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ABSTRACT

In nuclear engineering, understanding the safety margins of the nu-
clear reactor via simulations is arguably of paramount importance in
predicting and preventing nuclear accidents. It is therefore crucial
to perform sensitivity analysis to understand how changes in the
model inputs affect the outputs. Modern nuclear simulation tools
rely on numerical representations of the sensitivity information – in-
herently lacking in visual encodings – offering limited effectiveness
in communicating and exploring the generated data. In this paper,
we design a framework for sensitivity analysis and visualization
of multidimensional nuclear simulation data using partition-based,
topology-inspired regression models and report on its efficacy. We
rely on the established Morse-Smale regression technique, which
allows us to partition the domain into monotonic regions where
easily interpretable linear models can be used to assess the influence
of inputs on the output variability. The underlying computation is
augmented with an intuitive and interactive visual design to effec-
tively communicate sensitivity information to nuclear scientists. Our
framework is being deployed into the multipurpose probabilistic
risk assessment and uncertainty quantification framework RAVEN
(Reactor Analysis and Virtual Control Environment). We evalu-
ate our framework using a simulation dataset studying nuclear fuel
performance.

Keywords: Sensitivity analysis, uncertainty, nuclear simulation,
computational topology.

1 INTRODUCTION

Nuclear fuel performance behavior is a very complex and multi-
physical phenomenon that is, nonetheless, crucial in determining
both the economical and safety performance of a nuclear power plant.
Since the 2011 nuclear accident in Fukushima, Japan, significant
research has been focused on improving the simulation capability of
fuel behavior to design safer (i.e., accident-tolerant) fuel. Qualifi-
cation of a new fuel design is a long process lasting for years and
costing billions of dollars. It is therefore natural to try to improve
this process by increasing the understanding of the new fuel design
behavior via sensitivity analysis (e.g., [32, 40]) before starting any
physical experiment phase.

Given the large span of phenomena impacting fuel performance,
engineers are tasked with finding the optimal design in a multidi-
mensional simulation space where the system behavior is potentially
nonlinear. Sensitivity analysis via regression has historically been
used to guide engineers in the optimization process and in iden-
tifying the leading phenomena. However, using a simple linear
regression model in global sensitivity analysis may fail to capture
intrinsic local behaviors when the system is highly nonlinear. For
this reason, we perform local sensitivity analysis and visualization
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of multidimensional nuclear simulation data using partition-based
regression models. We use Morse-Smale regression (MSR) [26] to
identify regions of approximate monotonic behavior within the sys-
tem response and perform regression and sensitivity analysis locally
on these regions.

HDViz [25] uses the same domain partioning as MSR. Our col-
laborating scientists have previous exposure to HDViz in risk as-
sessment of nuclear datasets [35, 36]. The scientists found merit in
HDViz’s ability to provide a meaningful partitioning amenable to
SA, however the system’s complexity made it difficult to isolate the
desired local SA information. As such, we seek to provide a more
targeted representation of the data for performing SA.

Combining domain decomposition with local regression on the
analysis side provides us the opportunity to create more targeted and
detailed visual encodings than a global approach. Through close
interactions with nuclear scientists, the visual encodings are designed
with specific requirements in mind, and we aim to keep each view as
simple as possible to enhance its usability. We follow the core design
study stages [46]–discover, design, implement, and deploy–in this
application-driven research and highlight our contributions:

• We use the established Morse-Smale regression [26] in the
context of sensitivity analysis, together with other common
sensitivity metrics, to represent the main drivers within local
regions of the model domain. Such a representation leads to a
unique set of visualization design requirements.

• We report on the iterative process of refining and extending
an existing visualization tool, HDViz [25], to match the needs
of nuclear scientists. We report on the successful integra-
tion of our framework into the workflow of RAVEN [42], a
multi-purpose risk assessment and uncertainty quantification
software in nuclear engineering.

Our system targets structured/unstructured point cloud data of
up to tens of dimensions. We validate and reflect on the efficacy of
the new design using a 3D dataset from nuclear fuel analysis. Our
goal in this analysis is to understand the effects of different fuel
parameters on the stress of the fuel cladding. Excessive stress can
lead to cracks in the cladding contaminating the plant environment.

2 RELATED WORK

Our proposed technique focuses on performing sensitivity analysis
and visualization for multidimensional nuclear simulation datasets
modeled as scalar functions observed on sampled data. We employ
a domain partitioning of the model, followed by local regression and
analysis within each partition, and provide intuitive visualization
for nuclear scientists. We review the most relevant related work on
partition-based regression, sensitivity analysis methods, and visual-
ization systems designed for sensitivity analysis.
Partition-based regression. Partition-based regression techniques
typically employ a systematic domain partitioning based on certain
criteria, coupled with regression models fitted to each partition,
to identify and understand local structures of the model. They
can be classified based on their partitioning criteria: those seeking
to minimize numerical errors [2, 7, 11, 13, 22] and those based
on geometric analysis [26, 33]. In particular, regression trees are
constructed by recursively partitioning the domain into multiple
partitions at optimal locations in the domain (where the optimal
criteria can vary), and each partition is fitted with constant [7],



linear [2], low-order splines [22], or polynomials [11]. On the other
hand, Principal Hessian direction (PHD) tree regression [33] splits
the domain into areas of high curvature.

We employ the established MSR technique [26], which, being ge-
ometrically motivated, is similar to the PHD approach. MSR utilizes
a domain partitioning induced by the Morse-Smale complex (MSC)
of the regression surface. The MSC partitions the domain into mono-
tonic regions, and MSR takes advantage of the monotonicity implied
by this partitioning and builds linear models to fit each partition to
capture local interactions between input and output parameters. The
MSC is at the core of the successful HDViz system [25]. HDViz
and its extension have been previously applied in nuclear engineer-
ing [34, 35, 36]. However, the insights of nuclear scientists are
limited by the complexity and the lack of intuition provided in the
original visualization. In this paper, we follow an iterative process
of designing and refining a new visualization system, using HDViz
as a basis, that specifically targets nuclear scientists as end users
and sensitivity analysis as the end task. We collaborate closely with
nuclear scientists throughout the discover, design, implement, and
deploy stages; and we document such an effort in Section 4.
Sensitivity analysis methods. Sensitivity analysis (SA) studies
how changes in the model inputs affect the outputs; see [45] for a
survey. SA approaches can be categorized into local SA and global
SA. Local SA addresses sensitivity relative to point estimates of the
parameter values, whereas global SA focuses on information for
the entire parameter distribution [29]. Local SA studies the change
of model response by varying one parameter while keeping other
parameters fixed. A common approach, differential SA, computes
the location-dependent partial derivative of the output with respect
to an input parameter. Global SA, on the other hand, explores the
change of model response by varying all parameters simultaneously.
Common global SA approaches include generalized SA [31] and
those based on the design of experiments.

Contemporarily available SA methods include correlation analy-
sis [49], regression analysis [23], Sobol sensitivity indices [48], Mor-
ris one-at-a-time screening (MOAT) [38], Gaussian process (GP)
screening [43], multivariate adaptive regression splines (MARS)
screening [22], etc.; see [24] for a comprehensive evaluation. For
example, correlation analysis measures parameter sensitivity by
correlation coefficients, such as the Pearson correlation coefficient
(PEAR) and Spearman rank correlation coefficient (SPEAR), which
measure the strength of a linear (or monotonic) relationship between
model parameters and model responses [24]. Regression analysis
involves fitting a linear regression to the model response and using
standardized regression coefficients to evaluate parameter sensitivity.
MARS and GP screenings are both examples of response surface
methods used to derive relative scores of the overall effects of the
parameters [24]. For a survey on SA methods in the field of nuclear
engineering specifically, see [1].

Our analysis based on MSR falls somewhere between a local SA
and a global SA approach. It is a variation on traditional regression
analysis, as it employs topology-inspired partition-based regression
models. MSR allows us to partition the domain into regions of
uniform gradient flow such that a linear model is fitted within each
partition. We rely on first derivative information and the fitness of
our local models, and also provide the option to compute PEAR,
SPEAR, and canonical correlation analysis (CCA) coefficients. The
objective of this paper is not the choice of superior statistic in SA,
but rather the use of topology to provide more meaningful domain
partitioning to support SA.
Sensitivity analysis and visualization. We give a brief review of
several visualization systems designed for SA, in particular, systems
that enable visual exploration of local sensitivity information. HD-
Viz [25] characterizes the behavior of system outputs with respect
to input parameters geometrically. HyperMoVal [41] uses support
vector regression (SVR) [47] for high-dimensional data and visually

validates a model against the ground truth. It highlights discrep-
ancies between the data and the model and computes sensitivity
information on the model. We provide similar capabilities in our
system to report on the fitness of our regression model per partition.
Berger et al. [4] utilize both nearest neighbor regression and SVR
to create a visual interface geared toward optimizing performance
in car engine design, where the software displays local sensitivity
information on and near a user-selected focal point. Vismon [5]
provides SA to the visualization of the uncertainty of a simulation
for fisheries scientists.

Canonical correlation analysis (CCA) has been used in the he-
liograph [18] and Slycat [16] systems to determine correlations
between multiple inputs and multiple outputs in a global setting
for ensemble data. Other related works visualize local sensitiv-
ity information by encoding partial derivative, using glyphs [27],
scatterplots [9, 10], and histograms [3].

Our method is, in spirit, similar to systems provided in May
et al. [37] and Muhlbacher et al. [39], by providing the capabili-
ties to interactively refine the partitioning during the SA to give a
multi-scale view of the sensitivity information. However, data is par-
titioned along one or two dimensions (i.e., input parameters) in both
cases whereas our partitioning spans all dimensions. We differenti-
ate ourselves from HDViz: First, we rethink SA of nuclear datasets,
e.g., using regression coefficients derived from topological partitions,
which is not the focus of the original HDViz framework. Second,
we report on a design study process targeting nuclear scientists to
develop effective tools to be integrated into RAVEN.

3 TECHNICAL BACKGROUND

Morse-Smale regression and Morse-Smale complex. We apply
Morse-Smale regression (MSR) [26] in the context of SA. MSR
builds upon a domain partitioning of a dataset induced by the Morse-
Smale complex (MSC) and employs a linear regression fit within
each partition, thereby exploiting its monotonicity. The MSC itself
has been successfully utilized in visual exploration of simulation
data modeled as high-dimensional scalar functions [25, 34, 35, 36].
Fig. 1a shows the MSC of a 2D test function with four maxima and
nine minima. The MSC decomposes the domain into 16 partitions
such that each partition can be well approximated by a linear model
as shown in Fig. 1b.

Figure 1: (a) MSC of a 2D height function that induces a partitioning
of the domain. (b) Linear models are fit to each partition.

The topological characteristics of the MSC are at the core of
MSR. Here, we give a high-level description; see [20] for details.
The MSC partitions the domain of a scalar function into monotonic
regions, where points in each region have gradient flow that begins
at the same local minimum and ends at the same local maximum
of the function. Furthermore, the MSC can be simplified based on
the notion of topological persistence [19, 21]. For a fixed scale, the
main idea behind the simplification is to merge its corresponding
partitions based on a measure of their significance (i.e., persistence);
see Fig. 1d-e of [35] for an example applied to the MSC.

For point cloud data, the MSC can be approximated [12, 25],
enabling MSR to be applied in high dimensions. Points are connected
by neighborhood graphs such as the k-nearest neighbor (kNN) graph,
and gradients are estimated along the edges of the graph. In our
context, we utilize similar approximation schemes [25, 26], where



points are connected using the relaxed Gabriel graph, which was
shown to give superior results in extracting topological features [15]
compared to the kNN graph.
Linear regression and sensitivity analysis. For our analysis, we
use least square linear regression to fit each partition. To obtain the
coefficient estimates, such a least-squares fitting minimizes the sum
of squared residuals. For a given partition with n data points, let
y = [y1, ...,yn]

T be the n-by-1 vector of observed response values,
X be the n-by-m design matrix of the model (that is, Xi j is the j-th
dimension of the i-th data point), and β be the m-by-1 vector of
coefficients. We minimize the error estimate: s(β ) = ∑

n
i=1(yi −

∑
m
j=1 Xi jβ j)

2. In matrix form, we obtain the coefficient estimates

β̂ in the following way: β̂ = argminβ s(β ) = (XT X)−1XT y. For
SA, we use the regression coefficient β̂i (1 ≤ i ≤ m) to evaluate the
sensitivity of the i-th dimension.
Coefficient of determination. For a given partition fitted with a
linear regression model, it is important to evaluate how well the data
points fit the model by computing the coefficient of determination,
or the R2 score. Given a partition with n data points, for the i-th data
point, yi is the observed response value and ŷi = ∑

m
j=1 Xi jβ j is the

fitted response value. Let ȳ = 1
n ∑

n
i=1 yi be the mean of the observed

response values. The coefficient of determination is computed as
R2 = 1−∑

n
i=1(yi − ŷi)

2/∑
n
i=1(yi − ȳ)2.

We extend such a notion by ranking and considering how many
input dimensions are sufficient to provide an optimal fit. We select a
subset of input dimensions for the n data points, apply least square
linear regression on these points with reduced dimensions, and eval-
uate the R2 score of the linear fit. The closer the value of R2 is to 1,
the better the linear regression fits the data with the selected subset
of input dimensions.

4 PROBLEM CHARACTERIZATION AND ABSTRACTION

We follow the core stages of a design study [46], namely, discover,
design, implement, and deploy, in our application-driven research.
During the discover stage, we focus on problem characterization
and abstraction. We learn the targeted domain of study (in this
case, SA for nuclear simulations) through close interactions with
nuclear scientists. In this process, we study their existing work flow
and design requirements to better enable knowledge discovery via
analysis and visualization.
Existing workflow. Before designing our visualization solution,
we actively engage nuclear scientists to understand their domain
problems and the existing workflow (i.e., their common practices)
in SA. As a first approximation, the scientists typically perform a
global SA via linear regression or correlation analysis. Point-wise
SA is used to estimate gradient information at specific locations via
back-of-envelope computation, or a reduced order model (ROM)
is constructed from experimental data whereupon statistical infor-
mation can be collected. The scientists would also manually divide
the data domain into subregions that exhibit changes in gradient
behavior based on axis-aligned scatterplot projections; then global
SA that combines resampling and ROM construction is applied to
each manually extracted subregion.

During the discover stage, we help the nuclear scientists formulate
and examine their data analysis and visualization needs through an
iterative process, where we listen to their description of domain prob-
lems, characterize and abstract their problems into design require-
ments, and obtain feedback regarding abstractions for continuous
refinement. We identify several challenges in the existing workflow
that are summarized into the following design requirements:
A: Structure-based domain partitioning amenable to local SA.
As suggested by Gerber et al. [26], we first considered numerous
forms of partition-based regression that can be applied for local
SA. However, most of these are based on greedy, local operations
focusing on optimizing some quality metric. Since the task of our
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Figure 2: HDViz applied to the nuclear fuel dataset described in
Section 7. (a) Topological skeleton: each summary curve in the
visual space corresponds to a partition of the data; transparent tubes
capture the spread (width) and density (luminance) of the partition.
(b) Persistence chart: number of partitions plotted as a function
of scale. (c) Scatterplot matrix of partitioned data. (d) Inverse
coordinate plots: summary curves and partitioned data are projected
onto a 2D plot where the x-axis represents the output dimension,
and each y-axis represents an input dimension.

collaborators was understanding trends occurring in the data rather
than accurately (potentially overfitting) the data, we selected MSR,
as it considers the global structure of the data.

In fact, MSR is particularly suited to this task as each partition
is assumed monotonic and thus well described by a simple set of
simple sensitivity coefficients. In addition, its flexibility and robust-
ness to noise allow it to be used in an exploratory task such as SA.
Existing local SA is restricted to be point-wise, and domain parti-
tioning is done manually via a time-consuming process; while our
proposed SA, built upon MSR, applies automatically and efficiently
to partitions at multiple scales. Using HDViz as a starting point (see
Fig. 2), it is an ongoing process for us to define new visual design
requirements as well as refine existing ones that satisfy the various
SA tasks.
B: Intuitive visualization of data hierarchy. Existing visualiza-
tion using HDViz has a very steep learning curve for data practition-
ers in general, is particularly nonintuitive for nuclear scientists, and
has very limited support for the SA pipeline. For example, when pre-
sented with the topological skeleton seen in Fig. 2, nuclear scientists
have questioned the meaning and utility of the oscillations produced
by the inverse regression and the geometric interpretation of their
2D projection. During our contextual inquiries [30], we notice that
the scientists typically disable the transparent tubes surrounding the
inverse regression curves (Fig. 2a). Further interactions reveal that
the density and geometry information provided is considered “dis-
tracting” and uninformative in their context. Instead, the scientists
use the topological tube view to count the number of partitions and
extrema at various scales.

Selecting the “appropriate” scale (i.e., persistence level) from the
persistence chart remains an unintuitive process when the scientists
are rarely aware of how many “noisy” features exist in the data.
We have expended effort designing various ways to convey such
information to the users, as evidenced in Section 5. Understanding
how the scientists interact with the topological view has greatly
influenced its design in our iterative process. We understand that
the scientists are primarily interested in a high-level picture of their
data; therefore, we simplify our visualization to an abstract 2D
representation that enables easier selection and manipulation of
partitions and supports well-integrated, interactive selection of scales.
Finally, the new visual representations should convey information
about different scales within the data hierarchy, but also provide
context about the partitions within a fixed scale. The topology map



described in Section 5 is designed to fulfill such requirements.
C: Integration of common practices with new designs. We incor-
porate visual tools that are familiar to the nuclear scientists (e.g.,
scatterplots) into our new visual design to ease the knowledge discov-
ery process. For example, the scientists could select a MSC-based
partition and observe its associated point cloud clustered in a geo-
metrically coherent space in the corresponding scatterplot. Such an
integration gives the users some intuition of how the topological par-
titioning is being performed. In addition, the scientists find that the
scatterplots also provide some sense of data density within each par-
tition – such information is vital to the users as it is directly related
to the confidence associated with the derived sensitivity information.
Knowing such details also allows us to encode density information
into other representations not prone to the occlusion problem.
D: Presentation of comparative and quantitative information.
Initial visualizations of the sensitivity information focus on a com-
parative analysis that uses shapes of different sizes to convey differ-
ences among individual partitions in the data. Though it is useful
for quickly detecting major trends, the scientists have requested the
numeric measurements of each partition to be displayed as this infor-
mation is more familiar to them and gives them the increased amount
of accuracy necessary for decision-making. Additional designs have
been suggested (such as the fitness view detailed in Section 5) by
the scientists that allow us to better understand their mental model
of the data and design our visualization accordingly.
E: Scalable analysis and visualization. The existing SA capa-
bilities do not scale well with the increasing number of parame-
ters/dimensions, but our proposed SA using MSR scales well in high
dimensions. Given point cloud data, the analysis in [26] has shown
that the algorithm in [25] provides a good approximation of the
true MSC of the underlying (unknown) function when the smallest
feature (signal) of f has a persistence that is an order of magnitude
larger than the standard deviation of the noise. The running time
of the MSC does not depend on the ambient dimension of data
points, but rather the topological complexity (e.g., number of local
extrema) of the underlying function. Therefore, we employ a typical
assumption on our targeted datasets such that they have moderate
topological complexity, and their topological features can be well
approximated. In addition, we require that the new visual design re-
mains intuitive and informative even with increasing dimensionality.
Scalable visualization is discussed in Section 5A.

5 VISUALIZATION DESIGN

In the design stage, we focus on data abstraction, visual encoding,
and interaction mechanisms [46]. We have proposed multiple vi-
sual encodings where the feedback from nuclear scientists helps us
narrow them down to a few usable solutions. These solutions are in-
tegrated into a linked view system with multiple visual components
providing interactive functionalities, as illustrated in Fig. 3.

A typical workflow begins with the topology map, where a user
can navigate through partitionings at different scales, and at a chosen
scale, explore the structure of the partitions. Within this view, one
can understand at a glance the number of local extrema for a given
partitioning, their relative importance encoded by persistence, and
their connectivity. The appropriate choice of scale is then validated
by the persistence diagram [14] and the barcode [8]. At a fixed scale,
the user then selects a subset of partitions for further SA. 2D or 3D
scatterplots can be constructed for selected partitions by choosing
any two or three input/output dimensions, where the output dimen-
sions include both observed and predicted values. Subsequently, the
user can choose to build a histogram of any chosen input/output
dimension. Such a histogram can also be used for selecting and
filtering data for further analysis. Finally, sensitivity information is
computed when requested and then visualized on a per dimension
basis using the sensitivity view, and linear fitness information in
terms of R2 score is given in the fitness view. We give a detailed

description of the primary visual encodings below: topology map,
scatterplot projection, sensitivity view, and fitness view; followed by
a brief introduction to the secondary visual encodings: persistence
diagram, barcode, and histograms.
A: Topology map. The topology map is a key data abstraction
within our design study. It is a 2D representation of the data that
highlights its topological structure. We generate and validate such
an abstraction through an active and cyclic design process with the
scientists to arrive at its current form. The topology map encodes the
locations of local extrema defined by their persistence and function
values, as well as their connectivities (i.e., curves describing flow
from a minimum to a maximum). Such a visualization is, in spirit,
similar to the topological skeleton proposed in [25] and applied to
nuclear probabilistic risk assessment [35, 36]. However, based on
the new requirements outlined in Section 4, we have completely
redesigned such a visual encoding to provide a topological summary
that omits geometric information but preserves the underlying struc-
ture essential to understanding the data partitioning, thereby greatly
improving its usability and scalability.

As illustrated in Fig. 3A, each local extremum is mapped onto
a 2D plane, whose x-axis represents its persistence and the y-axis
corresponds to its function value (i.e., f (x,y)). Therefore, local
maxima (minima) move toward the top (bottom) of the display,
respectively; more robust features appear to the right, whereas noisy
ones tend to the left. Encoding function value to the y-axis is well
aligned with the scientists’ understanding of typical 2D function
plots where the dependent variables are mapped to the y-axis; in
fact, the inverse coordinate plots used in HDViz (Fig. 2d) are often
misinterpreted for violating this common notion. In addition, the
local maxima (minima) are upward (downward) pointing red (blue)
triangles for fast differentiation and counting.

Selecting the appropriate scale (i.e., persistence level) for data
partitioning is essential during the exploratory process as it helps
the user to understand the data hierarchy and sensitivity information.
The above design also provides a natural separation between features
and noise. The user is able to choose a scale by clicking anywhere
in the plot, which creates a vertical line passing through the cursor
location, separating the local extrema into those that represent ro-
bust topological features (grey region on the right) and those that
represent topological noise (white region on the left). Extrema in the
grey region are visualized together with their connectivities. Their
sizes correspond to the point densities in their surrounding regions.
Extrema in the white region are rendered with a default minimum
size and therefore do not draw the user’s attention away from more
salient features but still provide context.

Selection of the scale parameter is an interactive process that is
hard to automate, where the user is free to explore and construct
ROMs at arbitrary levels. In persistence simplification [14, 21],
features and noise are assumed to exist on two separable scales,
providing a heuristic to choose a scale (vertical line) that is a clear
divider between well-separated clusters of extrema. Additional
visual cues also help guide such a selection process. For example,
in the fitness view, higher R2 scores typically correspond to better
local fits of the model at a chosen scale. On the other hand, density
information encoded by the sizes of the extrema influences the
interpretation of the R2 score for a given partition, where a high R2

score for a partition with low point density may not be trustworthy.
Closed user feedback loops help us refine our visual encoding of

the topological map. For example, the extrema in the grey region
are connected via color-coded, user-adjustable, cubic Bezier curves,
each of which represents a Morse-Smale cell (i.e. a data partition).
Such a representation affords a level of flexibility to counteract
visual clutter. Each partition is identified by one of nine colorblind-
safe colors [50] that is used throughout the visual interface. The
topological map is used as a high-level atlas to orient users in the
data exploration process. It enables efficient comparisons among



Figure 3: Our linked view visualization system using the same 2D test function of Fig. 1. The system includes (A) topology map, (B1-B3)
scatterplots, (C) sensitivity view, (D) fitness view, (E1) persistence diagram, (E2) histogram, and (E3) persistence barcode.

partitions across multiple scales. The user can select local extrema
and partitions via its interactive interface for in-depth analysis via
the remaining views. We also defer additional geometric information
to other views to avoid sensory overload.

In terms of scalability, in practice, with limited number of data
points available and the appropriate choice of scales (potentially
high-dimensional), nuclear datasets are typically analyzed with less
than 10 partitions (e.g., [34, 35, 36]). For datasets with topological
complexity that is beyond moderate, we would employ advanced
graph drawing techniques such as edge bundling (e.g., [17]).
B: Scatterplot projection. The scatterplot projection is a common
tool familiar to nuclear scientists. It allows the user to select up
to three dimensions to be mapped to spatial coordinates, and a
potential fourth dimension to be mapped to color. The dimensions
of choice include the input parameters, the observed and predicted
output parameters, and the residuals of the ROM. The users are
therefore provided with detailed spatial information on demand.
The 2D height function example in Fig. 3 includes a 2D scatterplot
(involving two inputs x and y in B1), a 3D scatterplot (involving x, y,
and an observed output f (x,y) in B2), and a 3D scatterplot for the
local ROMs (involving x, y, and the predicted output).
C: Sensitivity view. We show per dimension coefficients associated
with each partition of the data in signed, horizontal bar chart format.
The coefficients used include the linear coefficients, the PEAR, and
the SPEAR. The user therefore gains first derivative behavior for
each selected partition. There are two important pieces of sensitivity
information to convey in our visual encoding: the sign and the rela-
tive magnitude of the different coefficients. Using signed bar charts,
this information becomes available at a glance, and the ubiquity of
bar charts ensures their universal interpretation. These bar charts are
clustered by partition for easy comparison.
D: Fitness view. For each partition, the fitness view reports the fit
accuracy as well as its incremental improvement by increasing the
dimensionality of the fit. Based on the linear coefficients described
in the sensitivity view, the dimensions are ordered by their magnitude
and visualized via vertical bar charts. Based on this sorted order
of dimensions as a heuristic, we build lower-dimensional linear fits
beginning with only the dimension with the largest coefficient in
magnitude. We then iteratively add one dimension at a time and
recompute an updated linear model. For an m-dimensional dataset,

we will end up with m different linear fits and for each fit, we
compute the R2 score given in Section 3. The use of vertical bar
charts conveys the stepwise improvement of adding a dimension
to the regression model. Typically (but not always), the largest
changes in R2 score occur at the beginning, and we are interested to
know at what point the value added by increasing the dimensionality
becomes negligible, signifying potentially extraneous dimensions.
E: Secondary visual encodings. We include a few secondary visual
encodings to enhance and validate insights obtained from the primary
ones. The persistence diagram is the classic tool in the form of a 2D
scatterplot used for separating signal from noise [19]. In a nutshell, a
point in the persistence diagram corresponds to a topological feature
represented by the pairing of two critical points. The persistence of a
point (and its corresponding feature) in the diagram is its distance to
the diagonal. When selecting an appropriate scale for partition-based
SA, the chosen vertical line in the topology map corresponds to a
dotted line in the persistence diagram; a large separation between
clusters of extrema in the topology map corresponds to a large
separation between clusters of points in the persistence diagram.

The persistence diagram provides a standard and less cluttered
view of the distribution of topological features in the data, and
offers a complementary and validating alternative when selecting
the appropriate scale. In addition, we also include a persistence
barcode (see [8] for details) that encodes similar information as the
persistence diagram as another alternative for visual comparison.
Histograms are provided on demand and allow the user to visualize
the distribution of inputs, outputs, and various computed values on a
per partition basis. Histograms also provides an interactive filtering
system. These alternative visual encodings are included as part of
our parallel prototyping stage, and they are implemented in our final
tool to offer diversity and increase efficacy.

6 IMPLEMENTATION

During the implement stage of our design study, we carefully choose
algorithms, techniques, and programming languages to meet the
design requirements of the nuclear scientists, addressing issues such
as scalability and usability. Our implementation is integrated into
RAVEN, an uncertainty quantification and probabilistic risk assess-
ment tool actively being developed by and for nuclear scientists.



This creates a platform with good exposure for the new workflow
being adopted by the scientists. Close user interactions help us refine
our design and implementation in an iterative process. RAVEN is
written in Python with a collection of C++ bindings for back-end
algorithms. The approximate MSC computation and our costumed
version of MSR are implemented in C++, and the graphical interface
is implemented using the PySide binding of Qt. Such a program-
ming environment supports rapid software prototyping and ensures
tight integration with the existing RAVEN Python code. In addition,
our modular implementation and linked view design [44] are also
suitable for extending and expanding the visualization capabilities
of RAVEN in the future.

7 DEPLOYMENT & EVALUATION: NUCLEAR FUEL DESIGN

The final deploy stage of our design study involves software release
and evaluation. To evaluate the efficacy of our design and to gather
feedback from the users, our framework is applied to an actual
simulation being studied by the scientists involving nuclear fuel
performance. As described in Section 4, the deployment is tightly
integrated into the design stage as a feedback loop, allowing both the
user and the designer to exchange ideas on the data and the design.
We recount such an iterative process below.

7.1 Data From Nuclear Fuel Analysis
We consider an analysis of a nuclear fuel rodlet simulation per-
formed using the BISON software [28], a modern finite-element
based nuclear fuel performance code. The rodlet is axisymmetric
and composed of 10 stacked UO2 pellets surrounded by a zirconium
alloy shield known as the cladding. We track the midplane von
Mises stress occurring on the 3D cladding. High stress can cause
the cladding to crack and allow radioactive gas to leak into the plant
environment. The simulation looks at a ramping of the linear power
in the reactor from time t = 0, up to t = 10000 (seconds), whereupon
the power level maintains a constant value for the remainder of the
simulation. The linear power begins at 0 W/m at t = 0 and linearly
climbs to a value of 25000 W/m before leveling off.

The goal is a better understanding of the physics happening at
the contact point that occurs when the fuel rodlet expands to the
point of touching the cladding. The stress on the cladding at t = 0
is due to a compressive force from the water pressure outside the
cladding. As fission occurs, the fuel rod expands as it is heated due
to thermal expansion and swelling from the release of fission gas
within the microstructure of the fuel. Once contact is made, thermal
expansion (of the cladding) exerts a force that counteracts the com-
pressive force from the water pressure, and therefore the stress in
the cladding decreases until these forces reach an equilibrium. After
the equilibrium point, the expansive forces on the cladding become
dominant, causing stress on the cladding as it expands.

In the above scenario, contact is not indicative of a failure state,
and is actually expected in these types of environments. The
described problems arise only when the stress in the cladding
becomes too high. For this study, the scientists vary three in-
put parameters during the simulation: (a) the linear power scal-
ing factor (power scalef), a multiplier for the previously de-
scribed ramping linear power; (b) the grain radius scaling factor
(grainradius scalef), a multiplier for the size of microstructure
elements known as the grains and related to the swelling caused
by the fission gas; and (c) the thermal expansion coefficient for
the fuel rodlet (thermal expansion), which dictates how quickly
the rod expands and thus how quickly it contacts the cladding.
The output parameter of interest is the final midplane von Mises
stress midplane stress (a scalar quantity derived from the Cauchy
stress tensor useful in determining at what point the cladding may
yield/crack) recorded after a simulation time of t = 106 seconds. All
parameters are scaled using z-score standardization to align with
both domain and algorithmic practices.

7.2 Anomaly Detection in an Initial Dataset

Figure 4: SA for the initial nuclear fuel dataset. (a) Topological map
used to separate signal from noise. (b) Scatterplot projecting the
most significant input power scalef, grainradius scalef, and the
output midplane stress. (c) Linear coefficients.

Exploration begins with an initial dataset sampled from a uniform
10×10×10 grid of the parameter space. During the exploration pro-
cess illustrated in Fig. 4, the scientists notice an unexpected behavior
within the sensitivity view. An increase in the thermal expansion
of the fuel is expected to it to expand more rapidly and come into
contact with the cladding sooner. The result would cause every-
thing to precipitate faster: a simulation reaching the equilibrium
point leads to a higher stress in the cladding; a simulation end-
ing before reaching the equilibrium point (exhibited via lower val-
ues of power scalef) results in a lower stress. The expectation is
that the higher the thermal expansion is, the higher the stress be-
comes. However, the linear coefficients for thermal expansion
across partitions in the sensitivity view contradict such an expecta-
tion: (a) thermal expansion is positive for the green and orange par-
titions when power scalef is low, and increases when approaching
the equilibrium (located at the intersection of the three partitions);
(b) thermal expansion is negative for the violet partition when
power scalef is high, and decreases past the equilibrium. PEAR
and SPEAR coefficients (not shown here) exhibit similar behaviors.

After further investigation with the fuel experts, simulation pa-
rameters aside from the three sampled were found to be improperly
initialized, leading to this anomaly in the initial dataset. This is a
very important observation as this particular dataset is being used by
multiple ongoing projects where the validity of this dataset is crucial
to their success. Such an anomaly in the dataset itself would not
have been exposed via a global SA since the problem was detected
by comparing the behavior of an input parameter from one partition
to another where the partitions carry actual physical meaning.

7.3 Workflow With a New Dataset
After fixing the bug associated with the simulation input, a new
dataset is generated for SA from 9517 simulations using Monte
Carlo sampling of the three input dimensions from independent
distributions. Starting with the topology map in Fig. 5a, a large hori-
zontal gap between two clusters of extrema signifies well separation
between signal and noise in the data. The scientists therefore select
a scale (a vertical line) that preserves the three extrema in the grey
region as topological features, resulting in two partitions of the data
domain. Such a selection is also supported by observing a large
gap between two clusters of points within the persistence diagram
(Fig. 5b), where one cluster contains points near the diagonal y = x
and the other contains points far away from the diagonal. As a
first order approximation, the scientists build local linear regression
models for these two partitions.

The resulting linear coefficients are shown in Fig. 5d where the
power scalef dominates the behavior of the midplane stress. Fur-
thermore, the fitness view (Fig. 5e) demonstrates that little to no
information is gained by incorporating the remaining two dimen-
sions, in either partition of the data. The fitness view also shows that
the blue partition is not well described by a linear fit of any num-
ber of dimensions (i.e., with all three R2 scores valued roughly at
0.79). The scientists investigate further by projecting the data onto a



Figure 5: SA of the new nuclear fuel dataset: (a) topology map,
(b) persistence diagram, (c) linked scatter plot projection, (d) linear
coefficients, and (e) fitness view with stepwise R2 scores.

scatterplot (Fig. 5c) that includes the most sensitive input dimension
(power scalef) and the output dimension (midplane stress). From
this scatterplot, they detect the nonmonotonic behavior of a region of
interest (ROI) within the blue partition, which has low power scalef
and high midplane stress. The scientists then focus on a more re-
fined analysis at a finer scale to try to capture the behavior of the
ROI within its own partition.

Fig. 6 shows the results after decomposing the domain into three
and four partitions at finer scales. The scientists, guided by both
the topology map and the scatterplot view, iteratively choose finer
and finer scales until the ROI separates itself from the larger blue
partition. The first level of refinement produces three partitions in the
data (Fig. 6a). Compared to the approximation with two partitions
(Fig 5c), the newly constructed magenta partition has relatively low
point density (as shown in Fig. 6b) and does not correspond to the
ROI. Under the second level of refinement (Fig. 6c), the ROI forms
its own partition in green, as illustrated in Fig. 6d. In addition, there
is significant improvement in the fitness for the blue region. That is,
the three R2 scores increase from roughly 0.790 to 0.898 (Fig. 7).
Therefore, extracting the desired ROI requires two additional levels
of refinements.

Figure 6: SA of the new nuclear fuel dataset under two refined
settings: topology maps and scatterplots with three partitions (a)-(b)
and four partitions (c)-(d), respectively.

Under the refined setting with four partitions, the scientists are
able to obtain insights that are aligned with their expectation and
domain knowledge. Using topology-based domain partitioning al-
lows them to decompose the domain in a physically meaningful
way. In particular, the four partitions within the data domain are
shown to correspond to various stages of the simulation. The sci-
entists focus on examining the characteristics of each partition and
how the partitions interface with one another. First, the interface
between the green and blue partitions represents the contact point
where the fuel touches the cladding (Fig. 6d). Within the green
partition (which has very low power scalef values), the net pressure
acting on the cladding originates from the external water pressure.
Second, the interface between the blue and the combined magenta
and gold partitions corresponds to the equilibrium point. The blue
partition represents the simulations where the expansive forces of
the cladding begin to counteract the compressive water pressure
force. Within the blue partition, as midplane stress decreases and

Figure 7: Left: sensitivity information of the new nuclear fuel dataset
under the refined setting with four partitions. Right: global SA of
the same dataset.

power scalef increases, the simulation moves closer to the equi-
librium. Finally, the remaining two partitions (gold and magenta)
contain scenarios after the equilibrium point between compressive
and expansive stresses, and therefore within these partitions, an
increase in power scalef leads to an increase in the dominating
expansive stress (i.e., midplane stress). In terms of sensitivity in-
formation (Fig. 7 left), power scalef has a strong positive effect on
midplane stress across the partitions with the exception of the blue
region, where it is strongly negative.

Finally, the scientists compare the results from the partition-based
local SA (Fig. 7 left) with that of a global SA (Fig. 7 right). For
the global SA, the linear coefficients and CCA structural coeffi-
cients [16] are used to identify power scalef as the most sensitive
parameter, yet its sign heavily depends on the amount of data on
either side of the contact and equilibrium points. Similarly, the
nonmonotonic global behavior masks the sensitivity associated with
power scalef for both PEAR and SPEAR coefficients. On the other
hand, the topology-inspired, partition-based SA is able to capture
three distinct behaviors in the data, and it highlights the high sensi-
tivity associated with power scalef within each partition.

Using our framework, the scientists have validated the behaviors
of a nuclear fuel simulation to be well aligned with their expectations.
They are actively investigating higher-dimensional problems where
topological partitioning could offer them additional insights that are
not readily available via traditional visualization such as scatterplot
projections. Our objective in validation has been confirmed by
the scientists where they could perform SA faster and with higher
accuracy. Our framework also offers a new paradigm in rethinking
about SA via topology in nuclear engineering.

8 CONCLUSION

According to our collaborating scientists, our software is the first
screening tool to enable understanding the dominant impacts of the
uncertain parameters with respect to design figures of merit (e.g.,
internal pressure, stress, etc.). They also found it useful for ranking
the uncertain parameters and for the construction of effective and
powerful ROMs for an extensive UQ study. Finally, we demonstrated
how our tool was able to quickly and effectively highlight anomalous
results at the earliest stages of the fuel design process.

The following summary was provided by one of our collaborating
scientists: Recent studies [6, 32, 40] have demonstrated the appli-
cation of SA to the modeling of nuclear fuel behavior, where the
considered scenarios have covered both steady-state and transient
irradiation and different burnup levels. However, existing results
have been presented in terms of output range given the whole input
domain (i.e., global SA). Instead, the presented technique allows
fuel designers to decompose the analysis into partitions based on



actual regimes of fuel behavior (e.g., open fuel-cladding gap or fuel-
cladding contact). Fuel performance during these different regimes
can be driven by different aspects (e.g., rod fill gas pressure or
fuel-cladding contact pressure), and hence, such physically based
decomposition may offer more meaningful insight into the specific
situations targeted by the analysis.

ACKNOWLEDGEMENTS

This work is supported by the U.S. Department of Energy, under
DOE Idaho Operations Office Contract DE-AC07-05ID14517. Ac-
cordingly, the U.S. Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribu-
tion, or allow others to do so, for U.S. Government purposes.

REFERENCES

[1] H. S. Abdel-Khalik, Y. Bang, and C. Wang. Overview of hybrid
subspace methods for uncertainty quantification, sensitivity analysis.
Ann. Nucl. Energy, 52:28–46, 2013.

[2] W. P. Alexander and S. D. Grimshaw. Treed regression. J. Comp.
Graph. Stat., 5:156–175, 1996.

[3] S. Barlowe, T. Zhang, Y. Liu, J. Yang, and D. Jacobs. Multivariate
visual explanation for high dimensional datasets. In IEEE VAST, 2008.

[4] W. Berger, H. Piringer, P. Filzmoser, and E. Gröller. Uncertainty-
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