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Abstract— Understanding optimization in deep learning is a
fundamental problem, and recent findings have challenged the
previously held belief that gradient descent stably trains deep
networks. In this study, we delve deeper into the instability
of gradient descent during the training of deep networks.
By employing gradient descent to train various modern deep
networks, we provide empirical evidence demonstrating that a
significant portion of the optimization progress occurs through
the utilization of oscillating gradients. These gradients exhibit a
high negative correlation between adjacent iterations. Further-
more, we make the following noteworthy observations about
these gradient oscillations (GO): (i) GO manifests in different
training stages for networks with diverse architectures; (ii)
when using a large learning rate, GO consistently emerges
across all layers of the networks; and (iii) when employing a
small learning rate, GO is more prominent in the input layers
compared to the output layers. These discoveries indicate that
GO is an inherent characteristic of training different types of
neural networks and may serve as a source of inspiration for
the development of novel optimizer designs.

I. INTRODUCTION

In modern machine learning, there is a remarkable and
consistent observation that simple gradient-based algorithms
have proven to be highly effective in training deep neural
networks [1]–[3]. This observation has sparked significant
interest among researchers, leading them to investigate the
fundamental mechanisms that contribute to the success of
nonconvex neural network optimization. As a result, numer-
ous studies have been conducted, each providing distinct
explanations for this phenomenon.

Specifically, several theoretical works have provided ex-
planations for the success of gradient-based deep learning
optimization by focusing on specific types of amenable
geometry found in deep networks. These include gradient
dominant geometry [4]–[9] and local strong convexity [6],
[10]–[13]. These theories have shed light on the favorable
properties of deep network optimization. However, recent
empirical observations have revealed a contrasting reality.
It has been observed that gradient-based neural network
optimization frequently operates in what is known as the
"edge of stability" regime [14]–[16], in which the optimization
tends to be ‘unstable’ [14]–[16]. More specifically, by training
many deep networks using full-batch gradient descent, it is
discovered that the maximum eigenvalue of the training loss
Hessian hovers just above 2/(step size), which is known to
cause instability in training simple convex quadratic models.
This surprising observation seems to be highly inconsistent
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with the aforementioned smooth geometries that are leveraged
in the conventional optimization analysis. Consequently, there
is a strong motivation to delve deeper into the dynamics of
gradient-based algorithms in neural network training.

The research presented in [14] highlights that the maxi-
mum eigenvalue of the training loss Hessian remains above
2/(step size), a value known to induce instability when
optimizing convex quadratic functions. However, it’s worth
noting that the maximum eigenvalue of the Hessian differs
significantly from the first-order gradients utilized in actual
optimization updates. Consequently, it remains unclear how
the actual gradients behave in the practical training of
nonconvex deep networks. Additionally, while [14] focuses on
the instability of gradient descent across the entire parameter
space, modern neural network models are composed of multi-
ple feed-forward layers with diverse architectures. Therefore,
it is crucial to investigate how this instability propagates
throughout the deep network layers during the optimization
process. In light of these considerations, the objective of this
study is to delve into the characteristics of gradient oscillation
(GO) observed in the training of modern deep networks and
address the aforementioned questions. By exploring GO, we
aim to gain insights into the behavior of actual gradients and
how the instability manifests and evolves across different
layers of deep networks during the optimization process.

A. Our Contribution

We apply the standard gradient descent algorithm to train
several popular deep networks using various datasets and
study the gradients generated along the optimization trajectory
using the gradient correlation metric defined in Section II.
We consistently make the following observations.
• We first run gradient descent with a large learning rate

to train various convolutional and residual networks,
and consistently observe two distinct gradient correlation
patterns: (i) gradients computed in adjacent iterations
are highly positively correlated (in terms of the cosine
similarity defined in eq. (2)); and (ii) gradients computed
in adjacent iterations are highly negatively correlated, i.e.,
they suffer from intensive oscillation. Surprisingly, most
of the training loss decrease is attained with oscillating
gradients. Interestingly, we find that gradient oscillation
(GO) occurs in the later phase of training for convolutional
type networks, whereas it occurs in the initial phase of
training for residual type networks.
We further track the layer-wise gradient correlation (i.e.,
correlation of layer-wise gradients) throughout the training
process, and observe the same correlation patterns as
described above in all the layers of the networks.



• We then run gradient descent with a small learning
rate and observe similar gradient correlation patterns for
different networks as described above. However, in this
case, the layer-wise gradient correlations have different
patterns across the layers. Specifically, we consistently
observe high GO in the input layers, whereas gradients
of the output layers tend to be more stable and positively
correlated. This shows that the vanilla gradients generated
by gradient descent have highly imbalanced layer-wise
gradient correlation across the layers of deep models.
Our discoveries suggest that GO is an essential and

invariant feature in the optimization of different types of deep
neural networks, and may inspire new optimizer designs.

B. Related Work

Many nonconvex optimization theories have been devel-
oped to explain the success of deep learning optimization. The
key idea is to prove that deep neural networks have certain
nice geometries that guarantee convergence to the global
minimum in nonconvex optimization. For example, many
types of deep neural networks such as over-parameterized
residual networks [4]–[6], recurrent networks [7], nonlinear
networks [8], [9], and linear networks [17], [18] have been
shown to satisfy the so-called gradient dominant geometry
[19]. On the other hand, shallow ReLU networks [10]–[13],
deep residual networks [6], and some nonlinear networks [20],
[21] have been shown to satisfy the local strong convexity
geometry. Both geometry types guarantee the convergence of
gradient-based algorithms to a global minimum at a linear
rate. Moreover, some other works proved that no spurious
local minimum exists for various nonlinear networks [22],
[23] and linear networks [24], [25].

On the other hand, from an empirical perspective, re-
searchers have found that skip connections and batch nor-
malization of deep networks can substantially improve the
smoothness of the optimization geometry [26]–[28]. Further-
more, some other works found that there is a continuous
low-loss path between the minima of deep networks [29],
[30]. In particular, it is observed that a simple linear inter-
polation between the initialization point and global optimum
encounters no significant barrier for many deep networks
[31]. Moreover, many networks have been shown to possess
wide and flat minima that tend to generalize well [32], [33].

II. PRELIMINARIES

A. Definition of Gradient Correlation

To understand the optimization behavior of gradient descent
(GD) in deep learning, we investigate the gradients generated
along the optimization trajectory of GD. Specifically, given a
set of training samples {xi, yi}ni=1 where xi denotes the data
and yi denotes the corresponding label, the training objective
function and the GD update at each step (k = 0, 1, . . .) are
written as follows.

(Objective function): Ln(θ) :=
1

n

n∑
i=1

`(hθ(xi), yi),

(GD): θk+1 = θk − η∇Ln(θk), (1)

where hθ denotes the neural network model parameterized by
θ, ∇ is the gradient operator with respect to the parameter
θ, η is the learning rate, and ` is the loss function. We
focus on classification tasks with cross-entropy loss in
this paper. In the training, we collect a set of gradients
generated along the optimization trajectory of GD, i.e.,
{∇Ln(θ0),∇Ln(θ1), . . . ,∇Ln(θk), . . .}. These gradients de-
termine the direction of model updates. To quantify the
gradients’ statistical behavior, we consider the following
gradient correlation between an arbitrary pair of gradients
(∇Ln(θj),∇Ln(θk)).

(Gradient correlation): (2)

µ(j, k) :=
〈∇Ln(θj),∇Ln(θk)〉
‖∇Ln(θj)‖ · ‖∇Ln(θk)‖

∈ [−1, 1], ∀ j, k,

where ‖·‖ denotes the `2-norm. To help visualize the gradient
correlation, in all of our experiments, we fix a window size
h = 5 and track the mean gradient correlation over all pairs
of adjacent iterations within the window. The choice of h is
not essential as it only affects the smoothness of the mean
gradient correlation curves.

B. Gradient Correlation in Convex Optimization

We illustrate gradient correlation in training a simple
convex linear classifier using gradient descent with learning
rate η = 0.01 on the MNIST dataset [34]. In Figure 1, we
plot the training loss and the corresponding mean gradient
correlation over 2500 epochs. It can be seen that the mean
gradient correlation is very close to +1 throughout the
training, indicating that the gradients calculated between
adjacent iterations are highly positively correlated and the
training is stable. This is due to the well-conditioned convex
geometry and the use of a small learning rate. In the following
sections, however, we show that optimization in deep learning
is usually driven by oscillating gradients.

Fig. 1: Training perceptron using GD on MNIST.

III. GRADIENT OSCILLATION OF GD IN NEURAL
NETWORK TRAINING

In this section, we explore the correlation of the gradients
(defined in Section II) generated by GD in training various
types of modern deep networks using a large learning rate.

A. Training Convolutional Networks

Simple CNN. We train a simple feed-forward CNN that
consists of three convolution blocks and one fully-connected
block on the CIFAR-10 dataset [35] using GD. We set the
learning rate η = 0.1 and train it for 1500 epochs. We track



the training loss and mean gradient correlation throughout
the training process, and the results are shown in Figure 2.
It can be seen that the training loss decreases to almost zero
after 800 epochs.

Interestingly, the mean gradient correlation changes drasti-
cally in different stages of training. Specifically, in the first
10 epochs at the very beginning of training, the gradient
correlation between adjacent iterations is close to +1. This
shows that the gradients computed in the initial epochs are
very stable and highly positively correlated (i.e., they point
toward the same direction), as can be seen from the pairwise
gradient correlation matrix computed in epoch 5 shown in the
second row. However, after 10 epochs, the gradient correlation
drops to highly negative values close to −1, which implies
that the gradients become unstable and start to oscillate. This
phenomenon is further illustrated by the pairwise gradient
correlation matrix computed in epoch 675 shown in the second
row. Surprisingly, one can observe that most of the training
loss decrease is achieved with oscillating gradients between
10 and 800 epochs.

Fig. 2: CNN training using GD on CIFAR-10. From left to
right: training loss curve, mean gradient correlation curve,
pairwise correlations of gradients within a window of h = 5
consecutive iterations at epochs 5 and 675, respectively.

VGG-16. We further explore the gradient correlation in
training a VGG-16 network on the CIFAR-10 dataset using
GD with learning rate η = 0.1 for 1500 epochs. The
results are shown in Figure 3, where we can observe a
similar phenomenon. Specifically, the gradient correlation
is highly positive in most of the initial 500 epochs. This is
further illustrated by the pairwise gradient correlation matrix
computed in epoch 5 shown in the second row, whose entries
are uniformly highly positive. This shows that the gradients
computed in the initial epochs are stable and pointing toward
almost the same direction. However, in the later training
phase after 500 epochs, the gradient correlation drops to
highly negative values, indicating an occurrence of gradient
oscillation. This phenomenon is further illustrated by the
pairwise gradient correlation matrix computed in epoch 915
shown in the second row. Again, one can observe that most
of the training loss decrease is achieved with oscillating
gradients after 500 epochs.

Fig. 3: VGG-16 training using GD on CIFAR-10.

Summary. We obtain additional results on training
convolutional-type networks using other datasets including
MNIST [34] and SVHN [36]. The observations are very
similar and are not presented due to space limitation. From
all these results, we observe a common phenomenon in
training convolutional type networks using GD: most of the
optimization progress is achieved with oscillating gradients,
and moreover, the gradients generated along the optimization
trajectory have a sharp transition from positive correlation to
negative correlation. This is very different from the gradients
in training convex models (see Section II-B), which are highly
positive throughout the training.

B. Training Residual Networks

We train various residual networks using GD and track the
gradient correlation. Interestingly, we also observe gradient
oscillation in training residual networks, but the overall
transition of gradient correlation is very different from that
of convolutional networks.

ResNet-18. We train a ResNet-18 on CIFAR-10 using GD
with learning rate η = 0.1 for 500 epochs, and track the
training loss and gradient correlation. The results are shown
in Figure 4, from which one can see a very different transition
of gradient correlation compared to convolutional networks.
Specifically, one can see that the gradient correlation is
highly negative in the first 120 epochs. This shows that
the gradients computed in adjacent iterations are negatively
correlated in the initial training phase, indicating gradient
oscillation. This phenomenon is further illustrated by the
pairwise gradient correlation matrix computed in epoch
60. After 150 epochs, the gradient correlation increases to
highly positive values, implying very stable and positively
correlated gradients when approaching the minimizer. This
is also illustrated by the pairwise gradient correlation matrix
computed in epoch 490. To summarize, the gradients in
training ResNet-18 have a sharp transition from negative
correlation to positive correlation, which is opposite to that of
convolutional networks. Moreover, most of the loss decrease
is achieved with oscillating gradients.



Fig. 4: ResNet-18 training using GD on CIFAR-10.

ResNet-34. We further train a ResNet-34 on CIFAR-10
using GD with η = 0.1 for 500 epochs. The results are shown
in Figure 5, where one can observe a similar transition of
gradient correlation to that of ResNet-18.

Fig. 5: ResNet-34 training using GD on CIFAR-10.

Summary. We obtain additional results on training residual
networks using MNIST and SVHN. The observations are very
similar and are not presented due to space limitation. From all
these results, we observe a common phenomenon in training
residual type networks using GD: the gradients generated
along the optimization trajectory have a sharp transition from
negative correlation to positive correlation. This is opposite
to the transition observed in training convolutional networks.

C. Layer-wise Gradient Correlation

An important feature of deep networks is the composition
of layers. In this subsection, we further investigate gradient
correlation across different layers. Due to space limitation,
we only present the results on a subset of the layers.

Simple CNN. The following Figure 6 tracks the layer-
wise gradient correlation and gradient dot product (associated
with the layer-wise gradient correlation) in training a CNN
on CIFAR-10 using GD with learning rate η = 0.1. We
only present the results on the first and last layers, and the
intermediate layers have similar results. From the first row
of the figure, it can be seen that gradient correlation behaves

consistently across different layers, i.e., it is highly positive
in the first 10 epochs and then drops to highly negative values
later on. This implies that gradient oscillation occurs in all the
layers. On the other hand, from the second row of the figure,
we observe that the layer-wise gradient dot products are of
similar numerical order. This shows that gradient oscillation
occurs uniformly across the layers.

0-th layer: conv block 6-th layer: fc block

Fig. 6: Layer-wise gradient correlation and dot product in
training CNN on CIFAR-10.

0-th layer 16-th layer

Fig. 7: Layer-wise gradient correlation and dot product in
training VGG-16 on CIFAR-10.

VGG-16. Figure 7 shows the layer-wise gradient corre-
lation and gradient dot product in training a VGG-16 on
CIFAR-10 using GD with η = 0.1. One can make similar
observations that gradient oscillation occurs uniformly across
all the layers.

ResNet-18 & ResNet-34. Figures 8 and 9 show the layer-
wise gradient correlation and gradient dot product in training
a ResNet-18 and ResNet-34 on CIFAR-10 using GD with η =
0.1. One can see that the transition of the gradient correlation
is highly consistent across all layers, and is opposite to that
observed in training convolutional networks. Also, gradient
oscillation occurs uniformly across all the layers.

Summary. From all these results on layer-wise gradient
correlation, we consistently observe that gradient oscillation
occurs uniformly across all the layers in training different



0-th layer 38-th layer

Fig. 8: Layer-wise gradient correlation and dot product in
training ResNet-18 on CIFAR-10.

0-th layer 70-th layer

Fig. 9: Layer-wise gradient correlation and dot product in
training ResNet-34 on CIFAR-10.

types of networks when a large learning rate is used.

IV. GRADIENT OSCILLATION UNDER SMALL LR

All the previous experiments are conducted under a
relatively large learning rate η = 0.1, which causes gradient
oscillation in all the layers during the training. In this section,
we explore the impact of learning rate on the transition of
gradient correlation in the training.

Simple CNN. The following Figure 10 shows the training
of a CNN on CIFAR-10 using GD with a small learning rate
η = 0.001 for 30k epochs. From the second figure in the
first row, it can be seen that the global gradient correlation
follows a similar transition to that under the previous large
learning rate, i.e., it is highly positive at the beginning and
drops to highly negative values after about 8k epochs.

However, the figures in the second and third rows show that
the layer-wise gradient correlations behave very differently
from the global gradient correlation. Specifically, from the
dot product figures in the third row, it can be seen that the dot
product of the first convolutional block numerically dominates
that of all the layers, because the scale of the inner product
in this layer is substantially larger than other layers. This

implies that the first convolutional block contributes the most
to the global gradient correlation, and its layer-wise gradient
correlation (first figure in the second row) is highly consistent
with the global gradient correlation. On the other hand, the
layer-wise gradient correlation of the last layer is substantially
higher, implying that the gradient oscillation is less severe in
the output layer.

0-th layer: conv block 6-th layer: fc block

Fig. 10: CNN training using GD with η = 0.001 on CIFAR-
10. The first row shows the training loss and the mean
correlation of the global gradient. The second row shows
the mean correlation of layer-wise gradients.

ResNet-18. Figure 11 shows the training of ResNet-18 on
CIFAR-10 using GD with a small learning rate η = 0.001,
from which one can make similar observations. Specifically,
the first layer dominates the dot product among all the
layers and hence contributes the most to the global gradient
correlation. Consequently, its layer-wise gradient correlation
is highly consistent with the global gradient correlation, and
is highly negative in most of the epochs. As a comparison,
the layer-wise gradient correlation of the last 38-th layer is
close to +1, implying that the gradients of this layer are very
stable in the training.

Summary. We obtain additional results on training ResNet-
18 and ResNet-34 on CIFAR-10 (with small η = 0.01) and
SVHN (with small η = 0.01, 0.001). The observations are
very similar and are not presented due to space limitation.
From all these results, we conclude that layer-wise gradient
correlation can be diverse across different layers when the
model is trained with small learning rates. In particular,
the input layers are more likely to experience gradient
oscillation, whereas the gradients of the subsequent layers
are more and more stable. We think this is related to the
composition structure of deep neural networks, which makes
the parameters of the input layers suffer from a larger



0-th layer 38-th layer

Fig. 11: ResNet-18 training using GD with η=0.001 on
CIFAR-10.

Lipschitz constant that induces a smaller feasible learning
rate.

V. CONCLUSION

In this paper, we reveal that gradient descent usually
suffers from gradient oscillation in training modern deep
networks. Such gradient oscillation follows diverse transition
patterns depending on the learning rate, model architecture
and different layers. As a comparison, the Adam adaptive
optimizer applies normalized gradient updates to suppress the
oscillation across different layers. These observations show
that deep learning optimization cannot be fully characterized
by the classic optimization theories, which crucially rely
on simple and elegant geometrical assumptions. We hope
to advance the understanding of neural network training in
practice and inspire new optimizer designs.
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