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Abstract

In this paper, we present a measure associated with detection
and inference of statistically anomalous clusters of a graph
based on the likelihood test of observed and expected edges
in a subgraph. This measure is adapted from spatial scan
statistics for point sets and provides quantitative assessment
for clusters. We discuss some important properties of
this statistic and its relation to modularity and Bregman
divergences. We apply a simple clustering algorithm to find
clusters with large values of this measure in a variety of
real-world data sets, and we illustrate its ability to identify
statistically significant clusters of selected granularity.

1 Introduction.

Numerous techniques have been proposed for identifying
clusters in large networks, but it has proven difficult to
meaningfully and quantitatively assess them, especially
from real-world data whose clustering structure is a pri-
ori unknown. One of the key challenges encountered by
previous clustering methods is rating or evaluating the
results. In large networks, manual evaluation of the
results is not feasible, and previous studies have thus
turned to artificially created graphs with known struc-
ture as a test set. However, many methods, especially
those in which the number of clusters must be speci-
fied as an algorithm parameter, give very poor results
when applied to real-world graphs, which often have a
highly skewed degree distribution and overlapping, com-
plex clustering structure [18, 33].

1.1 Prior Work on Measures.

Modularity. The problem of assessment was par-
tially solved by the introduction of modularity [12], a
global objective function used to evaluate clusters that
rewards existing internal edges and penalizes missing
internal edges. Non-overlapping clusters, or partitions
of a graph, are obtained by maximizing the distance
from what a random graph would predict, either by
extremal optimization [15], fast greedy hierarchical al-
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gorithms [31, 37], simulated annealing [38] or spectral
clustering [32].

However, modularity cannot directly assess how
unexpected and thus significant individual clusters are.
Additionally it cannot distinguish between clusterings of
different granularity on the same network. For example,
comparable overall modularities were reported for hard
clusterings of the same scientific citation graph into 44,
324, and 647 clusters [37], results which are clearly of
varying usefulness depending on the application.

Spatial Scan Statistics. Scan statistics [19] mea-
sure densities of data points for a sliding window on or-
dered data. The densest regions under a fixed size win-
dow are considered the most anomalous. This notion
of a sliding window has been generalized to neighbor-
hoods on directed graphs [36] where the neighborhood
of a vertex is restricted to vertices within some constant
number of edges in the graph. The number of neighbors
is then compared to an expected number of neighbors
based on previous data in a time-marked series.

Spatial scan statistics were introduced by Kull-
dorff [23] to find anomalous clusters of points in 2 or
greater dimensions without fixing a window size. These
statistics measure the surprise of observing a particu-
lar region by computing the log-likelihood of the prob-
ability of the most likely model for a cluster versus the
probability of the most likely model for no cluster. Kull-
dorff argues that the region with the largest spatial scan
statistic is the most likely to be generated by a differ-
ent distribution, and thus is most anomalous. This test
was shown to be the most powerful test [27] for finding
a region which demonstrates that the data set is not
generated from a single distribution. Kulldorff [23] de-
rived expressions for the spatial scan statistic under a
Poisson and Bernoulli model. Agarwal et.al. [2] general-
ized this derivation to 1-parameter exponential families,
and Kulldorff has studied various (see [26]) other forms
of this statistic. Many techniques exist for computing
the statistic quickly for anomaly detection for point sets
[30, 25, 1].

1.2 Previous Algorithmic Work. Clustering is
well-established as an important method of information
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extraction from large data sets. Hard clustering divides
data into disjoint clusters while soft clustering allows
data elements to belong to more than one cluster. Exist-
ing techniques include MCL [41], Ncut [40], graclus [13],
MCODE [5], iterative scan [9], k-clique-community [37],
spectral clustering [35, 32], simulated annealing [28], or
partitioning using network flow [34], edge centrality [18],
and many other techniques e.g. [42].

Several statistically motivated graph clustering
techniques exist [20, 39, 22]. Itzkovitz et. al. discussed
distributions of subgraphs in random networks with ar-
bitrary degree sequence, which have implications for de-
tecting network motifs [20]. Sharan et. al. introduced
a probabilistic model for protein complexes taking con-
servation into consideration [39]. Koyuturk et. al. iden-
tified clusters by employing a min-cut algorithm where
a subgraph was considered to be statistically significant
if its size exceeded a probabilistic estimation based on
a piecewise degree distribution model [22]. These tech-
niques are all different from our approach as our model
based on spatial scan statistics has properties essential
for detecting statistically significant clusters.

A general clustering framework using Bregman di-
vergences as optimization functions has been proposed
by Banerjee et.al. [14, 6, 7]. This approach is of note
because the optimization function we use can be inter-
preted as a Bregman divergence, although our theoreti-
cal and algorithmic approaches are completely different
(as explained in Section 3).

1.3 Our Contribution. Our main contribution is
the generalization of spatial scan statistics from point
sets to graphs. Our statistic, Poisson discrepancy, offers
a metric that determines how significant the clusters
are using a normalized measure of likelihood. By
comparison to random graphs with the same expected
degree sequence as the network under consideration, a
p-value based on the Poisson discrepancy is associated
to each cluster found, providing a problem independent
measure of its statistical significance. The statistic is
correctly normalized to provide an absolute measure
of cluster significance on an individual level, allowing
comparison between clusters from different networks or
from different clusterings of the same network.

We also implement two simple greedy algorithms
which seek to maximize the Poisson discrepancy. Our
method includes a tunable parameter which we show
is strongly correlated to the average size of the found
clusters. This parameter allows the user to vary the
expected size of the clusters found by the algorithms,
which may be useful for various applications. In addi-
tion, because clusters of different size may be meaning-
fully compared with each other, our method provides a

way to identify important levels of granularity within a
network. In fact, our results using real-world data show
that statistically significant clusters of varying sizes can
exist in a given neighborhood of a network, implying
that real-world networks display granularity on a num-
ber of different levels. Finally, our method allows data
points to fit in any number of clusters, including zero.
This makes it applicable to real-world networks in which
some vertices may not have any kind of strong associa-
tion.

In Sections 2 and 3 of this paper, we present the the-
oretical foundation of our clustering method. The algo-
rithm and variations are described in Section 4. Bipar-
tite extensions of our algorithm are explained in Section
5. In Section 6, we empirically evaluate our objective
function and algorithms on real and synthetic datasets.
We calculate the algorithms’ runtime and power; we
evaluate other clustering algorithms using Poisson dis-
crepancy; and we demonstrate that the clusters found
using Poisson discrepancy with our algorithm are mean-
ingful, are scaled reliably with a tuning parameter γ,
and can overlap with each other.

2 Definitions.

Graphs. Let G = (V,E) be an undirected graph
with vertex set V and edge set E, such that E is a
multiset of elements in [V ]2, where [V ]2 denotes a set of
2-element multisets of V . That is [V ]2 = {{u, v}|u, v ∈
V }, where u and v are not necessarily distinct. G
allow self-loops and multiple edges between a pair of
vertices. A cluster Z = (VZ , EZ) is a subgraph of G
induced by subset VZ ⊆ V . The collection of clusters
Z ⊆ G is denoted as Z. The subgraph in G not in Z is
Z̄ = (V,E \ EZ). Let c(Z) be the number of observed
edges in cluster Z ⊆ G. c(G) is the total number of
observed edges in G. c∗(x) is the observed number of
edges between a pair of vertices x = {vi, vj} ∈ [V ]2.
The degree ki of a vertex vi is the number of edges that
contain vi. A self-loop at vi is counted twice in the
degree.

The neighborhood of a vertex set U ⊆ V is the set
of vertices {v | {v, u} ∈ E for u ∈ U and v ∈ V \ U},
denoted N(U). The size of a set V is denoted |V |. We
define the distance between two vertex sets U and V as
d(U, V ) = |U | + |V | − 2|U ∩ V |.

Poisson Random Graph Model. Many large
real-world graphs have diverse, non-uniform, degree
distributions [8, 4, 3] that are not accurately described
by the classic Erdös and Rényi random graph models
[16]. We consider a Poisson random graph model here
that captures some main characteristics of real-world
graphs, specifically, allowing vertices to have different
expected degrees. Notice that this model is different
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from models used in [10, 12].
The model generates random graphs with a given

expected degree sequence k = 〈k1, k2, ..., k|V |〉 for the
vertex set V = 〈v1, v2, ..., v|V |〉, where vertex vi has

expected degree ki. Let kV =
∑|V |

i=1 ki and m = kV /2.
The model chooses a total of m pairs of vertices as edges
through m steps, with replacement. At each step, each
of the two end-points of an edge is chosen among all
vertices through a Poisson proces, proportional to their
degrees. The probability that each end point of a chosen
edge contains vertex vi is ki/kV . The expected degree
of vertex vi after this process is m(ki/kV + ki/kV ) =
m(ki/2m + ki/2m) = ki. We refer to this model as the
Poisson random graph model. It fixes the total number
of edges and allows multiple edges between any pair of
vertices.

A bipartite multigraph example captured by a
Poisson random graph model is an internet bulletin
board. There is a set of users who post under different
threads. A post in a thread would constitute an edge.
Of course a single user can post multiple times to a
single thread, and some users post more often and some
threads generate more posts.

3 Spatial Scan Statistics for Graphs.

In this section we generalize the notion of a spatial
scan statistic [23] to graphs. We also highlight some
important properties of this statistic, as well as its
relation to local modularity and Bregman divergences.
It is this spatial scan statistic for graphs that we use to
provide quantitative assessment of significant clusters.

3.1 Spatial Scan Statistics Poisson Model.

Given G = (V,E), its edge set describes a degree se-
quence k = 〈k1, k2, ..., k|V |〉 for the vertex set V =
〈v1, v2, ..., v|V |〉, where ki is the degree of vertex vi. Let

kV =
∑|V |

i=1 ki and c(G) = kV /2.
According to the Poisson random graph model with

k as the given expected degree sequence and c(G) as
the total number of expected edges, define µ∗(x) as
the expected number of edges connecting the pair x =
{vi, vj} ∈ [V ]2. For i 6= j, µ∗(x) = kikj/2c(G). For i =
j, µ∗(x) = k2

i /4c(G). For a subgraph A = (VA, EA) ⊆
G, define µ(A) as the expected number of edges in
A. Let KVA

=
∑

vi∈VA
ki, µ(A) =

∑

x∈[VA]2 µ∗(x) =

k2
VA

/4c(G). Notice that µ(G) =
∑

x∈[V ]2 µ∗(x) = c(G).
A simple example is shown in Figure 1 where cluster Z
is induced by dark vertices in the graph, c(G) = µ(G) =
10, c(Z) = 6 and µ(Z) = 132/(4 × 10) = 169/40.

In the spatial scan statistics Poisson model, we
assume edges in G are generated by a Poisson process N
with intensity λ. The probability that there are exactly

Figure 1: Example graph.

n occurrences in the process is denoted as Poi(n, λ) =
e−λλn/n!. N assumes the same vertex set and expected
degree sequence as G and generates edges according to
the Poisson random graph model. Let N (A) be the
random variable describing the number of edges in the
subgraph A ⊆ G under such a process. N (A) follows a
Poisson distribution, denoted by N (A) ∼ Poi(n, λ).

Under such a model, consider a single cluster Z =
(VZ , EZ) ⊂ G, such that edges in Z are generated
with rate p, while edges in Z̄ are generated with rate
q. The null hypothesis H0 : p = q assumes complete
spatial randomness [21], that is, edges inside and outside
the cluster are generated under the same rate. The
alternative hypothesis H1 : p > q assumes that edges
inside the cluster are generated at a higher rate than
those outside the cluster. µ therefore represents a
known underlying intensity that generates edges under
H0 [24]. Therefore, under H0, the number of edges
in any given cluster A ⊆ G is Poisson distributed,
N (A) ∼ Poi(n, pµ(A)) for some value p. Under H1,
∀A ⊆ G, N (A) ∼ Poi(n, pµ(A ∩ Z) + qµ(A ∩ Z̄)) [23].

Likelihood Ratio Test. The spatial scan statis-
tics for graphs are based on the likelihood ratio test
derived from [23].

The spatial scan statistics Poisson Model assumes
under the null hypothesis H0 that all edges in G
are generated at the same rate. That is, under H0,
the probability of c(G) edges being observed in G
is Poi(c(G), pµ(G)). The density function f(x) of a
specific pair of vertices x ∈ [V ]2 being an actual edge is

f(x) = pµ∗(x)
pµ(G) = µ∗(x)

µ(G) .

Incorporating the density of each edge, the likeli-
hood function under H0 is

L0 = max
p=q

Poi(c(G), pµ(G))
∏

x∈E

f(x)

= max
p=q

e−pµ(G)(pµ(G))c(G)

c(G)!

∏

x∈E

µ∗(x)

µ(G)

= max
p=q

e−pµ(G)pc(G)

c(G)!

∏

x∈E

µ∗(x)

For a fixed Z, L0 takes its maximum when p = q = c(G)
µ(G) .
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That is

L0 =
e−c(G)

c(G)!

(

c(G)

µ(G)

)c(G)
∏

x∈E

µ∗(x).

The alternative hypothesis H1 assumes that for a
particular cluster Z = (VZ , EZ) ⊂ Z, the edges in Z
are generated at a different rate than those in Z̄. Under
H1, the probability of c(G) edges being observed in G
is Poi(c(G), pµ(Z) + q(µ(G) − µ(Z))). For x ∈ EZ , the

density function f(x) is f(x) = pµ∗(x)
pµ(Z)+q(µ(G)−µ(Z)) . For

x ∈ E \ EZ , f(x) = qµ∗(x)
pµ(Z)+q(µ(G)−µ(Z)) . The likelihood

function under H1 is

L(Z) = max
p>q

Poi(c(G), pµ(Z) + q(µ(G) − µ(Z)))

·
∏

x∈EZ

f(x)
∏

x∈E\EZ

f(x)

= max
p>q

e−pµ(Z)−q(µ(G)−µ(Z))

c(G)!

· (pµ(Z) + q(µ(G) − µ(Z)))c(G)

·
∏

x∈EZ

pµ∗(x)

pµ(Z) + q(µ(G) − µ(Z))

·
∏

x∈E\EZ

qµ∗(x)

pµ(Z) + q(µ(G) − µ(Z))

= max
p>q

e−pµ(Z)−q(µ(G)−µ(Z))

c(G)!
pc(Z)qc(G)−c(Z)

·
∏

x∈E

µ∗(x)

For a fixed Z, L(Z) takes its maximum when p =
c(Z)
µ(Z) , q = c(G)−c(Z)

µ(G)−µ(Z) . If c(Z)
µ(Z) > c(G)−c(Z)

µ(G)−µ(Z) ,

L(Z) =
e−c(G)

c(G)!

(

c(Z)

µ(Z)

)c(Z) (

c(G) − c(Z)

µ(G) − µ(Z)

)c(G)−c(Z)

·
∏

x∈E

µ∗(x)

otherwise L(Z) = L0.
Given a cluster Z ∈ Z, we define the likelihood ratio,

LR, as the ratio of L(Z) and L0. For the Poisson model

c(G) = µ(G), and if c(Z)
µ(Z) > c(G)−c(Z)

µ(G)−µ(Z) , we have

LR(Z) =
L(Z)

L0

=

(

c(Z)

µ(Z)

)c(Z) (

c(G) − c(Z)

µ(G) − µ(Z)

)c(G)−c(Z)

.

Otherwise LR = 1.
We then define the likelihood ratio test statistic, Λ,

as the maximum likelihood ratio over all clusters Z ∈ Z,

Λ = max
Z∈Z

LR(Z).

Poisson Discrepancy. Let r(Z) = c(Z)
c(G) and

b(Z) = µ(Z)
µ(G) , we define the Poisson discrepancy, dP ,

as

dP (Z) = r(Z) log
r(Z)

b(Z)
+ (1 − r(Z)) log

1 − r(Z)

1 − b(Z)
.

Intuitively, r(Z) is the observed edge ratio and b(Z) is
the baseline edge ratio in Z and G.

Since log Λ = c(G)maxZ∈Z dP (Z), for the cluster Z
that maximizes dP , dP (Z) constitutes the test statistic
Λ. This means that the likelihood test based on
maxZ∈Z dP (Z) is identical to one based on Λ. Since 0 <
r(Z), b(Z) ≤ 1, from this point on, we evaluate clusters
based on the Poisson discrepancy. dP determines
how surprising r(Z) is compared to the rest of the
distribution. Thus clusters with larger values of dP are
more likely to be inherently different from the rest of
the data.

Point Set Model. It should be noted that these
definitions were originally formulated where the set of
all possible edges, [V ]2, was instead a point set, the
function µ measured a baseline estimate of the popula-
tion, and the function c measured reported data, such
as instances of a disease. In this setting, the set of pos-
sible clusters is usually restricted to those contained in
some geometrically described family of ranges. This set
can often be searched exhaustively in time polynomial
in the size of the point set. In our setting we have 2|V |

possible ranges (vertex sets which induce Z) — an in-
tractably large number. Hence, Section 4 explains how
to explore these ranges effectively.

Significance of a Cluster. Although we can con-
sider many (or all) subsets and determine the one that
is most anomalous by calculating the Poisson discrep-
ancy, this does not determine whether this value is sig-
nificant. Even a graph generated according to a Pois-
son random graph model will have some cluster which
is most anomalous. For a graph G = (V,E) with de-
gree sequence k and for a particular cluster Z ⊆ G we
can compare dP (Z) to the distribution of the values of
the most anomalous clusters found in a large set of (say
1000) random data graphs. To create a random data
graph, we fix V ; then we randomly select c(G) edges
according to a Poisson random graph model with ex-
pected degree sequence k. If the Poisson discrepancy
for the original cluster is greater than all but a .05 frac-
tion of the most anomalous clusters from the random
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data sets, then we say it has a p-value of .05. The lower
the p-value, the more significantly anomalous the range
is. These high discrepancy clusters are most significant
because they are the most unlikely compared to what is
expected from our random graph model.

3.2 Properties of Spatial Scan Statistics. Kull-
dorff has proved some optimal properties for the likeli-
hood ratio test statistic for point sets [23]. In the con-
text of graphs, we describe those properties essential
for detecting statistically anomalous clusters in terms
of dP . For details and proofs, see [23, 27]. As a direct
consequence of Theorem 1 in [23], we have

Theorem 3.1. Let X = {xi|xi ∈ E}
c(G)
i=1 be the set

of edges in G = (V,E) where Z = (VZ , EZ) is the

most likely cluster. Let X ′ = {x′
i|x

′
i ∈ [V ]2}

c(G)
i=1 be an

alternative configuration of a graph G′ = (V,E′) where
∀xi ∈ EZ , x′

i = xi. If the null hypothesis is rejected
under X , then it is also rejected under X ′.

Intuitively, as long as the edges within the subgraph
constituting the most likely cluster are fixed, the null
hypothesis is rejected no matter how the rest of the
edges are shuffled around [23].

This theorem implies that:

1. dP (Z) does not change as long as its internal struc-
ture and the total number of reported edges outside
Z remains the same. Intuitively, clusters defined
by other subgraphs do not affect the discrepancy
on Z. Formally, dP (Z) is independent of the value
of c∗(x) for any potential edge x ∈ E \EZ , as long
as c(Z̄) remains unchanged.

2. If the null hypothesis is rejected by dP , then we
can identify a specific cluster that is significant and
implies this rejection. This distinguishes between
saying “there exist significant clusters” and “the
cluster Z is a significant cluster,” where dP can do
the latter.

Theorem 3.2. dP is individually most powerful for
finding a single significant cluster: for a fixed false
positive rate and for a given set of subgraphs tested, it
is more likely to detect over-density than any other test
statistic [30].

This is a direct consequence of Theorem 2 in [23]
and is paramount for effective cluster detection. (Its
power is also explored in Section 6). It implies that:

3. We can determine the single potential edge x ∈ [V ]2

(or set of edges, such as those described by adding
a vertex to the cluster) that will most increase the
Poisson discrepancy of a cluster, and thus most
decrease its p-value.

3.3 Spatial Scan Statistics and Local Modular-

ity. Several local versions of modularity have been used
to discover local community structure [11, 29]. Specifi-
cally, local modularity introduced in [38] is used to find
the community structure around a given node. The local
modularity of Z ⊆ G measures the difference between
the number of observed edges c(Z) and the number ex-
pected, µ(Z),

Mγ(Z) = c(Z) − γµ(Z).

One approach to clustering is to find the cluster Z that
locally maximizes Mγ . The γ parameter with default
value 1, is a user specified knob [38] that scales the
expected number of edges within Z under a Poisson
random graph model. We observe that it effectively
tunes the size of the clusters which optimize Mγ(Z). For
a fixed cluster Z, Mγ can be treated as a linear function
of γ, where its intersection with the Y -axis is c(Z), and
its slope is −µ(Z). Mγ for all Z ∈ Z forms a family
of linear functions whose upper envelope corresponds to
clusters that maximize M as γ varies. It can be observed
that as γ increases, c(Z) is non-increasing and µ(Z) is
non-decreasing for the cluster Z that maximizes Mγ .

It is important to distinguish M from dP . While M

measures the edge distance from the expected random
graph, dP measures the difference in how likely the
total number of edges are to occur in a general random
graph and how likely they are to occur in cluster Z and
its complement as separate random graph models. To
summarize, M calculates the distance, and spatial scan
statistics measure how unexpected this distance is, given
Z.

Several properties are also shared between dP and
M. The tuning knob γ can be used in Poisson discrep-
ancy to scale the expected number of edges in a cluster
Z.

dP,γ(Z) = r(Z) log
r(Z)

γb(Z)
+ (1 − r(Z)) log

(

1 − r(Z)

1 − b(Z)

)

Technically, the function dP,γ describes the effect of
scaling by γ the expected number of edges in a cluster
Z (but not outside the cluster), while not allowing q,
the parameter to model the random graph outside this
cluster, to reflect γ. Thus in the same way as with
Mγ for large γ, clusters need to have significantly more
edges than expected to have a positive dP value. The
following lemma highlights this relationship.

Lemma 3.1. Consider two clusters Z1 and Z2 such that
dP,γ(Z1) = dP,γ(Z2) and that c(Z1) > c(Z2). Then for
any δ > 0 we know dP,γ+δ(Z1) < dP,γ+δ(Z2).

The same property holds for Mγ and µ in place
of dP,γ and c, respectively. That is, consider two
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clusters Z1 and Z2 such that Mγ(Z1) = Mγ(Z2) and
that µ(Z1) > µ(Z2). Then for any δ > 0 we know
Mγ+δ(Z1) < Mγ+δ(Z2).

Proof. We can write

dP,γ(Z) = dP (Z) − r(Z) log γ,

thus as γ increases dP,γ(Z1) will decrease faster than
dP,γ(Z2).

We can also write

Mγ(Z) = c(G)(r(Z)−γb(Z)) = M1(Z)−c(G)(γ−1)b(Z).

Thus the same argument applies.

This implies that for the discrepancy measure, we
should expect the size of the optimal clusters to be
smaller as we increase γ, as is empirically demonstrated
in Section 6.3.

Using some machinery developed by Agarwal
et.al. [2] we can create an ε-approximation of dP with
O( 1

ε
log2 |V |) linear functions with parameters r(Z) and

b(Z), in the sense that the upper envelope of this set of
linear functions will be within ε of dP . We can inter-
pret Mγ as a linear function whose slope is controlled
by the value of γ. Figure 2 shows how M1 and M2,
respectively, approximate dP . Thus we can find the op-
timal cluster for O(1

ε
log2 |V |) values of γ and let Z be

the corresponding cluster from this set which has the
largest value of dP (Z). Let Z∗ be the cluster that has
the largest value of dP (Z∗) among all possible clusters.
Then dP (Z) + ε ≥ dP (Z∗).

However, a further study of Agarwal et.al. [1]
showed that a single linear function (which would be
equivalent to γ = 2 for Mγ) approximated dP on average
to within about 95% for a problem using point sets.
Note in Figure 2 how M2 seems to approximate dP

better than M1, at least for a large portion of the domain
containing smaller clusters.

3.4 Spatial Scan Statistics and Bregman Diver-

gences. Many Bregman divergences can be interpreted
as spatial scan statistics. The KL-divergence, a Breg-
man divergence, when between two 2-point distribu-
tions, is equivalent to dP up to a constant factor.

Banerjee et.al. [7] use Bregman divergences in a
different way than does this paper. In the context
of graph clustering, Bregman hard clustering finds a
bi-partitioning and a representative for each of the
partitions such that the expected Bregman divergence
of the data points (edges) from their representatives is
minimized [7]. For details and derivations, see [7].

Given a graph G = (V,E), let xi be a potential

edge xi ∈ [V ]2. Set X = {xi}
c(G)2

i=1 ⊆ R has probability

b
S

r
S

0
1

1.0

0.5

1.5

b
S

r
S

0
1

1.0

0.5

1.5

Figure 2: Comparison of dP (gridded) to 1
m

M1 (trans-
parent, upper panel) and 1

m
M2 (transparent, lower

panel) over (r(Z), b(Z)) ∈ [0, 1]2 such that r(Z) > b(Z).
Recall that r(Z) and b(Z) are the actual and expected
fraction of a graph’s edges which lie in a particular clus-
ter; for applications to large networks, a range of say
(0, 0.2)2 is most pertinent to clustering. For this range,
M2 is shown to approximate dP more closely than M1.

measure µ∗. Cluster Z induces a bi-partition of G, Z
and Z̄. Let µ(Z) and µ(Z̄) be the induced measures
on the partitions, where µ(Z) =

∑

xi∈[VZ ]2 µ∗(xi) and

µ(Z̄) =
∑

xi∈X\[VZ ]2 µ∗(xi). Let ηZ and ηZ̄ denote the
partition representative values.

ηZ =
∑

xi∈[VZ ]2

µ∗(xi)

µ(Z)
c∗(xi)

ηZ̄ =
∑

xi∈X\[VZ ]2

µ∗(xi)

µ(Z̄)
c∗(xi)

Define ηi = ηZ for xi ∈ [VZ ]2, otherwise ηi =
ηZ̄ . The Bregman clustering seeks to minimize the
divergence between the two c(G)2-point distributions

{〈c∗(x1), c
∗(x2), . . . , c

∗(xc(G)2)〉, 〈η1, η2, . . . ηc(G)2〉}
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We, on the other hand, maximize the KL-
divergence between the two 2-point distributions

{〈r(Z), 1 − r(Z)〉, 〈b(Z), 1 − b(Z)〉}.

But the methods do not conflict with each other. Their
ηZ and ηZ̄ variables are akin to p and q in the derivation
of the scan statistic. By minimizing their Bregman
divergence, they are trying to allow ηZ and ηZ̄ to be
as close to variables they represent as possible (i.e. ηZ

should be close to each c∗(xi) for xi defined on Z); and
by maximizing our discrepancy we are separating p and
q as much as possible, thus probabilistically representing
the cluster edges and non-cluster edges more accurately
with these ratios, respectively.

However, the Bregman divergence used by Banerjee
et.al. [6, 7] typically assumes a less informative, uniform
random graph model where µ∗(xi) = µ∗(xj) for all i and
j. Also when minimizing the KL-divergence, no edge at
xi would imply c∗(xi) = 0, thus implying that the cor-

responding term of the KL-divergence, c∗(xi) log c∗(xi)
ηi

,
is undefined. In their Bregman divergence model most
similar to ours, this poses a problem as c∗(xi) can be 0
in our model; thus we do not compare the performance
of these algorithms.

4 Algorithms.

In this section, we describe two bottom-up, greedy
clustering algorithms. For a graph G = (V,E) there are
2|V | possible clusters (subgraphs) induced by subsets
of V . That is, |Z| ≤ 2|V |, where each cluster Z =
(VZ , EZ) ∈ Z is induced by a vertex set VZ ⊆ V .
Clearly it is intractable to calculate discrepancy for
every possible cluster through exhaustive search, as is
often done with spatial scan statistics. We can, however,
hope to find a locally optimal cluster. For an objective
function Ψ : 2|V | → R, define a local maximum as a
subset U ⊆ V such that adding or removing any vertex
will decrease Ψ(U). For some objective function Ψ and
two vertex sets U and W , define

∂Ψ(U,W ) =

{

Ψ(U ∪ W ) − Ψ(U) W ⊂ V \ U
Ψ(U \ W ) − Ψ(U) W ⊂ U

where Ψ(VZ) = dP (Z) for Z = (VZ , EZ) ⊆ Z induced
by VZ . Let U+ (resp. U−) be the set of vertices in
N(U) (resp. U) such that ∂Ψ(U, v) > 0 for each vertex
v. U+

F (resp. U−
F ) denotes the subset of U+ (resp.

U−) that contains the fraction F of vertices with the
largest ∂Ψ(U, v) values. We now are set to describe
two algorithms for refining a given subset U to find a
local maximum in Ψ. Notice that both algorithms can
be used to locally optimize any objective function, not
limited to the Poisson discrepancy used here.

Greedy Nibble. The Greedy Nibble algorithm
(Algorithm 1) alternates between an expansion phase
and a contraction phase until the objective function can-
not be improved. During expansion (resp. contraction)
we iteratively add (resp. remove) the vertex that most
improves the objective function until this phase can no
longer improve the objective function.

Algorithm 1 Greedy-Nibble(U)

repeat

expand = false; contract = false

v+ = arg maxv∈N(U) ∂Ψ(U, v).
while ∂Ψ(U, v+) > 0 do

expand = true

U = U ∪ v+.
v+ = arg maxv∈N(U) ∂Ψ(U, v).

v− = arg maxv∈U ∂Ψ(U, v).
while ∂Ψ(U, v−) > 0 do

contract = true

U = U \ v−.
v− = arg maxv∈U ∂Ψ(U, v).

until expand = false and contract = false

Greedy Chomp. The Greedy Chomp algorithm
(Algorithm 2) is a more aggressive and faster version
of the Greedy Nibble algorithm. Each phase adds a
fraction F of the vertices which individually increase the
Ψ value. If adding these F |U+| vertices simultaneously
does not increase the overall Ψ value, then the fraction
F is halved, unless F |U+| ≤ 1. Similar to simulated
annealing, this algorithm makes very large changes to
the subset at the beginning but becomes more gradual
as it approaches a local optimum.

Theorem 4.1. Both the Greedy Nibble algorithm and
the Greedy Chomp algorithm converge to a local maxi-
mum for Ψ.

Proof. The algorithms increase the value of Ψ at each
step, and there is a finite number of subsets, so they
must terminate. By definition the result of termination
is a local maximum.

4.1 Variations. There are many possible heuristic
variations on the above algorithms. We use Greedy
Nibble because of its simplicity and Greedy Chomp
because it performs similarly but faster.

In terms of initial seed selection, when time is not an
issue, we recommend using each vertex as a seed. This
ensures that every interesting cluster contains at least
one seed. For larger graphs, randomly sampling some
vertices as seeds should work comparably [38]. Clusters
tend to be larger in this case, so most of them will still
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Algorithm 2 Greedy-Chomp(U)

repeat

expand = false; F = 1
Calculate U+

F

while
(

∂Ψ(U,U+
F ) < 0 and F |U+| ≥ 1

)

do

F = F/2; Update U+
F

while
(

∂Ψ(U,U+
F ) > 0

)

do

expand = true

U = U ∪ U+
F .

Calculate U+
F ; F = 1

while
(

∂Ψ(U,U+
F ) < 0 and F |U+| ≥ 1

)

do

F = F/2; Update U+
F

contract = false; F = 1
Calculate U−

F

while
(

∂Ψ(U,U−
F ) < 0 and F |U−| ≥ 1

)

do

F = F/2; Update U−
F

while
(

∂Ψ(U,U−
F ) > 0

)

do

contract = true

U = U \ U−
F .

Calculate U−
F ; F = 1

while
(

∂Ψ(U,U−
F ) < 0 and F |U−| ≥ 1

)

do

F = F/2; Update U−
F

until (expand = false and contract = false)

contain some seed. Alternatively, we could run another
clustering algorithm to generate an initial seed and just
use our greedy algorithms as a refinement.

In general, we use dP as the objective function, but
it is more prone to getting stuck in local maxima than
is M. Thus we enhance each initial seed by running
the expansion phase of the algorithm with M2 since it
closely approximates dP as shown in Figure 2.

Since our emphasis is on the discrepancy measure-
ment rather than clustering technique, we focus on il-
lustrating that these simple clustering techniques based
on Poisson discrepancy find locally significant clusters.

4.2 Complexity. It is difficult to analyze our algo-
rithms precisely because they may alternate between
the expansion and contraction phases many times. But
Theorem 4.1 shows that this process is finite, and we
notice that relatively few contraction steps are ever per-
formed. Hence we focus on analyzing the worst case of
the expansion phase in both algorithms.

Both algorithms are output dependent, where the
runtime depends on the size of the final subset |VZ | and
the size of its neighborhood |N(VZ)|.

For Greedy Nibble we can maintain N(VZ) and
calculate v+ in O(|N(VZ)|) time since dP only depends
on the number of edges and KVZ

. Thus the algorithm
takes O(|VZ |·|N(VZ)|) time for each seed since v+ needs

to be calculated each iteration.
The Greedy Chomp algorithm could revert to the

Greedy Nibble algorithm if F is immediately reduced
to 1/|U+| at every iteration. So worst case it is no
faster than Greedy Nibble. In fact, each iteration takes
O(|N(VZ)| log |N(VZ)|) time because the ∂Ψ(U, v) val-
ues are sorted for all v ∈ U+. However, in practice,
a much smaller number of iterations are required be-
cause a large fraction of vertices are added at each
iteration. If F were fixed throughout the algorithm,
then we can loosely bound the runtime as O(log |VZ | ·
|N(VZ)| log |N(VZ)|). Since F is generally large when
most of the vertices are added, this is a fair estimate of
the asymptotics.

This analysis is further evaluated empirically in
Section 6.

5 Bipartite Extensions.

Many data sets which are applicable to this model (see
Section 6) are bipartite graphs. Thus we derive here the
key bipartite extensions of section 2 and section 3.

An undirected graph G = (V,E) is bipartite if there
is a partition V = X ∪ Y with X and Y disjoint and
E ⊆ {{u, v}|u ∈ X, v ∈ Y } . A cluster is defined as a
subgraph Z = (VZ , EZ) = (XZ∪YZ , EZ). The bipartite
version of the Poisson random graph model does not
allow self-loops and the total number of observed edges
in G is c(G) =

∑

vi∈X ki =
∑

vj∈Y kj . The bipartite
version of the local modularity and Poisson discrepancy
follow naturally.

6 Analysis.

This section focuses on empirically exploring four as-
pects of this work. First, we investigate the power and
runtime of our algorithms. Second, we use Poisson dis-
crepancy as a tool to evaluate and compare different
clustering algorithms. Third, we investigate proper-
ties of the clusters found by our algorithms maximizing
Poisson discrepancy. Specifically, we show that vary-
ing the γ parameter can give reliable estimates of the
size of clusters and we examine cases when distinct rel-
evant clusters overlap. Finally, throughout this analysis
we demonstrate that maximizing Poisson discrepancy
reveals interesting and relevant clusters in real-world
graphs.

6.1 Performance of Our Algorithms.

Runtime on Real-world Datasets. We demon-
strate the effectiveness of our algorithm on a variety of
real world datasets, the sizes of which are summarized
in Table 1.

The DBR dataset describes connections between
threads (the set X) and users (the set Y ) of the
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Duke Basketball Report message board from 2.18.07
to 2.21.07. Other datasets include Web1 which links
websites and users, Firm which links AP articles and
business firms, Movie which links reviewers and movies
through positive reviews, and Gene which links genes
and PubMed articles. In each case, high discrepancy
clusters can be used to either provide advertising focus
onto a social group or insight into the structure of the
dataset.

Dataset |X| |Y | |E| Nibble Chomp

DBR 68 97 410 0.025 0.018
Web 1023 1008 4230 0.179 0.049
Firm 4950 7355 30168 9.377 0.251
Movie 1556 57153 1270473 - 32.91
Gene 6806 595036 1578537 - 242.7

Table 1: Sizes of real-world datasets and the average
runtime in seconds for the Greedy Nibble and Greedy
Chomp algorithms starting with singleton seeds. Run-
times for Web and Firm were generated with 100 random
samples. Runtimes for Movie and Gene were generated
with 50 random samples.

Power tests. The power of the test is the prob-
ability that the test statistic exceeds a critical value
under some alternative hypothesis compared to some
null hypothesis [19]. To calculate the power of our algo-
rithm, we synthetically insert significant clusters into
100 random graphs and report the fraction of these
graphs where our algorithm found the injected cluster.

In particular, we generate bipartite graphs using the
Poisson random graph model such that |X| = |Y | = 100
and |E| = 500 where the expected degrees of vertices
vary between 3 and 7. To inject a significant cluster,
we choose a random set of vertices VZ = XZ ∪ YZ ,
where XZ ⊂ X, YZ ⊂ Y , and |XZ | = |YZ | = 15. We
increase the probability that an edge is chosen between
two vertices in XZ and YZ by a factor of ρ. We scale
the probabilities on the other pairs of vertices in the
graph so that each vertex retains its original expected
degree. By choosing an appropriate value of ρ, we can
generate graphs with the same expected degree sequence
and whose injected cluster is expected to be significant.
We repeat this process until we generate 100 graphs
whose injected clusters have a p-value less than 0.005.

We run Greedy Nibble and Greedy Chomp using
each vertex as a seed. We say that we successfully found
the injected cluster Z induced by VZ = XZ ∪ YZ if the
algorithm returns a cluster Ẑ = XẐ ∪ YẐ such that
d(XẐ , XZ) ≤ |XZ | and d(YẐ , YZ) ≤ |YZ | and it either

1We thank Neilsen//Netratings, Inc., who provided the WEB

dataset to us, for permission to use its data in this investigation.

has p-value less than 0.05 or is among the top 5 clusters
found.

We report the power of the algorithms in Table 2.
It shows that 85% of the time Greedy Chomp locates
the injected clusters. Note that we have used a relaxed
criteria to determine when an injected cluster is found
by our algorithm; a tighter qualification would reduce
this power measurement.

Algorithm Nibble Chomp
Power 0.83 0.85

Table 2: Power for Greedy Nibble and Greedy Chomp
tested on graphs of size 100×100 with an injected cluster
of size 15 × 15 with p-value at most 0.005.

6.2 Algorithm Comparison. Poisson discrepancy
provides an absolute measure of cluster significance.
This allows comparison between different clusterings
of the same graph. We can evaluate the effectiveness
of existing clustering algorithms by calculating the
discrepancy of the clusters they find. Furthermore,
we can enhance these clusters using Greedy Nibble
or Greedy Chomp to maximize their discrepancy and
evaluate how far from the local optimum these clusters
used to be. We illustrate this by running the MCL
algorithm [41] and the Ncut algorithm [40] on DBR.
MCL generated 35 clusters and we fixed the number
of clusters in Ncut to be 10. We report the top 4
clusters with the highest dP value in Table 3. Ncut
seems to find clusters with higher discrepancy. We then
use clusters found by MCL and DBR as seed sets in
the Greedy Chomp, further refining them in terms of
their discrepancy. Ncut tends to do better than MCL
in finding clusters within closer proximity of discrepancy
local maxima.

MCL 0.0376 0.0248 0.0223 0.0211
MCL+Chomp 0.0667 0.0790 0.0620 0.0698

Ncut 0.0692 0.0529 0.0527 0.0473
Ncut+Chomp 0.0757 0.0688 0.0635 0.0713

Table 3: dP values of top 4 clusters found with MCL and
Ncut on DBR and the dP values after their refinement
with Greedy Chomp.

6.3 Cluster Properties.

Cluster Overlap Analysis. Many graph cluster-
ing methods partition the data into disjoint subsets, es-
sentially making each a cluster. Our approach finds
clusters which may overlap, and it considers the rest of
the graph uninteresting instead of forcing it to be a clus-
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ter. We examine the top 6 clusters found from Greedy
Nibble on DBR in an overlap matrix (Table 4). We
use each vertex in X as a singleton seed set. The 1st,
2nd, 3rd and 5th clusters are very similar, representing
a consistent set of about 13 threads on topics discussing
the performance of players and strategy. The 4th clus-
ter contains 14 threads which were posted by users who
seem more interested in the site as a community and are
more gossiping than analyzing. The 6th cluster contains
an overlap of the above two types of topics and users:
users who are interested in the community, but also take
part in the analysis. The rest of the threads (about 60)
deal with a wider and less focused array of topics.

C 1 2 3 4 5 6 dP p-value
1 13 12 12 1 12 8 0.0783 0.009
2 12 12 11 1 12 8 0.0764 0.019
3 12 11 14 0 11 7 0.0754 0.020
4 1 1 0 14 1 6 0.0749 0.020
5 12 12 11 1 13 8 0.0718 0.022
6 8 8 7 6 8 16 0.0703 0.077

Table 4: Overlap of threads among the top 6 clusters for
DBR with their dP and p-values found with the Greedy
Nibble algorithm.

γ as a Resolution Scale. For our algorithm, as γ
varies, we observe an inverse linear correlation between
γ and the average cluster size (Figure 3). We also show
that as γ varies, our algorithm locates clusters that are
statistically significant on different scales, and that their
contents remain meaningful.

This near-linear correlation makes γ a reliable res-
olution scale for our clustering algorithm. As γ goes to
0, the algorithm produces the whole graph as a cluster.
As γ goes to infinity, the algorithm produces trivial sin-
gletons. The flexibility to modify γ allows a user to bal-
ance the importance of the statistical significance of the
clusters found, maximized by dP,γ , and their preferred
size weighted by γ. This helps resolve issues (previ-
ously noted about modularity by [17]) about the pre-
ferred size of clusters which optimize dP . For instance
when searching for more focused clusters of smaller size,
a reasonable γ weight can be easily inferred.

Cluster content and γ. Manual evaluation of the
results show that the contents of the clusters remain
meaningful and useful as γ is varied. For example, the
top clusters found on the Movie dataset with γ = 200 are
shown to be popular box office movies in the 90’s as they
are consistently reviewed favorably by various reviewers.
The top two clusters found on the Gene dataset with γ =
200 are genes in the UDP glucuronosyltransferase 1 and
2 family. The 4th ranked cluster consists of genes such
as MLH and PMS, both are related to DNA mismatch
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Figure 3: Plot of 1/γ vs. average cluster size on Web

(top left), Firm (top right), Movie (bottom left), and
Gene (bottom right).

repair. The 8th ranked cluster for γ = 200 persists
as the top ranked cluster when γ = 600; it consists of
several genes for the zona pellucida glycoprotein, i.e ZP1
and ZP3A.

As γ increases, the nontrivial clusters with a high
dP,γ-discrepancy should generally be much denser inter-
nally, since the ratio between the actual internal edges
and expected edges should be greater than a given γ. On
the other hand, clusters which persist as the top ranked
clusters as γ increases are those that are most statisti-
cal significant in a dynamic setting. As γ increases, we
would expect the number of such extremely anomalous
clusters to decrease. For example, as shown in Figure 4
for the Web data set, as γ increases, the number of out-
lier clusters with comparatively very large discrepancy
decreases. For γ = 4, many clusters seem to be sig-
nificantly larger than the large component, while with
γ = 6 and γ = 8 there are very few. Finally, with γ = 10
all clusters are basically in the same component.

The identification of clusters of varying size but
consistently high statistical significance suggests that
real-world networks are characterized by many different
levels of granularity. This result is consistent with, e.g,
the contrasting findings of [37] and [31], where clusters
of vastly different sizes but comparable modularities are
detected in the same data set. This finding calls into
question the wide variety of clustering methods which
are only designed to detect one cluster for a given region
or group of nodes, and a further study would be of
interest.
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Figure 4: Web: cluster rank vs. cluster discrepancy
with each X vertex used as a singleton seed set, γ = 4
(top left), γ = 6 (top right), γ = 8 (bottom left),
γ = 10 (bottom right). Top ranked clusters appear at
the bottom right of each figure.

7 Conclusions.

The main contribution of this paper is the introduction
of a quantitative and meaningful measure, Poisson dis-
crepancy, for clusters in graphs, derived from spatial
scan statistics on point sets. According to our defini-
tion, the higher the discrepancy, the better the cluster.
We identify interesting relations between Poisson dis-
crepancy, local modularity, and Bregman divergences.

To illustrate the usefulness of this statistic, we de-
scribe and demonstrate two simple algorithms which
find local optima with respect to the spatial scan statis-
tic. In the context of real-world and synthetic datasets
that are naturally represented as bipartite graphs, this
method has identified individual clusters of vertices that
are statistically the most significant. These clusters are
the least likely to occur under a random graph model
and thus best identify closely-related groups within the
network. Our model places no restrictions on overlap-
ping of clusters, thus allowing a data point to be clas-
sified into two or more groups to which it belongs. As
our greedy algorithms are the simplest and most intu-
itive approach, it remains an open problem to find more
effective algorithms to explore the space of potential
subgraphs to maximize the Poisson discrepancy. Notice
that Poisson discrepancy can also detect regions that
are significantly under-populated by requiring p < q in
the alternative hypothesis.

Similarly the spatial scan statistic Bernoulli model

for graph clustering can be derived from the correspond-
ing model for point sets. However, this model requires
that each potential edge be chosen with equal probabil-
ities, regardless of the degree of a vertex. Also, under
this model each pair of vertices can have at most one
edge.

In summary, we argue that a graph cluster should
be statistically justifiable, and a quantitative justifica-
tion comes from a generalization of spatial scan statis-
tics on graphs, such as the Poisson discrepancy.
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