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Abstract—Machine learning algorithms have been used for
predicting different risks — financial, medical, and legal — and
have been argued to perform more efficiently than human
experts. However, this exclusive focus on accuracy can be at
the cost of the algorithms discriminating against people due
to their age, gender, or race, since accuracy could work in
opposition to equity. The challenge is that equity and fairness
are innately human values that evolve as societies evolve, making
it hard to represent them mathematically. Therefore, we propose
a framework for including less biased human experts in the
algorithm’s prediction loop to improve equity and maintain
accuracy. In two field studies, one in the legal domain and the
other in credit risk, we utilize publicly available datasets to obtain
baseline measures of fairness. Subsequently, we obtain human
input, which are used to debias the algorithm. Utilizing less biased
human experts, as well as providing transparent and explainable
predictions, will help increase legal compliance and the trust of
various stakeholders in an organization.

Index Terms—Field Studies, Biases, Bias Mitigation, Case
Studies and Empirical Investigations, Psychology

I. INTRODUCTION

Risk prediction critically impacts people’s everyday lives,
which is crucial to many equity and fairness questions in
loan approval, criminal justice, and clinical treatment: Will a
consumer receive a line of credit? Will a defendant be denied
a favorable sentence? Will a patient be given a life-saving
treatment? Quantitative models have been used historically for
predicting risks and have been argued to perform better than
human experts [1]-[4]. The main objective of risk prediction
models has been to determine risks accurately, e.g., predicting
as accurately as possible whether a borrower will default
on payment or a defendant will re-offend. However, this
exclusive focus on accuracy has largely ignored the cause of
equity, especially with the wider use of machine learning (ML)
models for risk prediction that are optimized to achieve high
levels of accuracy [5]-[10]. The strength of ML models and
the reason for their wider adoption is their ability to identify
patterns in the existing data to make accurate risk predictions.

This strength becomes a weakness when existing data
include historic human biases, such as race, gender, age,
or income-based biases. ML models, unfortunately, represent
these biases as relevant rules that humans utilize in their
decision-making processes, which leads to a cycle of discrim-
ination, in which models learn biases from past human deci-
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sions, and themselves make inequitable predictions. Recently,
evidence has emerged that enhancing accuracy comes at the
cost of equity [11]-[18]; models end up discriminating against
people due to their age, gender, or race, since accuracy could
work in opposition to equity [19]-[21].

To address the challenge of balancing accuracy with equity,
we propose an interdisciplinary framework that includes input
from human domain experts in the algorithmic prediction loop
to reduce bias in risk prediction. We use an explainable,
rule-based model in risk prediction because it is important
that predictions should be transparent, especially in the legal
and financial domain in which decisions significantly affect
people’s every day lives. We depart from approaches that
use purely mathematical tools [15], [22], [23] to improve
equity and maintain accuracy in risk predictions. We argue that
human experts are needed because equity and fairness are in-
nately human conceptions. Moreover, equity reflects evolving
societal values — e.g., female participation in the workforce,
gay rights, social justice — that societies are continuously
redefining. Therefore, input from humans identified as less
biased but experts in their domain can help identify and reduce
algorithmic bias. Since they are experts in their domains, they
would also ensure that the accuracy of the model is not greatly
affected while helping reducing any bias in the algorithmic
output. In our proposed approach, the input variables are
processed to generate decision rules that help determine which
variables are considered most impactful by the model. These
rules are then provided to unbiased (or, more accurately, less
biased) human experts to check whether the rules are fair and
accurate. The input from these human experts are then used
to update the rules. Unlike a preprocessing step in which the
actual input variables are reweighed or relabeled, our approach
first analyzes the input to generate decision rules, which are
then updated by incorporating human input. Hence, the human
expertise is used as an in-processing step in debiasing. If it is
identified that an ML model is discriminatory, then technical
debiasing procedures are possible at the preprocessing, in-
processing, or postprocessing stages. In line with recent calls
for human-centered artificial intelligence, which argue that
algorithmic methods of debiasing can adversely affect other
performance measures and human-in-the-loop debiasing may
be a way to address such a technical limitation [24], we



propose to debias ML models by using human input.

Analogous to using adversarial learning as an in-processing
debiasor [25] in which the discriminator network checks not
only for accuracy but also for the fairness of the generator
network’s output, we use human experts to update the algo-
rithm’s output (which, as we describe later, is in the form of
decision rules obtained after processing the input variables)
for accuracy and equity. In two empirical examinations, one
using financial data and the other criminal justice data, we
demonstrate that using less biased human experts’ input could
reduce bias in a rule-based ML model. Importantly, regulations
designed to protect consumers from model-based predictions
mandate human involvement in mitigating inequity, making
our method more aligned with changing regulatory and com-
pliance requirements [15], [22], [23], [26]-[29]. Moreover,
regulations ask for transparency in predictions. Since it is
difficult to achieve transparency with black-box risk predic-
tion models, we will employ explainable ML models whose
decisions can be understood, and hence, are amenable to input
from human experts.

In two field studies, we follow the same procedure of
obtaining baseline accuracy and equity measures using an
explainable prediction model. Then, we obtain input from less
biased human experts, e.g., loan officers and legal experts
through detailed questionnaire-based profiles created by the
algorithm. Finally, the input from less biased human experts
were used, as an in-processing procedure, to update model
predictions. To preview the conclusion, we find that using
human input helps make the ML models more equitable.
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Fig. 1. A framework for identifying less biased human experts and incorpo-
rating their input in risk prediction models to balance accuracy and equity.

Our proposed work forms a crucial part of a general

framework for identifying less biased human experts and
incorporating their input into risk prediction models to balance
accuracy and equity, as illustrated in Fig. 1. First, we propose
ways to identify less biased human experts who can make a
ML model more equitable. Via field studies, less biased human
experts will be identified based on quantifiable psychological
traits. Second, we incorporate the input of less biased human
experts into an explainable, ML model for accurate and
equitable decision-making. Third, we evaluate our framework
by running multiple field studies using publicly available
datasets in the legal and financial domain with evidence of
success, which is the main focus of this research. For future
work, our study establishes a foundation for collaborating
with nonprofit organizations to increase equitable outcomes
for unrepresented defendants in cases such as debt collection,
small claims, or protective orders; and with for-profit financial
services to increase equitable outcomes for credit underwriting
and consumer loans. Less biased legal and financial experts
can be identified through the method we describe, and their
input can be used to update decision rules to provide more
equitable outcomes. Our work could also provide organiza-
tional guidelines for developing and implementing fair ML
models and managing both employee adoption and customer
trust within these models.

II. BACKGROUND AND MOTIVATION

Humans as debiasing agents. In using human input to debias
a ML model’s output, we follow a long tradition of using
human judges, also referred to as human-in-the-loop (HITL),
as debiasing agents [14], [24], [30]. The HITL literature has
demonstrated that humans, lay and experts, can update ML
models by providing crucial input for different processing
stages as we see in ML models for assisted driving, chatbots,
robots, medicine, etc. [31]-[33]. We contribute to research
in developing fair ML models by proposing that equitable
predictions can be made by identifying less biased human
experts using psychological traits since ethics, fairness, and
equity are innately human values. Since it is difficult to state
that any human is unbiased and biases are implicit, throughout
this research, we use the term less biased human experts by
identifying and treating levels of bias on a continuum. Unlike
technical solutions that rely on mathematical tools alone to
correct the system, our research contributes by leveraging
human input to update an ML model. Therefore, we propose
that human expert inclusion is needed to balance accuracy and
equity risk because the lack of equity (or bias) is learnt by
the model from past biased human decisions. If the humans
providing the decisions make errors, then complex statistics
is needed to overcome such errors because human error is
not driven by random noise but due to some systematic
reason [34]. In the case of data that is biased against certain
groups, a systematic reason is prejudice. Such systematic
reasons introduce bias in risk predictions. Technical solutions
depending on mathematical tools alone would be ill-equipped
to train ML models to be equitable - an innately human
conception that reflects changing societal values. However,



assuming expertise to be a sufficient feature could result in
including harmful biases in a process that is supposed to debias
the system.

Identifying less biased human experts. By the very fact that
biases are human, they also vary from one individual to an-
other. Moreover, it has been documented that police use racial
profiling in drug arrests [35], and judges and prosecutors apply
sentencing guidelines differently to nonwhite defendants [36].
Therefore, we employ psychological measures to identify less
biased human experts and use their input to debias the ML
model. For instance, two credit underwriters can be compara-
ble in financial expertise but different in terms of the biases
they may hold implicitly, e.g., the attitudes they have toward
members of a specific group may differ. Since these attitudes
are not considered directly relevant for their financial expertise,
they are ignored in training the ML models. However, these
very attitudes cause biased decisions [37]-[39]. To address
such a challenge, less biased human experts are needed to
correct the sources of inequity in models. Moreover, findings
have demonstrated that purely algorithmic solutions to increase
fairness could result in lowered accuracy [24]. Instead, we
obtain both accuracy and equity ratings from human experts.
Using personality traits to identify less biased experts.
We use innate psychological traits of humans to identify less
biased experts. Formally, traits are quantifiable, psychological
characteristics, e.g., conscientiousness, impulsivity, frugality,
which remain stable over time and reliably predict human
motivations and behaviors [40]. Psychological traits can cause
one to perceive others differently, given the same information.
Personality research has extensively demonstrated that the
traits of decision-makers influence whether their decisions are
biased or not. In field study 1, we utilize the trait of openness
to experience (or simply, openness) and in field study 2, we use
the trait of need for cognition, to identify less biased human
experts [41], [42].

A. Openness to Experience

First, we hypothesize that using the input of a high
openness human expert would enhance equity in risk pre-
dictions. Openness indicates a personality trait of an individual
who is willing to make adjustments to existing attitudes and
behaviors in response to new ideas, prefers novelty and variety,
and is curious, cultured, creative, and less risk-averse [42].
Openness is one of the facets of the Big Five Personality
Inventory [43] and has been documented to reduce bias.

Stereotypes have been defined as specific beliefs about a
group [44]-[46]. Negative beliefs, referred to as biases, have
been shown to automatically affect subsequent behavior when
certain group information is activated in one’s mind [39].
When human experts are high on openness, they are willing to
accept stereotype-disconfirming evidence, e.g., by associating
Blacks with positive descriptions. They also refrain from in-
voking negative group stereotypes [42]. Such openness makes
them less likely to use stereotypic associations during their
decision-making process, making them less likely to display
sexism, racism, ableism, classism, homophobia, transphobia,

and xenophobia, resulting in fairer decisions. The 10 scale
items associated with openness, e.g., “I see myself as someone
who is original, comes up with new ideas”, or “I am curious
about many different things” [43], have been shown to reliably
measure the trait. Our field study 1 uses the trait of openness
to identify less biased human experts.

B. Need For Cognition

Need for cognition (NFC) is a trait that reflects the extent to
which individuals are inclined to embrace effortful cognitive
activities [47] and has been widely used in psychology [48].
High NFC individuals invest more effort to process the avail-
able information compared to low NFC individuals [49]. In
field study 2, we measure NFC using participants’ responses
to 18 scale items proposed by Cacioppo et al. [49], such as
whether people agree that the statement “I find satisfaction in
deliberating hard and for long hours” describes them well or
not. The responses are obtained on a scale from —4 to 4 (—4
being strongly disagree and 4 being strongly agree). Pertinent
to bias-detection, low NFC individuals are said to be more
likely to use stereotypic information because it is less taxing
to use group membership as a decision shortcut [41], [50].

III. METHOD

We utilize explainable models in our proposed framework,
given the requirement by both regulatory bodies and industry
to explain decisions made by ML models [51]-[53]. People
receiving a prediction expect an explanation of how the
decision was reached, especially when there is the potential
for harm to protected groups. Some have argued that black box
ML models, such as deep neural networks, should be avoided
and replaced by models that are inherently interpretable in
high-stakes decisions, such as financial risk, healthcare, and
criminal justice [54]-[56]. Black box ML models that do not
explain their predictions in a human interpretable way [56]
have led to severe consequences [57], such as incorrectly
denied loans and paroles [54], [55], [58]. Instead of creating
methods to explain these black box ML models, a feasible way
to obtain transparency is to use ML models that are inherently
explainable [56], such as linear regression, logistic regression,
decision tree, decision rules, RuleFit, and naive Bayes.

We use RuleFit [59] as a baseline system in our research,
since it provides reasons for its predictions in the form of
decision rules. RuleFit is an explainable ML model that
processes the input variables to generate decision rules. These
rules are then provided to less biased human experts to obtain
their input as to whether they are fair and accurate (or not).
The input from these human experts is used to update the rules.
Unlike a preprocessing step in which the actual input variables
are reweighed or relabeled, our model first analyzes the input
to generate decision rules that are then updated. Hence, human
expertise is used as an in-processing step in debiasing an
ML model. The main idea is to compare rankings of rules
based on human-estimated risk and ML model-estimated risk
and to use their difference (referred to as delta ranking) as a
regulatory term in RuleFit; see Fig. 3.



A. Prediction and Decision Rules of RuleFit

RuleFit belongs to a class of ensemble learning algorithms
known as prediction rule ensembles. It aims to optimize
accuracy as well as explainability by creating ensembles
with a small number of simple trees or rules; it also comes
with efficient implementations [60]. RuleFit combines the
predictions of multiple simple prediction functions to make
a final prediction. It consists of a two-step procedure: the
first rule genmeration step creates rules from decision trees
(i.e., tree ensembles produced by bagged ensembles, random
forest, gradient boosting, etc.), and the second rule fitting step
fits a linear model (such as Lasso) with the original features
and the new rules as input [61].

Fig. 2. A tree-based description of how RuleFit works with two variables.

During rule generation, RuleFit generates new rules (or fea-
tures) from decision trees by transforming each path through
a tree into a decision rule by combining the split decisions
into a rule. Fig. 2 explains this using a simple example of
loan approval based on two input features, gender (x1) and
credit score (x2). The decision trees in Fig. 2 are trained
to predict the outcome variable loan approval. The trees
show original features as well as their interaction. Four rules
(features), 71, 72, 3, and 74, are generated. 1 captures whether
the applicant is female or not: IF applicant = female
then r; = 1 ELSE r; = 0. r3 captures the interaction
between being female and having a credit score more than 650:
IF applicant = female AND has credit score
> 650 THEN r3 = 1 ELSE 73 = 0. The collection of
all such rules derived from all of the trees constitutes a rule
ensemble [59].

During rule fitting, the rule ensemble is used in prediction
models such as Lj-regularized regression or Lasso. This
procedure is similar to stacking [62], [63], with the important
difference that the members of the ensemble are not learned
decision trees or other predictors, but individual rules extracted
from trees.

B. Incorporating Traits to Debias Rulefit

To incorporate traits into RuleFit for debiasing, we follow
the procedure illustrated in Fig. 3. The two-step procedure
of RuleFit provides a set of decision rules that are (Fig. 3a)
transparent; one can see what rules RuleFit is mainly basing
its predictions on and allows using the input of less biased,
human experts to increase equitable risk predictions.

RuleFit Human Experts

Human
Interpretable
Rules

Delta Ranking
AR = Rankg - Ranky

Human Ranking
Rank g

Empirical Ranking
Rankpg

@

o

RuleFit
Fig. 3. An illustration of how one debases RuleFit with delta ranking.

For instance, in financial risk prediction as in field study 1,
rules learned by RuleFit are converted to borrower profiles and
shown to loan officers or credit underwriters. Using the rule:
being male, less than 24 years and with no
bank account, the human expert predicts default risk (i.e.,
risk of not paying back a loan).

Based on the human expert’s response, we capture an
expert’s assigned predictive importance to this rule, giving rise
to a ranking of rules based on human input, referred to as the
human ranking, denoted as Rankpy (Fig. 3b). RuleFit on its
own also assigns importance to each rule, referred to as the
empirical risk, which gives rise to an empirical risk ranking
of the rules (empirical ranking), denoted as Rankg (Fig. 3c).
For loan approval, this risk captures default risk of borrowers
within the subpopulation defined by the rule. Finally, we
define delta ranking [32] AR = min(Rankg — Rankp),
which measures the minimum disagreement between human
experts and the baseline model (RuleFit) using empirical
data. We incorporate bias-corrected human input into RuleFit
(Fig. 3d) by identifying rules where Rankp and Rankp



converge - when human experts and the model have the least
disagreement (when their difference is minimized).
Mathematical formulations. Similar to other ensemble learn-
ing methods such as bagging predictors [63] and random
forests [64], RuleFit [61] takes the form

M
F(X) = ag + Z amfm(x)>

where M is the size of the ensemble, f,,(x) is a base learner
(i.e., a different function of the input variables x derived from
the training data). Ensemble predictions F'(x) are taken to be
a linear combination of the predictions of each of the base
learners, with a,, being the parameters specifying the linear
combination. During rule fitting, given a set of base learners,
a., are estimated as a,, by a regularized linear regression on
the training data {x;,y;},

N M
{dm}éﬂ =arg {mi?M Z L <yi, ag + Z A, frm (xz)>
e m=1

mJo =1
M

FA D Jam (1)
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The first term in Eqn. 1 measures the prediction risk on the
training data, L is the loss function, and the second term (a
regularization term) penalizes large values for the coefficients
of the base learners. To incorporate human input to RuleFit,
AR can be used to replace the regularization term in Eqn. 1 as
A Z%:l AR |ay,|. To obtain human ranking (Rankg), let n
be the number of human experts, R¥, the importance assigned
by a human expert & to rule m, and P}, an aggregate measure
of human bias k. Then an aggregate importance R,, assigned
to rule m across n experts will be estimated as in Eqn. 2,

1 n
R,=-Y R xP,. 2
n; kX D 2)

If values of Py are inversely related to bias (e.g., openness
to experiences is low among racially biased individuals), then
the above equation assigns less weight to biased humans and
provides a bias-corrected value of R,,. When identifying bias
through traits such as openness, need for cognition, or racism,
Py, will be assessed on a continuous scale.

IV. FIELD STUDIES

We next conducted two field studies, each consisting of
three stages, as described in Sect. IV-A and Sect. IV-B
respectively.

A. Field Study 1: Fair ML Model for Recidivism Prediction

Stage 1: Obtain Baseline Fairness Measures and Generate
Human-Interpretable Rules: Stage 1 has two distinct goals:
first, to obtain empirical risk and baseline fairness mea-
sures of the ML model without any input from human
experts (Fig. 3c); second, to generate rules that can be
given to human experts to obtain their input (Fig. 3a).

ML models are routinely employed to predict defendant’s risk
of recommitting a crime. We used a dataset associated with the
COMPAS tool, used since 2000, and from a database of 2013-
2014 pretrial defendants from Broward County, Florida [9],
[16]. Past research has documented significant racial bias in
ML predictions made using this dataset [9], [65], [66]. This
dataset was randomly divided into 75% training and 25% test
sets. To keep the number of rules human interpretable, we
used features of the defendants as predictors: race (Black vs.
White), gender (male vs. female), age (below a median age of
31: yes vs. no), prior convictions (less than a median count of
2: yes vs. no), and charge type (misdemeanor vs. felony). The
outcome variable was the recidivism risk, that is, a defendant’s
probability of committing a misdemeanor or felony within 2
years.

We employed a gradient boosting machine (GBM) model to
build 500 decision trees with an interaction depth of 4 on the
training dataset. We then used RuleFit to transform these trees
into a Boolean sparse matrix of rules. Each new rule represents
an interaction of original features. For instance, one rule iden-
tified by RuleFit as a predictor of recidivism was Age below
31 = yes AND two or more prior convictions
= Yes. These newly generated rules were used as input
features in a Lasso regression model to select the most
important ones for predicting recidivism risk. Our analysis
yielded the most important 8 rules, and their importance was
captured by their empirical risk, i.e., the recidivism rate of
defendants within the subpopulation defined by a rule. Pre-
dicting empirical risk using the 8 selected rules as predictors
on the test dataset achieved an AUC-ROC (Area Under The
Curve and Receiver Operating Characteristics) of 0.69, which
was close to the 0.7 AUC-ROC value, the model performance
measure, achieved in previous work using all the features of
the COMPAS dataset [16].

We obtained baseline fairness measures without the input
of human experts and calculated Statistical Parity Difference
(SPD) and Disparate Impact (DI) [15], [67]-[69]. According to
SPD, a prediction system is unbiased if it classifies the same
proportion of individuals from privileged (e.g., Whites) and
unprivileged (e.g., Blacks) groups as positive (e.g., not going
to recidivate). If there is a disparity between the groups, then
SPD is less than zero, which suggests inequity in predictions
for the unprivileged group. DI compares the proportion of
individuals in the unprivileged group who received a favorable
prediction to the proportion of individuals in the privileged
group who received a favorable prediction. As per DI, the
positive prediction for any unprivileged group should be at
least 80% of the rate for the privileged group. SPD was —0.37
and DI was 56%, indicating that the baseline AI system held
significant bias against Black defendants. Among many equity
measures, our use of SPD and DI is based on consultations
with our for-profit and nonprofit collaborators.

Stage 2: Using Field Studies to Identify and Obtain input
From Less Biased Human Experts: In Stage 2, we conducted
a field study to identify and obtain recidivism risk pre-
dictions from less biased human experts (IRB 00134035)



(Fig. 3b). The 8 rules derived from Stage 1 were used to
develop defendant profiles. Participants with prior experience
serving as jurors on a criminal trial were recruited by the
online panel provider Cint using its advanced prescreening
procedure for $4.20 per participant. Only the final sample of
100 participants who had passed each of the attention checks
took part in the field study. The median age of participants
was 40.5 years, with 47% female; 68% White, 11% African
American, and the rest Asian, Pacific islander and Hispanics.
Their education levels ranged from high school diplomas to
doctoral degrees with a majority (34%) of them having a 4-
year college degree.

Participants were first provided with the definitions
of various criminal justice terms (e.g., felony, defendant,
conviction, misdemeanor, risk), and saw the defendant profiles
only after passing the quiz on these terms. Each participant
saw 8 defendant profiles, randomly presented, that captured
each of the 8 rules identified in Stage 1. For example, one rule
Gender = Male AND Age below 31 = yes AND
two or more prior convictions = Yes AND
type of crime charged = felony was converted as
the following defendant profile: “The defendant is male and
younger than 31 years. He has been charged with felony. He
has been convicted of two or more prior crimes.” After seeing
each profile, participants ranked recidivism risk: “What is
the risk of this defendant committing another crime within 2
years?” on a 1 (No Risk) to 5 (Extremely High Risk) scale.

Finally, we measured the participants’ personality traits with
respect to openness by asking them to rate 10 scale items
associated with openness [43] on a 1 (strongly disagree)
to 5 (strongly agree) scale. Higher average response values
indicated more openness, and hence, less racial bias. As
described in Eqn. 2, the openness value of each participant
was multiplied with their respective recidivism risk predictions
for each defendant profile. For each profile, the weighted
recidivism risk assessment across participants was averaged
providing an estimate of R, for rule m as per Eqn. 2 where
lower weight is given to racially biased human experts. Since
each profile was based on one of the 8 rules, it allowed us
to rank which rules participants have found to be most (or
least) predictive of recidivism risk. This is the value of Rankpy
described in Fig. 3.

Stage 3: Incorporating input of Less Biased Human
Experts to Debias a Risk Prediction Model: Stages 1 and
2 yield two rankings of rules in terms of their influence on
the outcome variable: risks assessments with and without
human expert input. In Stage 3, we combine empirical
and human risk assessments to make risk prediction
model equitable (Fig. 3d). Following Fig. 3, we estimated
the delta ranking AR and found the closest convergence,
i.e., the least disagreement between human risk ranking and
empirical risk ranking, for the two rules: Age below 31
= yes AND two or more prior convictions =
Yes, and Race = White AND two or more prior
convictions = No. Human experts ranked the first rule
as 4*" and the second rule as 5'". Empirical risk estimated

by RuleFit ranked them 6" and 37?, respectively. Using
these two rules as input features, we predicted recidivism
on the test data. We obtained an AUC-ROC of 0.64. To
assess fairness with human experts input, we calculated SPD,
which was —0.16 and DI was 81.18%. These values show
improvement over the baseline SPD = —0.37 and DI = 56%,
without human expert input, thus providing support for our
framework.

B. Field Study 2: Fair ML Model for Credit Risk Prediction

We conducted a second field study, using the same proce-
dure as the first field study, but in the context of credit risk
prediction, to test whether age was used to discriminate among
subpopulations. We used need for cognition to identify less
biased experts.

Stage 1: The credit risk dataset [70] was randomly divided
into 75% training and 25% test sets. The following features
of the borrowers were used as predictors: gender (male vs.
female) and age (above a median age of 24: yes vs. no). The
variables with yes vs. no values used were: home ownership,
foreign worker, delay in loan payment, guarantor, checking
account, employed, real estate ownership, more than 3 people
dependent on the borrower. The outcome variable was the
credit worthiness (yes vs. no). The same procedure (GBM
model and RuleFit and Lasso) was used to yield the most
important 4 rules. The importance of the rules was captured
by their empirical risk, i.e., the default rate of applicants within
the subpopulation defined by a rule. Predicting empirical risk
using all the 4 rules as input features on the test dataset
achieved an AUC-ROC of 0.69. Statistical Parity Difference
(SPD) was —0.60 and Disparate Impact (DI) was 0%, indicat-
ing that the baseline model held significant bias against young
applicants.

Stage 2: Our field study used the 4 rules from Stage 1
as borrower profiles. Loan underwriters were recruited by
Cint using its advanced prescreening procedure for $13.5 per
participant. The final sample consisted of 48 loan underwriters.
The median age of participants was 36 years, with 72.9% male,
77% White, 10% African American, and the rest were Asians,
Pacific Islanders, and Hispanics. A majority (77%) had a 4-
year college degree or higher. Each participant was shown
profile of borrowers and rated borrower’s credit risk using
a scale from 1 (No Risk) to 5 (Extremely High Risk). We
measured each participant’s need for cognition on 18 items
[43] using a 1 to 9 scale. Higher response values indicated
higher need for cognition, and hence, less bias toward any
group. As per Eqn. 2, the need for cognition value of each
participant was multiplied with their respective credit risk
predictions for each of the 4 borrower profiles. For each
profile, the weighted credit risk assessment across participants
was averaged, which provided an estimate of R,,, for rule m as
per Eqn. 2 where lower weight is given to biased underwriters.

Stage 3: Two rules, using rankings from Stages 1 and 2,
indicating the least disagreement between human risk ranking
and empirical risk ranking were used as input features to



predict credit risk on the test data and resulted in an AUC-
ROC of 0.67, a slight drop from AUC= 0.69 obtained in Stage
1. Updating with HITL input yielded SPD of —0.12 and DI of
80%, indicating improvement over the baseline SPD = —0.60
and DI = 0%, providing further support for our framework.

V. CONCLUSIONS AND IMPLICATIONS

Our findings across the two field studies using less biased
human experts to debias the ML algorithm demonstrate our
contribution, that is, developing fairer algorithms in order to
derive clear policy guidelines. Our field studies demonstrate
that using a glass-box model such as Rule-Fit allows users
to obtain insights into the model predictions, thus supporting
model refinement when the predications are unfair. In partic-
ular, we obtain human input (e.g., from credit underwriters or
legal experts) to debias the predictions of an ML algorithm. We
do not assume that all humans would be equally unbiased and
utilize psychological measures to identify less biased human
experts and obtain input from them. In summary, we present a
framework that utilizes less biased humans in the algorithmic
loop to make algorithmic predictions fairer. Our approach
is a deviation from the socioculturally-agnostic mathematical
abstractions that dominate the literature, by directly integrating
human feedback into the model-building process instead of
attempting to quantify fairness outright. Furthermore, our rule-
based approach may be useful in catching non-robust/spurious
rules generally, not just inequitable ones.

However, we acknowledge a few limitations in our frame-
work. We focus on Statistical Parity Difference and Dis-
parate Impact as our fairness metrics and propose that other
metrics (such as Equal Opportunity Difference or Average
Odds Difference) should also be calculated to evaluate the
algorithm’s outcomes. Based on the context and availability
of data, discussion on which metrics might be most suitable
at identifying bias should be a consideration. Moreover, many
of these metrics require the data to include protected attributes
(such as gender, race, or age) for their calculation. However,
many organizations remove these variables from their datasets
under the assumption that removing protected variables would
remove any potential bias. However, it has been shown that
algorithms have the ability to infer these protected attributes
from proxy variables and such a practice may result in
unfairness-by-unawareness. Finally, using psychological test-
ing to identify less-stereotypically-prone individuals may be
one part of the identification process. Other tests can also
be conducted or measures put in place so that individuals do
not fall prey to “system 1 biases (e.g., conjunction fallacy,
availability heuristics, etc.) that occur without one’s awareness
and can result in bias.

Our findings have several implications. Lack of equity in
prediction models is not just a modeling issue; it also has
important implications for society and organizations such as
business ethics [71] and corporate social responsibility. A
coalition of 200 CEOs from the world’s leading organizations
have argued that companies should be actively monitoring
the social impact of emerging Al systems to reduce the

influence of systemic social inequalities [72]. Attempts to
generate equitable risk predictions face several challenges [11]
because even now there is a lack of awareness in organizations
about equity issues related to prediction models. Employees
have limited time and resources to be devoted to developing
their own solutions to creating equitable ML models. Most
importantly, this lack of awareness results in employees not
being rewarded by the organization for working on equity
issues.

Therefore, the findings of our research help us address the
important policy implication of how algorithms can be trained
via human input to become less biased. It is an interesting
circle in which algorithms inadvertently learn biases from his-
torical social biases, i.e., past human biases, and we propose a
way of using less biased humans for debiasing the algorithms.
Our method is more adaptive because the definition of fairness,
an innately human conception, can change with time. Hence,
using humans in the algorithmic decision loop can improve
the fairness of ML algorithms according to the most recent
social definition of fairness.
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