

− (Q̇(t)x0 +Q(t)v(x0, t)+ ṙ(t))

= Q(t)(v(x, t)− v(x0, t))+ Q̇(t)(x− x0).

(10)

Therefore according to (10), vx0 is not objective but Galilean invari-
ant; vx0 is referred to as the Galilean invariant critical points.
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Generalization of critical points
paper coincide with

steady case
segment areas of coher-
ent behavior

Lagrangian Galilean invariant objective

[KHNH11,
RKWH12,
KRH∗16]

sufficient con-
diction Exam-
ple 12

not intended or dis-
cussed

Example 13 dependence on acceler-
ation, Sec. 5.1.3

dependence on acceler-
ation, Sec. 5.1.3

[FKS∗10] Thm. 3 separatrices are mean-
ingful only locally

Example 13 dependence on acceler-
ation, Sec. 5.1.3, un-
steadiness, Sec. 5.1.5,
Jacobian, Sec. 5.1.4,
GIVF, Sec. 5.1.2

dependence on acceler-
ation, Sec. 5.1.3, un-
steadiness, Sec. 5.1.5,
Jacobian, Sec. 5.1.4,
GIVF, Sec. 5.1.2

[BHJ16] Example 14 connected components
of same determinant
sign

Example 14 dependence on Jaco-
bian, Sec. 5.1.4, GIVF,
Sec. 5.1.2

dependence on Jaco-
bian, Sec. 5.1.4, GIVF,
Sec. 5.1.2

[MBES16] saddles only
Thm. 3

Fig. 6 (a) Example 15 Example 15 Example 15

[WBPRH17] Example 16 not discussed but pro-
vided through Morse
complex of extended
robustness field

Example 16 dependence on GIVF,
Sec. 5.1.2

dependence on GIVF,
Sec. 5.1.2

Table 4: Mathematical properties and references to proofs for papers classified as primarily generalization of critical points. Color coding
is explained in Fig. 4.

5.1.3. Acceleration

The acceleration field [KHNH11, FKS∗10, RKWH12, MBES16,
KRH∗16] is the material derivative of the flow field

a(x, t) = ẍ

(7)
=

Dv(x, t)
Dt

=
dv(x, t)

dx
dx
dt

+
∂v(x, t)

∂t
(7),(13)
= J(x, t)v(x, t)+

∂v(x, t)
∂t

.

(11)

On the other hand, a transforms via (11), (5) and (7),

a′(x′, t) =
d2x′(t)

dt2

(11)
=

d2

dt2 (Q(t)x+ r(t))

(5)
= Q̈(t)x+2Q̇(t)ẋ+Q(t)ẍ+ r̈(t),
(7),(11)
= Q̈(t)x+2Q̇(t)v(x, t)+Q(t)a(x, t)+ r̈(t),

(12)

which makes it Galilean invariant, but not objective.

5.1.4. Jacobian

The Jacobian of a velocity field is the velocity gradient

J(x, t) =∇xv(x, t). (13)

The Jacobian is typically used to classify classical critical
points [HH89]; it is also used to define critical points in [BHJ16].
According to the following relation,

∇x′x
(5)
= ∇x′(Q

T (t)(x− r(t))) = QT (t), (14)

the Jacobian behaves under transformations (5) via

J′(x′, t)
(13)
= ∇x′v

′(x′, t)
(8)
= ∇x′(Q̇(t)x+Q(t)v(x, t)+ ṙ(t))
(14)
= Q̇(t)QT (t)+Q(t)∇xv(x, t)QT (t)

(13)
= Q̇(t)QT (t)+Q(t)J(x, t)QT (t),

(15)

making it not objective, but Galilean invariant.

5.1.5. Material Derivative of the Jacobian (Unsteadiness)

Unsteadiness [FKS∗10] is the material derivative of the Jacobian

D
Dt

J(x, t)
(13)
=

D
Dt
∇xv(x, t) =∇x

D
Dt

v(x, t)
(11)
= ∇xa(x, t). (16)

The derivative transforms via
D
Dt

J′(x′, t)
(16)
= ∇x′a

′(x′, t)

(12)
= ∇x′(Q̈(t)x+2Q̇(t)v(x, t)+Q(t)a(x, t)+ r̈(t))

(14)
= Q̈(t)QT (t)+2Q̇(t)v(x, t)QT (t)+Q(t)a(x, t)QT (t),

(17)
which makes it Galilean invariant, but not objective.

5.1.6. Flow Map

A flow field can be given by both a vector field

Rd×R→ Rd , x, t 7→ v(x, t) (18)

and a flow map

R×R×Rd → Rd , t0× t1× x0 7→ Ft
t0(x0), (19)
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with

Ft0
t0 (x0) =x0,

Ft2
t1 (F

t1
t0 (x0)) =Ft2

t0 (x0).
(20)

The flow map describes how a flow parcel at (x0, t0) moves to
Ft1

t0 (x0) in the time interval t1− t0.

These two representations are related through the initial value
problem [Cod12],

Ḟt
t0(x0) = v(Ft

t0(x0), t), Ft0
t0 (x0) = x0; (21)

and inversely through

x0 +
∫ t

t0
v(Ft

t0(x0), t)dt = Ft
t0(x0). (22)

The flow transforms like the spatial coordinates under (5)

F ′
t1
t0(x
′
0)

(22)
= x′0 +

∫ t1

t0
v′(F ′

t1
t0(x
′
0), t)dt

(8)
= x′0 +

∫ t1

t0
Q̇(t)Ft1

t0 (x0)+Q(t)Ḟt1
t0 (x0)+ ṙ(t)dt

= x′0 +
∫ t1

t0
Q̇(t)Ft1

t0 (x0)dt +
∫ t1

t0
Q(t)Ḟt1

t0 (x0)dt +[r(t)]t1t0

integration by parts
= x′0 +[Q(t)Ft1

t0 (x0)+ r(t)]t1t0
= x′0 +Q(t1)F

t1
t0 (x0)+ r(t1)− (Q(t0)F

t0
t0 (x0)+ r(t0))

(5)
= x′0 +Q(t1)F

t1
t0 (x0)+ r(t1)− x′0

= Q(t1)F
t1
t0 (x0)+ r(t1).

(23)
Equation (23) means that the flow map is neither objective nor
Galilean invariant.

5.1.7. Distance Between Particles

The distance between particles living in the same time frame is
objective because of the length preservation of orthogonal transfor-
mations:

‖F ′t1t0(x
′
0)−F ′

t1
t0(y
′
0)‖

(23)
= ‖Q(t1)F

t1
t0 (x0)+ r(t1)−Q(t1)F

t1
t0 (x0)+ r(t1)‖

= ‖Q(t1)(F
t1
t0 (x0)−Ft1

t0 (x0))‖

= ‖Ft1
t0 (x0)−Ft1

t0 (x0)‖.

(24)

The distance is inversely correlated to particle density [WCW∗11].

5.1.8. Deformation Gradient

The deformation gradient [MW99, HFB∗17]

R×R×Rd → Rd×d , t0× t1× x0 7→ ∇Ft1
t0 (x0) (25)

transforms via

∇x′0 F ′
t1
t0(x
′
0)

(23)
= ∇x′0(Q(t1)F

t1
t0 (x0)+ r(t1))

= Q(t1)∇x′0 Ft1
t0 (x0)

(14)
= Q(t1)∇x0 Ft1

t0 (x0)Q(t0)
T

(26)

because of the chain rule [Liu03], which means that the deforma-
tion gradient is not objective, but Galilean invariant.

On the other hand, the determinant of the deformation gradient
is objective, due to the multiplicativity of the determinant and the
orthogonality of Q(t):

|∇F ′|= |Q(t1)∇FQT (t0)|= |Q(t1)||∇F||QT (t0)|= |∇F|. (27)

5.1.9. Cauchy Green Strain Tensor

The right Cauchy-Green strain tensor

R×R×Rd → Rd×d ,

t0× t1× x0 7→Ct1
t0 (x0) = (∇Ft1

t0 (x0))
T∇Ft1

t0 (x0)
(28)

and its eigenvalues are the basis for the the finite-time Lyapunov
exponent (FTLE) [Hal02b] and related methods based on particle
expansion and contraction [SW10, USE12, BDBR∗19, BDZG19].
The tensor transforms via

C′
t1
t0(x
′
0)

(28)
= (∇Ft1

t0
′
(x′0))

T∇Ft1
t0
′
(x′0)

(26)
= (Q(t1)∇Ft1

t0 (x0)Q(t0)
T )T Q(t1)∇Ft1

t0 (x0)Q(t0)
T

= Q(t0)(∇Ft1
t0 (x0)

T∇Ft1
t0 (x0))Q(t0)

T

(28)
= Q(t0)C

t1
t0 (x0)Q(t0)

T .

(29)

Its eigenvalues do not change if an orthogonal matrix is multiplied

λ(C′
t1
t0(x
′
0))

(29)
= λ(Q(t0)C

t1
t0 (x0)Q(t0)

T )

= λ(Ct1
t0 (x0)),

(30)

which makes them objective.

5.1.10. Distance Between Particles in Different Times

The displacement field [WRT18]

R×R×Rd → Rd , t0× t1× x0 7→ dt1
t0 (x0) = Ft1

t0 (x0)− x0 (31)

depending on the start location x0, start time t0, and end time t1,
measures the distance between particles observed at different times.
To each start point x0, it assigns the vector between it and the later
location of a flow parcel that was released at time t0 at location x0.
The displacement field transforms via

d′
t1
t0(x
′
0)

(31)
= F ′

t1
t0(x
′
0)− x′0

(23)
= Q(t1)F

t1
t0 (x0)+ r(t1)− (Q(t0)x0 + r(t0))

= Q(t1)(F
t1
t0 (x0− x0)+(Q(t1)−Q(t0))x0 + r(t1)− r(t0)

(31)
= Q(t1)d(x0, t0, t1)+(Q(t1)−Q(t0))x0 + r(t1)− r(t0),

(32)
which makes it neither objective nor Galilean invariant.

5.2. Counter Examples and Theorems

We now provide a collection of mini counter examples and theo-
rems to infer whether certain concepts generally satisfy one of the
desired properties (Sec. 2.2) or not. These examples are tailored
toward specific papers that we classify in Sec. 4 and therefore do
not form a comprehensive narrative. This section is best read non-
linearly using Tables 1– 4 as a road map. For better orientation,
the following subsections are named in accordance with the four
approaches and the tables that they belong to.

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.



Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang / Time-Dependent Flow Topology

5.2.1. Tracking of Steady Topology

This subsection contains counter examples for Table 1.

Example 1 The classical steady vector field topology is not Lan-
grangian; its critical points, especially, do not form pathlines. As a
counter example, we look at the 1D vector field

v(x, t) = x+ t−1. (33)

This field has a classical critical point at x0(t) = 1− t. This critical
point does not form a pathline, because it is not tangential to the
vector field v(x0(t), t) = 1− t + t−1 = 0 6= ẋ0(t) =−1.

Example 2 The classical steady vector field topology is not
Galilean invariant. As a counter example, we look at the 1D steady
vector field

v(x, t) = x. (34)

v(x, t) transforms under the Galilean coordinate transform x′ = x+t
to the field (33). Its critical point at x0(t) = 0 transforms to x′0(t) =
t, which does not coincide with the critical point at 1− t of the
transformed field (33).

5.2.2. Reference Frame Adaption

This subsection contains counter examples for Table 2.

Theorem 1 The localized flows that correspond to the diverging
and rotating parts of the Helmholtz-Hodge decomposition from
Wiebel et al. [WGS02] and from Bhatia et al. [BPB14, BPKB14]
are Galilean invariant.

Proof Assume a vector field v(x, t) : Rd ×R→ Rd that has the
Helmholtz Hodge decomposition

v(x, t) = d(x, t)+ r(x, t)+h(x, t) (35)

with d containing the divergent part, r the rotational part, and h the
harmonic part. It follows from (8) that the transformed field by a
time-dependent translation x′ = x+ r(t) has the form

v′(x′, t) = v(x, t)+ ṙ(t) (36)

Since ṙ(t) is independent of x, it is divergence and rotation free and
belongs to the harmonic part h of the decomposition. As a result, it
has no influence on the localized flows suggested by both methods
v∗(x, t) := d(x, t)+r(x, t) where the harmonic part is removed.

Example 3 If the steady vector field topology is applied to the lo-
calized flows that correspond to the diverging and rotating parts of
the Helmholtz-Hodge decomposition from Wiebel et al. [WGS02]
and from Bhatia et al. [BPB14, BPKB14], the result does not gen-
erally coincide with the steady case. Theorem 1 shows that adding
a constant to a vector field leaves the localized flow unchanged, but
it moves the locations of the classical topology.

Example 4 The decomposition by Wiebel et al. [WGS02] is not
objective. Assume a 2D vector field that has vanishing outflow on
a circular boundary. A rotation around the center of the coordinates
leaves the outflow zero, which means the decomposition leaves the
field unchanged, and the result of Wiebel’s algorithm is identical to
the input. If we apply the classical topology, then it follows from
the velocity (8) that the result is not objective.

Example 5 We show that the method by Bhatia et al. [BPB14,
BPKB14] is not objective for the example of the zero vector field

v(x,y) =
(

0
0

)
. (37)

Its localized flow v∗(x0,y0) = d∗(x0,0)+ r∗(x0,0) is also zero, be-
cause

D∗(x0,y0) :=
∫

Ω

G∞(x,x0)∇· v(x)dx = 0,

R∗(x0,y0) :=−
∫

Ω

G∞(x,x0)∇× v(x)dx = 0,
(38)

where G∞ is the free-space Green’s function, and

d∗(x0,y0) :=∇·D∗(x0) = 0,

r∗(x0,y0) :=∇×R∗(x0) = 0.
(39)

It follows from (8) that the rotated counterpart by x′ = Q(t)x with
the matrix representing a rotation by πt at time t = 0 suffices

ṽ(x, t) =
(
−y
x

)
. (40)

In the Helmholtz Hodge decomposition, this part must be in the
rotational component, because it is not harmonic nor divergent.
Therefore, the rotational part does not coincide with its original
counterpart, which was zero.

Example 6 We show that the Helmholtz-Hodge decomposition
from Wiebel et al. [WGS02] and from Bhatia et al. [BPB14,
BPKB14] is not Lagrangian.
For example, if we decompose a vector field with vanishing outflow
on the boundary, the Helmholtz-Hodge decomposition in Wiebel
et al. [WGS02] returns the original field back. Therefore, a slight
variation of Example 1 can be used to show that the method is not
Lagrangian.
Assume a steady vector field that is zero outside the unit ball ∀|x|>
1 : v(x) = 0, has no harmonic part and a critical point x0 6= 0. The
unsteady field that we get from rotating it around the origin also
has no outflow and no harmonic part and is therefore not changed
by either of the two methods. Its critical points are not Lagrangian,
similar to Example 1.

Theorem 2 The steadification by Hadwiger et al. [HMTR18] coin-
cides with the steady case if the regularization term is omitted, i.e.
for µ = 0.

Proof Setting µ = 0 reduces the energy term E = EK + λDt + µR
that is minimized globally to E =EK +λDt , where EK is the Killing
energy of the coordinate transform u and Dt is the temporal deriva-
tive of the output field vu. The temporal derivative of a steady in-
put field v : Rd → Rd is zero Dt = 0 and the Killing energy of the
identity transform u = 0 is zero, too, EK = 0. If the regularization is
omitted, then the overall energy of vu = v,u= 0 is E =EK +Dt = 0,
which makes it the minimum.

Example 7 We will show that the method suggested by Hadwiger
et al. [HMTR18] does not generally leave steady fields unchanged
for positive regularization weights µ> 0. For simplicity, we assume
that the steady 1D vector field

v(x) = x (41)
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is transformed via a Galilean transformation x′ = x− ct only. Then
the transforming field is a Killing field u(x, t) = c satisfying

x′ = x−
∫ t

0
u(x(τ),τ)dτ = x−

∫ t

0
cdτ = x− ct (42)

and the transformed field takes the shape

v′(x′, t) = v(x)−u(x, t) = x− c = x′+ ct− c. (43)

Then, since u is Killing, the Killing energy does not contribute to
the energy integral. We assume λ = 1,µ = 2 and the domain Ω =
[0,1]× [−1,1]. Then the energy has the form

E(c) =
∫ 1

0

∫ 1

−1
|Dvu(ξ,τ)

Dt
|+2|vu(ξ,τ)|dτdξ

=
∫ 1

0

∫ 1

−1
|vt +∇v ·u|+2|x+ ct− c|dτdξ

=
∫ 1

0

∫ 1

−1
|0+1c|+2|x+ ct− c|dτdξ,

(44)

which takes its minimum at E(−3/16) = 29/16, which means,
the steady field v(x) = x is transformed into the unsteady field
vu(x, t) = x−3/16t +3/16. As a result, applying the steady topol-
ogy to the adapted field vu does in general not coincide with the
steady topology of the input field.
It follows from Theorem 2 that this effect is a consequence of the
regularization. It can be mitigated with a small change:

1. Try to compute the observer field with µ = 0, i.e. disabling the
regularization. If a unique minimum is found, the corresponding
observer field will leave steady fields unchanged.

2. If there was no unique minimum, set µ to a very small value and
compute the observer field with that.

Example 8 We will show that the critical lines in the steadi-
fied field as produced by the method suggested by Hadwiger et
al. [HMTR18] are not generally Lagrangian. For simplicity, we
assume µ = 0 and 0 < λ << 1, i.e. the weights are set such that
the Killing energy term in the minimization is weighted unpropor-
tionally high so that only true Killing fields u are possible and the
energy minimization only concerns the steadiness. Analogously to
Example 7, we treat a 1D vector field

v(x) = (x− t2)2 (45)

under only a Galilean transformation x′ = x− ct

v′(x′, t) = v(x)−u(x, t) = (x− t2)2− c = (x′+ ct− t2)2− c.
(46)

Over the domain Ω = [0,1]× [−1,1] the energy takes the form

E(c)
(44)
= λ

∫ 1

0

∫ 1

−1
|4t(−t2 + x)− c(2x−2t2)|dτdξ, (47)

which takes its minimum at E(0) = 4/3. That means, the input field
is not transformed. Its zeros are x0(t) = t2 with tangent ẋ0(t) = 2t
not pointing in the direction of the flow vu(x0(t), t) = 0.
Since pathlines are transformed into pathlines through the transfor-
mation, the line x0(t) transformed into the original coordinates is
also not a pathline in the original field.

Example 9 We show that the optimization suggested by Rojo et

al. [RG20] does not generally extract Lagrangian critical points.
As an example, we take the vector field

v(x, t) =
(
(x− t2)2

y2

)
(48)

We assume a Galilean transformation that does not depend on
space, so the zeroth order Taylor approximation of the displace-
ment function should be sufficient. In that case, the matrix M has
the shape

M(x, t) =
(
−J I

)
=

(
2t2−2x 0 1 0

0 −2y 0 1

)
, (49)

The partial temporal derivative of v suffices

vt(x, t) =
(

4(t2− x)t
0

)
, (50)

For each location, we integrate over a symmetric spatial neighbor-
hood [−c,c]2 and solve the least squares fit∫ c

−c

∫ c

−c
MT (x, t)M(x, t)dxdy p =−

∫ c

−c

∫ c

−c
MT vtdxdy, (51)

which results in

p =


−2t

0
0
0

 (52)

independently of the location and neighborhood size.
As a result, the steadified flow w takes the form

w(x, t) = v(x, t)+
(
−2t

0

)
=

(
(x− t2)2−2t

y2

)
. (53)

Its zeros are located at xw
0 (t) = (t2±

√
2t,0) with tangent ẋw

0 (t) =
(2t±1/

√
2t,0). The vector fields f and v point along v(xw

0 (t), t) =
(2t,0) though, which means that xw

0 (t) is not a pathline. Therefore,
the method is not Lagrangian.

5.2.3. Categorize/Cluster Pathlines

This subsection contains counter examples for Table 3.

Example 10 We illustrate that the pathline-oriented topology by
Theisel et al. [TWHS04, TWHS05] is not Galilean invariant using
a 1D vector field

v(x, t) =


x, if t = 0,
−1, if t > 0,
1 if t < 0

(54)

defined on a grid with cell size 1. A visualization can be found
in Fig. 14. The point x0 = 0 will be classified as a source by the
pathline-based topology from [TWHS04, TWHS05], because the
plane in spacetime orthogonal to v(0,0) = 0, is just the time slice it-
self, and the neighboring points in this plane are (−1,0) and (1,0),
which have expanding character v(−1,0) =−1 and v(1,0) = 1.
Now we transform the vector field through the Galilean transfor-
mation x′ = x− t. It follows from (8) that

v(x, t) =


x−1, if t = 0,
−2, if t > 0,
0 if t < 0.

(55)
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(a) Vector field (54). (b) Transformed field (55).

Figure 14: An example 1D vector field (time vertical, space hor-
izontal) that shows that the pathline-oriented topology by Theisel
et al. [TWHS04, TWHS05] is not Galilean invariant. The source is
transformed into a sink through the transformation. The red line
shows the plane orthogonal to the velocity and the red arrows the
projections on the plane.

Here, at t = 0, the point x′0 = 0 will be classified as a sink. Its neigh-
boring points in the plane orthogonal to v(0,0) =−1 are (−1,−1)
and (1,1). Their vectors in spacetime projected on this plane take
the shape v′(−1,−1) = 1/2 and v′(1,1) = −1/2, which makes
them contracting.

Example 11 In this example, we will demonstrate that the loca-
tions of the strongest expansion or contraction of the flowmap as
used, for example, in [SW10, WCW∗11, USE12, BDZG19], will
in general not coincide with the critical points in a steady field.
To illustrate our idea, we use a 1D example, in which all particles
starting in (0,3.55) move to the right toward 3.55,

v(x) =


0.1x, if x ∈ (0,0.5]
x−0.45, if x ∈ (0.5,2]
3.55− x, if x ∈ (2,3.55].

(56)

The flowmap of (56) takes the form

Ft
0(x0) =



x0e0.1t , if x0 ∈ (0,0.5e−0.1t)

0.9−51.2x10
0 et , if x0 ∈ [0.5e−0.1t ,0.5]

0.9+ et(x0−0.9), if x0 ∈ [0.5,1.55e−t +0.45]
3.55−1.55e−t

1.55x0−0.45 , if x0 ∈ [1.55e−t +0.45,2]
3.1+ e−t(x0−3.1), if x0 ∈ (2,3.55]

(57)
for integration times small enough that no particle crosses both
boundaries x = 0.5 and x = 2 between the different cases in (56),
which is true for t < 3.43, especially for the case of t = 1 that we
will look at.
The gradient of the flowmap (57) suffices

∇Ft
0(x0) =



e0.1t , if x0 ∈ (0,0.5e−0.1t)

512x9
0et , if x0 ∈ [0.5e−0.1t ,0.5]

et , if x0 ∈ [0.5,1.55e−t +0.45]
1

et (1.55x0−0.45)2 , if x0 ∈ [1.55e−t +0.45,2]

e−t , if x0 ∈ (2,3.55]
(58)

The graphs of these functions for t = 1 can be found in
Fig. 15. The maximum expansion is constant in the whole inter-

(a) Velocity of the
1D vector field v(x)
from (56).

(b) Its flowmap F1
0 (x0)

from (57) visualized
through endpoint as
function of startpoint.

(c) Flowmap gradient
∇F1

0 (x0) from (58) and
1 as reference to sepa-
rate expanding from at-
tracting regions.

Figure 15: The maximum expansion x ∈ [0.5,1.55e−t + 0.45] and
the saddle location x = 0 do in general not coincide. Horizontal
axis: space.

val [0.5,1.55e−t + 0.45], which excludes the true location of the
critical point at x0 = 0.

5.2.4. Generalization of Critical Points

This subsection contains counter examples for Table 4.

Example 12 Kasten et al. [KHNH11] use locations that minimize
the acceleration. Since in a steady field the acceleration in a critical
point is zero, all classical critical points are included, i.e., the def-
inition is sufficient. The following 1D example will show that the
definition is not necessary, however.
The 1D vector field

v(x) =
√

x+ xe−|x| (59)

has the acceleration

a(x) = (
1

2
√

x
+ e−|x|− x2e−|x|

|x| )(
√

x+ xe−|x|) (60)

and an acceleration minimum around x ≈ 2.5, which does not cor-
respond to a critical point, Fig. 16.

Example 13 The lines of vanishing acceleration are in general not
pathlines, for example, the 1D time-dependent vector field

v(x, t) = x+ t2 (61)

has the acceleration

a(x, t) = t2 +2t + x (62)

with a zero along the line x0(t) =−t2−2t. The tangent of this line
satisfies ẋ0(t) = −2t − 2, but the vector field along this line suf-
fices v(x0(t), t) =−2t, which means that it does not follow the line,
which means that methods suggested by Kasten et al. [KHNH11]
and Fuchs et al. [FKS∗10], and the acceleration-based method by
Reininghaus et al. [RH11] are not Lagrangian.
Kasten et al. [KHNH11] and Fuchs et al. [FKS∗10] further their
idea of looking for acceleration minima/zeros using Lagrangian
smoothing and introduce Lagrangian equilibrium points, which are
pathlines that exhibit low acceleration over a period of time. Their
method relies on several parameters: thresholds for the accelera-
tion, the relative acceleration compared to neighboring points, and a
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Figure 16: The field (59) v is in red, its Jacobian J is in green, and
its acceleration a is in blue. The acceleration assumes a minimum
around x ≈ 2.5 even though neither the Jacobian nor the velocity
is zero there.

time window. If the full time is used, then this method becomes La-
grangian, but the authors use a sliding window method. Therefore,
the method is not Lagrangian, because of Section 2.3 in [Hal15].

Theorem 3 If the input field is steady and the locations of vanishing
acceleration a(x) = 0 are nondegenerate, i.e., the Jacobian has full
rank, detJ(x) 6= 0, the acceleration zeros coincide with the classical
first-order critical points v(x) = 0.

Proof In the case of a steady vector field, the acceleration a =
∇vv+ vt simplifies to a =∇vv, which is zero iff v = 0 or the rank
of ∇v is not full and v is in its kernel. In the former case, we have
a steady critical point. In the latter case, the determinant of the Ja-
cobian∇v is zero, which would make it degenerate.

Example 14 Bujack et al. [BHJ16] look at extrema of the deter-
minant of the Jacobian. These do not generally coincide with the
classical critical points. For example, the steady vector field

v(x,y) =
(

x−1
y

)
e−
√

x2+y2
(63)

has a critical point at (1,0)T , but the maximum of the determinant
of the Jacobian

e−2
√

x2+y2

√
x2 + y2(x2 + y2− x)− x2− y2

x2 + y2
(64)

is located at (0,0)T , compare Fig. 17.
The same example shows that the method is not Lagrangian, be-
cause the tangent ẋ0(t) = (0,0)T of the extracted line of maximum
determinant of the Jacobian x0(t) = (0,0)T is not tangential to the
vector field v(x0(t)) = v(0,0) = (−1,0)T .

Example 15 In this example, we discuss the Galilean invariance
and Lagrangianness of the method by Machado et al. [MBES16].
The basic idea of this method is Galilean invariant, because for the
special case of a spacetime field, the condition of the vector field
being parallel to the acceleration v ‖ a is equivalent to a = 0. In
this formulation, the method does not depend on the velocity and

(a) Velocity magnitude of (63) shows
the critical point at (1,0).

(b) The determinant of the Jacobian
has a maximum at (0,0).

Figure 17: Example where the method by Bujack et al. [BDZG19]
does not coincide with the steady case.

the acceleration in Galilean invariant, Sec. (5.1.3). Further, if the
algorithm actually achieves a minimum angle of zero everywhere,
i.e., converges to the closest pathline, then the result is also Galilean
invariant if the metric compares distance in the same time only. This
observation follows from Sec. (5.1.7) and because pathlines and the
acceleration transform in the same way under Galilean changes of
the reference frame, see Sec. 5.1.6 and Sec. 5.1.3.
However, the algorithm in Machado et al. [MBES16] cannot guar-
antee this convergence to the corresponding pathlines, because it
depends on the angle between the zero acceleration tangent and
the vector field, which is not Galilean invariant. We illustrate
such an observation using the example vector field (61). There
the angle between the tangent of the line of zero acceleration and
the vector field at t = 0 in phase space is ∠((−2,1),(0,1)) =
arccos(sqrt(5)/5)≈ 1.11. However, the transformed field

v′(x, t) = x− t +1+ t2 (65)

has the acceleration

a′(x, t) = t2 + t + x (66)

has a zero along the line x0(t) = −t2 − t. The tangent there sat-
isfies ẋ0(t) = −2t − 1 and the vector field v(x0(t), t) = −2t + 1.
Therefore, the angle between the two at t = 0 in phase space is
∠((−1,1),(1,1)) = π/2≈ 1.57.
Machado et al. [MBES16], in particular, filter out initial loci of
zero acceleration based on a threshold if this angle is too big. If
the threshold had, for example, been chosen to be 1.2, then the
transformed field would have a candidate line for refinement that
exists for t = 0, whereas the initial field would not.
In comprehension, even though the acceleration and its zeros are
Galilean invariant, the angle between its tangent and the vector field
are not. Therefore, the method by Machado et al. [MBES16] is not
Galilean invariant, and it is especially not objective.
If the method does not converge to a pathline, the result is not La-
grangian and even if the initial loci locally converge to a pathline,
they will not generally form complete pathlines. For example,

v(x,y, t) =

{
(x,−y)T , if t < 0,
t,else.

(67)
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has zero acceleration in a hyperbolic region for all (0,0, t) if t < 0,
but the acceleration is constantly a= 1 and never zero for t > 0. The
refinement does not change anything, because the tangent (0,0,1)
is already parallel to the vector field in spacetime (0,0,1).

Example 16 The method by Wang et al. [WBPRH17] does not find
a second critical point to cancel out a generalized critical point for
the simple example (63). We will assume that, in this case, such
a critical point cancels out with a fictional point at infinity. The
field is so simple that, in order to reach infinity from each point in
its own reference frame ṽ(x,y) = v(x,y)− v(x0,y0), we will find a
monotonic path in the adapted velocity magnitude field. Therefore,
we can get the robustness from the difference of the velocity mag-
nitude of the point in question, which is zero in its own frame, and
infinity, which is lim√x2+y2→∞ ‖v(x,y)−v(x0,y0)‖= ‖v(x0,y0)‖.
Therefore, the maximum of the generalized robustness is also lo-
cated at (0,0) like in Example 14. As a result, the method by Wang
et al. [WBPRH17] does not coincide with the classical topology
and is not Lagrangian.

6. Related Work Beyond Visualization

The study of time-dependent flow topology goes beyond visualiza-
tion literature to include fluid dynamics and dynamical systems, to
name a few. As the goal of visualization is to help application sci-
entists gain insight into their data and amplify cognition [CMS99],
we think paying close attention to their problems and solutions is
crucial, because they have a deeper understanding of their field. Of-
tentimes advancements in mathematics, science, and engineering
will inspire new visualization techniques. We provide some exam-
ples in this section that we think are most promising in advancing
the topology and visualization of unsteady flow in the future.

The content in this section may be outside the comfort zone of a
visualization researcher. However, we believe that advancements
external to visualization, in particular, from fluid dynamics and
dynamical systems, offer inspiring perspectives on flow topology.
Practitioners may want to skip this section on their first reading.

6.1. Fluid Dynamics

In fluid dynamics, scientists often have a different approach to deal
with the dependence of the instantaneous velocity on the frame
of reference (FOR). For example, topological information is usu-
ally used to classify not only critical points but also the entire do-
main of a field, which overcomes the dependency on Galilean ref-
erence changes and allows a statistical evaluation [Can93,SSC∗94,
CCK96,CC00]. Scientists also often use a Reynolds decomposition
to separate the flow into its average component and its deviation,
where the average could be taken over time, over space, and over
an ensemble.

Blackburn et al. and others [BMC96, CCK96, CSP∗98] use the
boundaries between regions with complex eigenvalues and regions
with real eigenvalues to segment the domain into coherent regions.
Chong et al. [CPC90] define critical points in 3D flow as points
where the streamline slope is indeterminate and the velocity is
zero relative to an appropriate observer. They classify streamlines
based on their 2D behavior surrounding critical points in the three

eigenvector planes. They explicitly exclude rotating frames and as-
sume the center of coordinates to follow a fluid particle. Soria et
al. [SSC∗94] compute the invariants of the Jacobian everywhere in
the domain and detect a teardrop shape that seems characteristic
for incompressible fluid flow. Later, Chacin and Cantwell [CC00]
use the Lagrangian averaged invariants of the Jacobain along path-
lines to detect two separate regions of high concentrations. They
further find that boundaries between regions with complex eigen-
values and those with real eigenvalues correlate only with regions
of high Reynolds stress and kinetic energy generating events.

Ide et al. [ISW02] analyze distinguished hyperbolic trajectories.
They consider a trajectory hyperbolic if the linearization of the
flow about it has a full set of exponentially growing or decaying
solutions. A trajectory is distinguished if it resides in a bounded
neighborhood for all time while all its neighbors leave this neigh-
borhood. If all trajectories leave the domain, Ide et al. apply a coor-
dinate transformation based on a Eulerian structure, like a critical
point. They show that there are no unique distinguished hyperbolic
trajectories if the flow field is given for only a finite time, but sug-
gest an approximation based on an artificial extension of the time
to infinity using the Fourier series. They show that these trajec-
tories match the expected critical lines in linear fields even under
reference frame changes. Later Ju et al. [?] suggest an iterative al-
gorithm for the computational extraction of these approximate dis-
tinguished hyperbolic trajectories. Branicki and Wiggins [BW09]
extend the iterative algorithm to three-dimensional flow.

6.2. Almost Invariant Sets

First, we include some literature on alternative formulations of
steady vector field topology based on almost invariant sets that
arise from dynamical systems.

In the visualization literature, vector field topology is mostly de-
fined as a segmentation of the domain into regions of equivalent (or
uniform) streamline behavior in terms of “start" and “end" sets.

An alternative formulation that provides a Morse segmentation
of the domain is based on the notion of isolating invariant sets and
isolating sets. These sets can be classified according to their Conley
index, which corresponds to the Poincaré index for critical points.
At least in the case of 2D vector fields, the resulting segmentation
is closely related to the standard approach. This formulation has
the advantage that it can be more easily generalized to a discrete
setting, as is common for real-world flow data. The formulation,
therefore, gives rise to more robust computation in extracting topo-
logical skeleton.

In this setting, the flow could be interpreted as a mapping from
a temporal discretization of a vector field. Given a steady vector
field v on a domain X , the map f : X → X describes the move-
ment from one time step t to the next time step t + τ. A trajec-
tory through a point x ∈ X is then a function σx : Z → X gener-
ated by consecutive application of the function f , with σx(0) = x
and σx(n+1) = f (x(n)) = f k(x). In conjunction with a spatial dis-
cretization, the vector field can then be represented using a transfer
operator and given as a transfer matrix. There is an inherent numer-
ical diffusion associated with the discretization procedure, and the

c© 0x The Author(s)
Computer Graphics Forum c© 0x The Eurographics Association and John Wiley & Sons Ltd.



Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang / Time-Dependent Flow Topology

notion of invariant sets is replaced by almost invariant sets. For ex-
ample, based on this formulation, closed orbits are represented by
ε-chain recurrent sets. Critical points are examples for isolating in-
variant sets and can be represented by isolating neighborhoods that
are robust with respect to small changes in the field.

This concept provides the basis for several algorithmic ap-
proaches for the extraction of the dynamic structures of a vec-
tor field by computing an “optimal" decomposition into almost
invariant sets. These are computational methods that can pro-
vide accurate information about global structures of nonlinear dy-
namical systems and are rigorous in the sense of mathematical
proofs [Mis02,CMLZ08]. Froyland et al. [Fro01,FD03] model the
behavior of the dynamical system as a finite state Markov chain rep-
resented by a transition matrix. Their goal is to partition the phase
space into a finite number of connected sets Ai with nonempty in-
terior covering the phase space, which reveal the coarse-grained
dynamics displayed by the evolution of the sets. They describe a
numerical algorithm to detect “near-optimal almost-invariant sets
and cycles". With respect to the standard vector field theory, their
theory assumes a time-independent vector field and is neither La-
grangian nor Galilean invariant.

Second, we discuss the generalization of invariant sets to time-
dependent vector fields, which then produce Lagrangian and ob-
jective features. An attempt to generalize this formulation to the
time-dependent setting introduces time-coherent sets that relate sets
in different time steps. The goal is to find coherent pairs of sub-
sets At ,At+τ ⊂ X such that φ(At ,τ) ' At+τ, where φ is the flow
map and X is the domain or phase space. Since there is no obvi-
ous generalization of the property of being (almost) invariant, the
main challenge is to define concise criteria when a time-coherent
set qualifies as a topological feature. Several different criteria have
been proposed in the literature, ranging from shape coherence to
stability under perturbation. Froyland et al. [Fro12, FSM10] pro-
pose to define finite-time coherent sets as minimally dispersive and
maximally coherent sets over finite periods of time. Their theory
is built around the Multiplicative Ergodic Theorem. More specif-
ically, they study pairs of sets that remain coherent under small
diffusive perturbations of the flow. For a given sequence of maps
Ti : X → X , which represent a dynamical system, these are pairs
of sets At ,At+τ ⊂ X where At ∩ T−1(At ,τ) is large. Probabilistic
methods are proposed that automatically detect such maximally co-
herent sets. This condition favors coherent sets that are geometri-
cally regular.

Based on such observations, Ma et al. [MB14] extract coherent
sets by analyzing the change of the set boundaries when advecting
the sets. The concept of coherent sets is based on transport prop-
erties of the flow and thus has a Lagrangian perspective. Since its
computation is based only on the development of sets, it is also
Galilean invariant and objective. The specifically chosen discretiza-
tion, however, can violate the strict invariant condition.

6.3. Lagrangian Coherent Structures

Haller [Hal15] surveys the recent work on Lagrangian coherent
structures (LCSs), in which he rejects his earlier approaches based
on FTLE [HY00, Hal00, SLM05] and promotes lines and stretch
lines as LCSs [FH12, FH13].

A survey that follows a similar structure as ours by Had-
jighasem [HFB∗17] analyzes and compares approaches to identify
LCSs. He also analyzes the methods based on their mathematical
properties. We briefly point out the most promising and least com-
monly used approaches for the field of visualization.

Froyland [Fro13, FPG14] follows the goal of identifying barri-
ers to mixing, which are locally the strongest repelling or attracting
objects. Central to the method is the analysis of the transfer opera-
tor, which is a linear operator providing a global description of the
action of the flow on densities. In the implementation, this operator
is discretized resulting in a Markov chain transition matrix. Almost
invariant sets then correspond to singular vectors of this matrix.

Hadjighasem et al. [HKTH16] construct a similarity matrix W ∈
Rn×n in which each entry Wi j is the reciprocal of the L1 distances
between the i-th and j-th particle trajectory. Then, they make use
of spectral clustering to identify the optimal numbers of clusters by
looking for the greatest difference between consecutive generalized
eigenvalues in the matrix D−W , where D is the diagonal matrix
that contains the row sums of W . Then, they use k-means to cluster
the matrix U ∈Rn×k of the first generalized eigenvectors into k+1
clusters, the additional one representing the incoherent background.

The geodesic theory of LCSs combines hyperbolic and parabolic
LCSs, trajectories of average Lagrangian shear [FH12, FH13], and
elliptic LCSs, closed trajectories of average strain [HBV13].

Banisch and Koltai [BK17] apply diffusion maps to cluster tra-
jectories. Heil et al. [HRHB17] define flow topology through the
scalar topology of the vorticity field. This notion of topology is ap-
plied to the Karman vortex street for different Reynolds numbers to
better understand the formation of vortices. Rypina et al. [RSPB11]
partition the domain concerning different levels of complexity (er-
godicity, spatial coverage). Algorithmically, the number of sam-
pling points on the pathline in cells is counted. The cell size is an
algorithmic parameter. A pathline is considered as a fixed point if
it is a minimum in the ergodicity field.

Mancho et al. [MWCM13] propose a Lagrangian descriptor for
time-dependent dynamical systems. The main descriptor is based
on the “finite-time length of particle trajectories". "Abrupt changes"
in the length are related to region boundaries. The goal is to reveal
and understand the organizing structures in phase space.

7. Future Research Opportunities

The aim of this paper is to identify challenges and opportunities in
the study of time-dependent flow topology. A few avenues deserve
further exploration.

7.1. Applications, Effectiveness, and Comprehensiveness

The desirable properties, their definitions and interpretations are a
first attempt and probably not a perfect one to ensure general physi-
cal meaningfulness of flow topology in all related application fields.
We see potential for extensions and evaluations in close collabora-
tion with application scientists. Many topology extraction and vi-
sualization methods exist but there is not much information about
which of them are truly effective in practice, and for which tasks.
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There is a lack of studies that link such methods to concrete tasks,
which is a big concern for practitioners. A big research opportu-
nity, in our opinion, is to study related work outside the field of
visualization, by understanding application-specific advancements
and challenges (Sec. 6).

Inspecting the summary of our results in Tables 1 – 4, we clearly
see that, currently, no technique is comprehensive (i.e., it satisfies
all properties). The mathematical foundations associated with the
discussed properties, in particular, their assets and limitations, may
be used to build novel techniques for time-varying flows. For in-
stance, we consider the reference frame adaption (Sec. 4.2) and the
categorization of pathlines (Sec. 4.3) to be the most promising ones
to be made comprehensive. Maybe there are ways to combine the
strengths of these two approaches to generate new ones.

7.2. Uncertainty Visualization

A major opportunity in topology-based visualization, as pointed out
by Heine et al. [HLH∗16b], is the incorporation of uncertainty.

For uncertain scalar fields, Mihai and Westermann [MW14] cap-
ture the likelihood of the occurrences of critical points, with re-
spect to their positions and types across an ensemble. Hüttenberger
et al. [HHC∗13] use Pareto optimality to predict the positions of
local extrema for multifield data. Günther et al. [DJJ14] introduce
mandatory critical regions. Favelier et al. [FFST19] visualize posi-
tional uncertainties of critical points using persistence-based clus-
tering.

For uncertain vector fields, Pfaffelmoser et al. [PMW13] analyze
the variability in gradient fields induced by uncertain scalar fields.
Otto et al. [OGHT10,OGT11] introduce Monte Carlo gradient sam-
pling for visualizing variations of pathlines in 2D and 3D uncertain
vector fields. Bhatia et al. [BJB∗12] employ edge maps for the error
analysis of uncertain gradient flows. Nagraj et al. [NNN11] propose
a measure to quantify gradient uncertainty for multifield data.

For topological structures, various techniques are used to ex-
plore structural variations of contour trees [Kra10,WZ12,ZAM15],
merge trees [YWM∗20], and Morse–Smale complexes [TLB∗11,
AMJ∗19]. Topological features, in particular, level sets, appear
frequently in uncertainty visualization, including contour box-
plots [WMK13], probabilistic marching cubes [PWH11, PH13],
and their extraction from uncertain data [AE13, ASE16, AJ19].

Despite existing works in visualizing uncertainty for scalar
fields, time-independent vector fields, and topological structures,
capturing time-dependent flow topology in the face of uncertainty
remains a largely unexplored area. The question is, given an en-
semble of time-dependent flows, can we quantify and visualize the
topological uncertainty of its ensemble members? By uncertainty,
we mean information about the accuracy, confidence, and variabil-
ity of their time-dependent topology.

7.3. Scalable Computation and Visualization

Scalability in scientific visualization is becoming crucial as the
amount of data grows exponentially due to exascale comput-
ing [HCJ∗14]. The availability of scalable, general purpose, and

in situ visualization tools such as ParaView [FMT∗11] and the Vi-
sualization Toolkit (VTK) [SML06] has greatly advanced the field.
To find applications in cutting-edge simulations on supercomput-
ers, newly developed methods must be able to run on GPUs, in
distributed environments, or in situ.

Significant efforts that address the scalability issues have fo-
cused on scalable computations of topological structures such as
contour trees [CWSA16, CWS∗19], merge trees [MW13, SM17],
and Morse–Smale complexes [SN12, SMN12]. Some works exist
in the study of flow fields by applying clustering, sampling, dis-
tributed and parallel computation for pathlines and isosurfaces. For
instance, Ozer et al. [OWS∗12] use a clustering algorithm to group
interacting features and perform feature tracking in time-varying
3D fluid flow simulations. Friederici et al. [FKA∗19] propose a
memory-distributed parallel algorithm to finely sample the perco-
lation function, which is used to study statistical properties of tur-
bulent flows. Binyahib et al. [BPNC19] work toward parallelizing
particle advection for flow visualization. Manten et al. [MVO10]
explore data extraction and preprocessing at the source in parallel
and evaluate their techniques of flow visualization via parallel gen-
eration of pathlines and parallel extraction of isosurfaces. However,
to the best of our knowledge, a few works have focused on scal-
able computation and visualization of time-independent and time-
independent flow topology, for instance, the extraction of topologi-
cal skeleton in a scalable manner. This avenue of research could be
promising.

7.4. Machine Learning

Machine learning is rapidly transforming the landscape of scien-
tific visualization. Berger et al. [BLL19] synthesize and analyze
volume-rendered images using Generative Adversarial Network
(GAN). Hong et al. [HLY19] combine GAN with Convolutional
Neural Networks (CNN) to synthesize high-resolution and per-
ceptually authentic images directly without an explicit traditional
rendering pipeline. Tkachev et al. [TFE19] use feed-forward neu-
ral networks to detect and visualize interesting behaviors in spa-
tiotemporal volumes, for adaptive time step selection and analy-
sis of ensemble similarity. Han and Wang [HW20] generate tem-
poral high-resolution time-varying volume sequences from low-
resolution ones using adversarial learning. He et al. [HWG∗20] use
a deep-learning-based surrogate model to support parameter space
exploration for ensemble simulations that are visualized in situ.

Integrating approaches from time-dependent flow visualization
with machine learning to devise new techniques, in our opinion,
is an extremely promising direction. For instance, can we use ma-
chine learning to increase the explainability of time-dependent flow
topology? In particular, can feature learning be used to automati-
cally discover topological features across time, therefore replacing
classic feature detection and tracking algorithms?

7.5. Reproducibility

Flow topology is an area of scientific visualization where
there are only few available open source softwares such
as ParaView [FMT∗11], VTK [SML06], and the topology
toolkit [TFL∗17]. In addition, reproducing the techniques among
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the plethora of papers in the area is extremely hard – if even possi-
ble – without insider details. The lack of truly comprehensive toolk-
its that include robust, easy-to-use, generic implementations of ex-
isting methods is a key problem for their acceptance and adoption.
The classical vector field topology was not added to the topology
toolkit [TFL∗17] until 2019, and VTK [SLM04, ABB∗10] is still
in the process of integrating it as of now. To accelerate the forward
progress in flow topology, researchers should be encouraged, en-
dorsed, and even rewarded for providing complete implementation
of their techniques therefore allowing replication of their results.

8. Conclusion

In this paper, we aim to go beyond a simple classification or taxon-
omy of existing works, instead, we propose a mathematical frame-
work that helps in explaining, describing, comparing, and dis-
cussing existing techniques. While existing surveys share some
resemblance to our classification based on the approaches, our
paper differs significantly from existing works in the sense that
we methodically collect desirable mathematical properties to in-
terpret physical meaningfulness for time-dependent flow visualiza-
tion, and provably correlate such properties with selective research
papers. To the best of our knowledge, this is the first time math-
ematical proofs are used to infer properties of flow visualization
from characteristics of existing approaches, which subsequently
help to interpret their physical meaningfulness.

After surveying the existing works on time-dependent flow
topology and its mathematical properties, we see two main trends
in filling the existing research gaps:

• As time passes and research advances, proposed methods in the
visualization community tend to satisfy more and more of the
desirable properties. This trend can be seen in the shift from red
to green as we go down the tables.
• There is no current approach that satisfies all desirable proper-

ties. The two most promising approaches so far are reference
frame adaption, which lacks Lagrangian invariance; and the cat-
egorization of pathlines, which does not coincide with the steady
vector field topology.

For the future, we see great potential in studying the works from
fluid dynamics and dynamical systems for inspirations on physi-
cally meaningful generalizations of time-dependent flow topology.
Furthermore, we notice research gaps in combining time-dependent
flow topology with uncertainty, scalability, and machine learning.
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