
Vietoris–Rips and Čech Complexes of Metric Gluings 3:1

Vietoris–Rips and Čech Complexes of Metric
Gluings

Michał Adamaszek
MOSEK ApS
Copenhagen, Denmark
aszek@mimuw.edu.pl

https://orcid.org/0000-0003-3551-192X

Henry Adams
Department of Mathematics, Colorado State University
Fort Collins, CO, USA
adams@math.colostate.edu

https://orcid.org/0000-0003-0914-6316

Ellen Gasparovic
Department of Mathematics, Union College
Schenectady, NY, USA
gasparoe@union.edu

https://orcid.org/0000-0003-3775-9785

Maria Gommel
Department of Mathematics, University of Iowa
Iowa City, IA, USA
maria-gommel@uiowa.edu

https://orcid.org/0000-0003-2714-9326

Emilie Purvine
Computing and Analytics Division, Pacific Northwest National Laboratory
Seattle, WA, USA
emilie.purvine@pnnl.gov

https://orcid.org/0000-0003-2069-5594

Radmila Sazdanovic1

Department of Mathematics, North Carolina State University
Raleigh, NC, USA
rsazdanovic@math.ncsu.edu

https://orcid.org/0000-0003-1321-1651

Bei Wang2

School of Computing, University of Utah
Salt Lake City, UT, USA
beiwang@sci.utah.edu

https://orcid.org/0000-0002-9240-0700

Yusu Wang3

Department of Computer Science, The Ohio State University

1 Simons Collaboration Grant 318086
2 NSF IIS-1513616 and NSF ABI-1661375
3 NSF CCF-1526513, CCF-1618247, and CCF-1740761

SoCG 2018

mailto:aszek@mimuw.edu.pl
https://orcid.org/0000-0003-3551-192X
mailto:adams@math.colostate.edu
https://orcid.org/0000-0003-0914-6316
mailto:gasparoe@union.edu
https://orcid.org/0000-0003-3775-9785
mailto:maria-gommel@uiowa.edu
https://orcid.org/0000-0003-2714-9326
mailto:emilie.purvine@pnnl.gov
https://orcid.org/0000-0003-2069-5594
mailto:rsazdanovic@math.ncsu.edu
https://orcid.org/0000-0003-1321-1651
mailto:beiwang@sci.utah.edu
https://orcid.org/0000-0002-9240-0700


Columbus, OH, USA
yusu@cse.ohio-state.edu

https://orcid.org/0000-0001-7950-4348

Lori Ziegelmeier
Department of Mathematics, Statistics, and Computer Science, Macalester College
Saint Paul, MN, USA
lziegel1@macalester.edu

https://orcid.org/0000-0002-1544-4937

Abstract
We study Vietoris–Rips and Čech complexes of metric wedge sums and metric gluings. We show
that the Vietoris–Rips (resp. Čech) complex of a wedge sum, equipped with a natural metric,
is homotopy equivalent to the wedge sum of the Vietoris–Rips (resp. Čech) complexes. We also
provide generalizations for certain metric gluings, i.e. when two metric spaces are glued together
along a common isometric subset. As our main example, we deduce the homotopy type of the
Vietoris–Rips complex of two metric graphs glued together along a sufficiently short path. As a
result, we can describe the persistent homology, in all homological dimensions, of the Vietoris–
Rips complexes of a wide class of metric graphs.
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1 Introduction

When equipped with a notion of similarity or distance, data can be thought of as living in
a metric space. Our goal is to characterize the homotopy types of geometric thickenings
of a wide class of metric spaces. In particular, we consider metric spaces formed by gluing
smaller metric spaces together along certain nice intersections; our results then characterize
the persistent homology of these spaces. Persistent homology is a central tool in topological
data analysis that captures complex interactions within a system at multiple scales [13, 19].

The geometric complexes of interest are Vietoris–Rips and Čech complexes, which build a
simplicial complex on top of a metric space according to the choice of a scale parameter r. We
first study Vietoris–Rips and Čech complexes of metric wedge sums: given two metric spaces
X and Y with specified basepoints, the metric wedge sum X ∨ Y is obtained by gluing X
and Y together at the specified points. We show that the Vietoris–Rips (resp. Čech) complex
of the metric wedge sum is homotopy equivalent to the wedge sum of the Vietoris–Rips (resp.
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Čech) complexes. We also provide generalizations for certain more general metric gluings,
namely, when two metric spaces are glued together along a common isometric subset.

One common metric space that appears in applications such as road networks [1], brain
functional networks [8], and the cosmic web [29] is a metric graph, a structure where any two
points of the graph (not only vertices) are assigned a distance equal to the minimum length
of a path from one point to the other. In this way, a metric graph encodes the proximity
data of a network into the structure of a metric space. As a special case of our results, we
show that the Vietoris–Rips complex of two metric graphs glued together along a sufficiently
short common path is homotopy equivalent to the union of the Vietoris–Rips complexes.
This enables us to determine the homotopy types of geometric thickenings of a large class of
metric graphs, namely those that can be constructed iteratively via simple gluings.

The motivation for using Vietoris–Rips and Čech complexes in the context of data
analysis is that these complexes can recover topological features of an unknown sample space
underlying the data. Indeed, in [22, 25], it is shown that if the underlying space M is a closed
Riemannian manifold, if scale parameter r is sufficiently small compared to the injectivity
radius of M , and if a sample X is sufficiently close to M in the Gromov-Hausdorff distance,
then the Vietoris–Rips complex of the sample X at scale r is homotopy equivalent to M .
Analogously, the Nerve Theorem implies that the Čech complex (the nerve of all metric balls
of radius r) of a similarly nice sample is homotopy equivalent to M for small r ([10] or [21,
Corollary 4G.3]). In this paper, we identify the homotopy types of Vietoris–Rips and Čech
complexes of certain metric graphs at all scale parameters r, not just at small scales.

Our paper builds on the authors’ prior work characterizing the 1-dimensional intrinsic Čech
persistence module associated to an arbitrary metric graph. Indeed, [20] shows that the 1-
dimensional intrinsic Čech persistence diagram associated to a metric graph of genus g (i.e., the
rank of the 1-dimensional homology of the graph) consists of the points

{(
0, `i

4
)

: 1 ≤ i ≤ g
}
,

where `i corresponds to the length of the ith loop. In the case of the Vietoris–Rips complex,
the results hold with the minor change that the persistence points are

{(
0, `i

6
)

: 1 ≤ i ≤ g
}
.

An extension of this work is [31], which studies the 1-dimensional persistence of geodesic
spaces. In [3, 4], the authors show that the Vietoris–Rips or Čech complex of the circle
obtains the homotopy types of the circle, the 3-sphere, the 5-sphere, . . . , as the scale r
increases, giving the persistent homology in all dimensions of a metric graph consisting of a
single cycle. In this paper, we extend to a larger class of graphs: our results characterize
the persistence profile, in any homological dimension, of Vietoris–Rips complexes of metric
graphs that can be iteratively built by gluing trees and cycles together along short paths.

Our results on Vietoris–Rips and Čech complexes of metric gluings have implications
for future algorithm development along the line of “topological decompositions". The
computation time of homotopy, homology, and persistent homology depend on the size of the
simplicial complex. It would be interesting to investigate if our Theorem 10 means that one
can break a large metric graph into smaller pieces, perform computations on the simplicial
complex of each piece, and then subsequently reassemble the results together. This has the
potential to use less time and memory.

Outline. Section 2 introduces the necessary background and notation. Our main results
on the Vietoris–Rips and Čech complexes of metric wedge sums and metric gluings are
established in Section 3. In addition to proving homotopy equivalence in the wedge sum
case, we show that the persistence module (for both Vietoris–Rips and Čech) of the wedge
sum of the complexes is isomorphic to the persistence module of the complex for the wedge
sum. We develop the necessary machinery to prove that the Vietoris–Rips complex of metric
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3:4 Vietoris–Rips and Čech Complexes of Metric Gluings

spaces glued together along a sufficiently short path is homotopy equivalent to the union of
the Vietoris–Rips complexes. The machinery behind this proof technique does not hold in
the analogous case for the Čech complex, and we provide an example illustrating why not. In
Section 4, we describe families of metric graphs to which our results apply and furthermore
discuss those that we cannot yet characterize. In Section 5, we conclude with our overall
goal of characterizing the persistent homology profiles of families of metric graphs.

2 Background

In this section, we recall the relevant background in the settings of simplicial complexes and
metric spaces, including metric graphs. For a more comprehensive introduction of related
concepts from algebraic topology, we refer the reader to [21], and to [23] and [19] for a
combinatorial and computational treatment, respectively.

Simplicial complexes. An abstract simplicial complex K is a collection of finite subsets of
some (possibly infinite) vertex set V = V (K), such that if σ ∈ K and τ ⊆ σ, then τ ∈ K. In
this paper, we use the same symbol K to denote both the abstract simplicial complex and
its geometric realization. For V ′ ⊆ V , we let K[V ′] denote the induced simplicial complex
on the vertex subset V ′. If K and L are simplicial complexes with disjoint vertex sets V (K)
and V (L), then their join K ∗ L is the simplicial complex whose vertex set is V (K) ∪ V (L),
and whose set of simplices is K ∗ L = {σK ∪ σL | σK ∈ K and σL ∈ L} [23, Definition 2.16].
The join of two disjoint simplices σ = {x0, · · · , xn} and τ = {y0, · · · , ym} is the simplex
σ ∪ τ := {x0, · · · , xn, y0, · · · , ym}.

By an abuse of notation, a simplex S ∈ K can be considered as either a single simplex,
or as a simplicial complex {S′ | S′ ⊆ S} with all subsets as faces. When taking joins,
we use ∪ to denote that the result is a simplex, and we use ∗ to denote that the result
is a simplicial complex. For example, for a ∈ V (K) a vertex and S ∈ K a simplex, we
use the notation a ∪ S := {a} ∪ S to denote the simplex formed by adding vertex a to
S. We instead use a ∗ S := {a ∪ S′ | S′ ⊆ S} to denote the associated simplicial complex.
Similarly, for two simplices σ, S ∈ K, we use σ ∪ S to denote a simplex, and we instead use
σ ∗ S := {σ′ ∪ S′ | σ′ ⊆ σ, S′ ⊆ S} to denote the associated simplicial complex. We let Ṡ be
the boundary simplicial complex Ṡ = {S′ | S′ ( S}, and therefore a ∗ Ṡ := {a ∪ S′ | S′ ( S}
and σ ∗ Ṡ := {σ′ ∪ S′ | σ′ ⊆ σ, S′ ( S} are simplicial complexes.

A simplicial complex K is equipped with the topology of a CW-complex [21]: a subset
of the geometric realization of K is closed if and only if its intersection with each finite-
dimensional skeleton is closed.

Simplicial collapse. Recall that if τ is a face of a simplex σ, then σ is said to be a coface
of τ . Given a simplicial complex K and a maximal simplex σ ∈ K, we say that a face τ ⊆ σ
is a free face of σ if σ is the unique maximal coface of τ in K. A simplicial collapse of K
with respect to a pair (τ, σ), where τ is a free face of σ, is the removal of all simplices ρ such
that τ ⊆ ρ ⊆ σ. If dim(σ) = dim(τ) + 1 then this is an elementary simplicial collapse. If L
is obtained from a finite simplicial complex K via a sequence of simplicial collapses, then L
is homotopy equivalent to K, denoted L ' K [23, Proposition 6.14].

Metric spaces. Let (X, d) be a metric space, where X is a set equipped with a distance
function d. Let B(x, r) := {y ∈ X | d(x, y) ≤ r} denote the closed ball with center x ∈ X
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and radius r ≥ 0. The diameter of X is diam(X) = sup{d(x, x′) | x, x′ ∈ X}. A submetric
space of X is any set X ′ ⊆ X with a distance function defined by restricting d to X ′ ×X ′.

Vietoris–Rips and Čech complexes. We consider two types of simplicial complexes con-
structed from a metric space (X, d). These constructions depend on the choice of a scale
parameter r ≥ 0. First, the Vietoris–Rips complex of X at scale r ≥ 0 consists of all finite
subsets of diameter at most r, that is, VR(X; r) = {finite σ ⊆ X | diam(σ) ≤ r}. Second,
for X a submetric space of X ′, we define the ambient Čech complex with vertex set X as
Čech(X,X ′; r) := {finite σ ⊆ X | ∃ x′ ∈ X ′ with d(x, x′) ≤ r ∀ x ∈ σ}. The set X is often
called the set of “landmarks”, and X ′ is called the set of “witnesses” [17]. This complex can
equivalently be defined as the nerve of the balls BX′(x, r) in X ′ that are centered at points
x ∈ X, that is, Čech(X,X ′; r) = {finite σ ⊆ X |

⋂
x∈σ BX′(x, r) 6= ∅}. When X = X ′, we

denote the (intrinsic) Čech complex of X as Čech(X; r) = Čech(X,X; r). Alternatively, the
Čech complex can be defined with an open ball convention, and the Vietoris–Rips complex
can be defined as VR(X; r) = {σ ⊆ X | diam(σ) < r}. Unless otherwise stated, all of our
results hold for both the open and closed convention for Čech complexes, as well as for both
the < and ≤ convention on Vietoris–Rips complexes.

Persistent homology. For k a field, for i ≥ 0 a homological dimension, and for Y a
filtered topological space, we denote the persistent homology (or persistence) module of Y
by PHi(Y ; k). Persistence modules form a category [16, Section 2.3], where morphisms are
given by commutative diagrams.

Gluings of topological spaces. Let X and Y be two topological spaces that share a common
subset A = X ∩Y . The gluing space X ∪A Y is formed by gluing X to Y along their common
subspace A. More formally, let ιX : A → X and ιY : A → Y denote the inclusion maps.
Then the gluing space X ∪A Y is the quotient space of the disjoint union X

∐
Y under the

identification ιX(a) ∼ ιY (a) for all a ∈ A. The gluing of two simplicial complexes along a
common subcomplex is itself a simplicial complex.

Gluings of metric spaces. Following Definition 5.23 in [11], we define a way to glue two
metric spaces along a closed subspace. Let X and Y be arbitrary metric spaces with closed
subspaces AX ⊂ X and AY ⊂ Y . Let A be a metric space with isometries ιX : A → AX
and ιY : A → AY . Let X ∪A Y denote the quotient of the disjoint union of X and Y by
the equivalence between AX and AY , i.e., X ∪A Y = X t Y/{ιX(a) ∼ ιY (a) | a ∈ A}. Then
X ∪A Y is the gluing of X and Y along A. We define a metric on X ∪A Y , which extends
the metrics on X and Y :

dX∪AY (s, t) =


dX(s, t) if s, t ∈ X
dY (s, t) if s, t ∈ Y
infa∈A dX(s, ιX(a)) + dY (ιY (a), t) if s ∈ X, t ∈ Y.

Lemma 5.24 of [11] shows that the gluing (X ∪A Y, dX∪AY ) of two metric spaces along
common isometric closed subsets is itself a metric space. In this paper all of our metric
gluings will be done in the case where X ∩ Y = A and the ιX and ιY are identity maps.
This definition of gluing metric spaces agrees with that of gluing their respective topological
spaces, with the standard metric ball topology.
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3:6 Vietoris–Rips and Čech Complexes of Metric Gluings

Pointed metric space and wedge sum. A pointed metric space is a metric space (X, dX)
with a distinguished basepoint bX ∈ X. In the notation of metric gluings, given two pointed
metric spaces (X, dX) and (Y, dY ), let X ∨ Y = X ∪A Y where AX = {bX} and AY = {bY };
we also refer to X ∨ Y as the wedge sum of X and Y . The gluing metric on X ∨ Y is the
same as in the gluing of metric spaces above with |A| = 1.

Metric graphs. A graph G consists of set V = {vi} of vertices and a set E = {ej} of edges
connecting the vertices. A graph G is a metric graph if each edge ej is assigned a positive
finite length lj [11, 12, 24]. Under mild hypotheses4, the graph G can be equipped with a
natural metric dG: the distance between any two points x and y (not necessarily vertices) in
the metric graph is the infimum of the length of all paths between them.

Loops of a metric graph. A loop of a metric graph G is a continuous map c : S1 → G.
We also use the word loop to refer to the image of this map. Intuitively, elements of the
singular 1-dimensional homology of G may be represented by collections of loops in G [21].
The length of a loop is the length of the image of the map c.

3 Homotopy equivalences for metric gluings

3.1 Homotopy lemmas for simplicial complexes
In this section, we present three lemmas that will be vital to our study of homotopy
equivalences of simplicial complexes. We begin with a lemma proved by Barmak and
Minian [7] regarding a sequence of elementary simplicial collapses between two simplicial
complexes (Lemma 1). We then generalize this lemma in order to use it in the case where
the simplicial collapses need not be elementary (Lemma 2). While these first two lemmas are
relevant in the context of finite metric spaces, the third lemma will be useful when passing
to arbitrary metric spaces. These three lemmas will later allow us to show that a complex
built on a gluing is homotopy equivalent to the gluing of the complexes.

I Lemma 1 (Lemma 3.9 from [7]). Let L be a subcomplex of a finite simplicial complex K.
Let T be a set of simplices of K which are not in L, and let a be a vertex of L which is
contained in no simplex of T , but such that a∪ S is a simplex of K for every S ∈ T . Finally,
suppose that K = L ∪

⋃
S∈T {S, a ∪ S}. Then K is homotopy equivalent to L via a sequence

of elementary simplicial collapses.

In [7], Barmak and Mimian observe that there is an elementary simplicial collapse from K

to L if there is a simplex S of K and a vertex a of K not in S such that K = L ∪ {S, a ∪ S}
and L∩ (a ∗ S) = a ∗ Ṡ, where Ṡ denotes the boundary of S. Indeed, S is the free face of the
elementary simplicial collapse, and the fact that a ∪ S is the unique maximal coface of S
follows from L ∩ (a ∗ S) = a ∗ Ṡ (which implies the intersection of L with S is the boundary
of S). See Figure 1 (left) for an illustration.

It’s not difficult to show that Barmak and Minian’s observation can be made more general.
In fact, there is a simplicial collapse from K to L if there is a simplex S of K and another
simplex σ of K, disjoint from S, such that K = L∪{τ : S ⊆ τ ⊆ σ∪S} and L∩(σ∗S) = σ∗Ṡ.
Indeed, S is again the free face of the simplicial collapse, and the fact that σ∪S is the unique

4 For every vertex, the lengths of the edges incident to that vertex are bounded away from zero [11,
Section 1.9].
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S S

a
�

L L

Figure 1 Examples of simplicial collapses when T = {S} for Lemma 1 (left) and Lemma 2 (right).

maximal coface of S in K follows from L ∩ (σ ∗ S) = σ ∗ Ṡ (which implies the intersection of
L with S is the boundary of S). See Figure 1 (right) for an illustration.

Our more general Lemma 2 will be used in the proof of Theorem 8 when we consider
gluings along sets that are larger than just a single point.

I Lemma 2 (Generalization of Lemma 1). Let L be a subcomplex of a finite simplicial complex
K, and let σ be a simplex in L. Suppose T is a set of simplices of K which are not in L and
which are disjoint from σ, but such that σ ∪ S is a simplex of K for every S ∈ T . Finally,
suppose K = L ∪

⋃
{S∈T}{τ | S ⊆ τ ⊆ σ ∪ S}. Then K is homotopy equivalent to L via a

sequence of simplicial collapses.

Proof. We mimic the proof of Lemma 3.9 in [7], except that we perform a sequence of
simplicial collapses rather than elementary simplicial collapses. Order the elements S1, S2,
. . . , Sn of T in such a way that for every i, j with i ≤ j, we have |Si| ≤ |Sj |. Define
Ki = L∪

⋃
i
j=1{τ | Sj ⊆ τ ⊆ σ∪Sj} for 0 ≤ i ≤ n. Let S ( Si. If S ∈ T , then σ∪S ∈ Ki−1

since |S| < |Si|. If S /∈ T , then σ∪S is in L ⊆ Ki−1. This proves that Ki−1∩(σ∗Si) = σ∗ Ṡi,
and so Si is the free face of a simplicial collapse from Ki to Ki−1. Then we are done since
K = Kn and L = K0. J

The next lemma will be useful when passing from wedge sums or gluings of finite metric
spaces to wedge sums or gluings of arbitrary metric spaces.

I Lemma 3. Let K be a (possibly infinite) simplicial complex with vertex set V , and let L
be a subcomplex also with vertex set V . Suppose that for every finite V0 ⊆ V , there exists
a finite subset V1 with V0 ⊆ V1 ⊆ V such that the inclusion L[V1] ↪→ K[V1] is a homotopy
equivalence. It then follows that the inclusion map ι : L ↪→ K is a homotopy equivalence.

Proof. We will use a compactness argument to show that the induced mapping on homotopy
groups ι∗ : πk(L, b) → πk(K, b) is an isomorphism for all k and for any basepoint b in the
geometric realization of L. The conclusion then follows from Whitehead’s theorem [21,
Theorem 4.5].

First, suppose we have a based map f : Sk → K where Sk is the k-dimensional sphere.
Since f is continuous and Sk is compact, it follows that f(Sk) is compact in K. Then by [21,
Proposition A.1] we know that f(Sk) is contained in a finite subcomplex of K. Therefore,
there exists a finite subset V0 ⊆ V so that f factors through K[V0] ⊆ K. By assumption,
there exists a finite subset V1 with V0 ⊆ V1 ⊆ V such that the inclusion ι1 : L[V1] ↪→ K[V1]
is a homotopy equivalence. Thus, we can find a based map f̃ : Sk → L[V1] such that
[ι1f̃ ] = [f ] ∈ πk(K[V1], b) and hence [ιf̃ ] = [f ] ∈ πk(K, b). This proves that ι∗ is surjective.

SoCG 2018



3:8 Vietoris–Rips and Čech Complexes of Metric Gluings

Next, suppose that f : Sk → L is a based map such that ιf : Sk → K is null-homotopic.
Let F : Bk+1 → K be a null-homotopy between ιf and the constant map, where Bk+1 is the
(k+ 1)-dimensional ball. By compactness of Sk and Bk+1, we can find a finite subset V0 ⊆ V
such that f factors through L[V0] and F factors through K[V0]. By assumption, there exists
a finite subset V1 with V0 ⊆ V1 ⊆ V such that the inclusion ι1 : L[V1] ↪→ K[V1] is a homotopy
equivalence. Note that ι1f : Sk → K[V1] is null-homotopic via F , and since the inclusion ι1
is a homotopy equivalence, it follows that f is null-homotopic, and thus ι∗ is injective. J

3.2 Vietoris–Rips and Čech complexes of wedge sums
As a warm-up, we first show in this subsection that the Vietoris–Rips complex of a metric
wedge sum (i.e, gluing along a single point) is homotopy equivalent to the wedge sum of
the Vietoris–Rips complexes, and similarly for Čech complexes. In the next subsection,
Proposition 4 will be extended in Corollary 9 and Theorem 10 to gluings of metric spaces
and to gluings of metric graphs along short paths, respectively. Intuitively, such results allow
us to characterize the topology of a bigger space via the topology of smaller individual pieces.

Given pointed metric spaces X and Y , we use the symbol b ∈ X ∨ Y to denote the point
corresponding to the identified distinguished basepoints bX ∈ X and bY ∈ Y .

I Proposition 4. For X and Y pointed metric spaces and r > 0, we have the homotopy
equivalence VR(X; r) ∨VR(Y ; r) ∼↪−→ VR(X ∨ Y ; r).

Proof. We first consider the case where X and Y are finite. We apply Lemma 1 with
L = VR(X; r)∨VR(Y ; r), with K = VR(X ∨ Y ; r), with T = {σ ∈ K \L | b /∈ σ}, and with
basepoint b ∈ X ∨ Y serving the role as a. It is easy to check the conditions on K,L and
T required by Lemma 1 are satisfied. Furthermore, if σ ∈ T , then at least one vertex of
X \ {bX} and one vertex of Y \ {bY } are in σ. Hence diam(σ ∪ b) ≤ r and σ ∪ b is a simplex
of K. Since K = L ∪

⋃
σ∈T {σ, σ ∪ b}, Lemma 1 implies L ' K.

Now let X and Y be arbitrary (possibly infinite) pointed metric spaces. For finite
subsets X0 ⊆ X and Y0 ⊆ Y with bX ∈ X0 and bY ∈ Y0, the finite case guarantees
that VR(X0; r) ∨ VR(Y0; r) ' VR(X0 ∨ Y0; r). Therefore, we can apply Lemma 3 with
L = VR(X; r) ∨VR(Y ; r) and K = VR(X ∨ Y ; r). J

Proposition 4, in the case of finite metric spaces, is also obtained in [26].

I Corollary 5. Let X and Y be pointed metric spaces. For any homological dimension i ≥ 0
and field k, the persistence modules PHi(VR(X; r) ∨VR(Y ; r); k) and PHi(VR(X ∨ Y ; r); k)
are isomorphic.

See the full version of this paper [5] for the proof of Corollary 5.
For a submetric space X ⊆ X ′, let Čech(X,X ′; r) be the ambient Čech complex with

landmark set X and witness set X ′. Note that if X ⊆ X ′ and Y ⊆ Y ′ are pointed with
bX = bX′ and bY = bY ′ , then X ∨ Y is a submetric space of X ′ ∨ Y ′.

I Proposition 6. For X ⊆ X ′ and Y ⊆ Y ′ pointed metric spaces and r > 0, we have the
homotopy equivalence Čech(X,X ′; r) ∨ Čech(Y, Y ′; r) ∼↪−→ Čech(X ∨ Y,X ′ ∨ Y ′; r).

The proof of Proposition 6 is in the full version of this paper. It proceeds similarly to the
proof of Proposition 4, except applying Lemma 1 with L = Čech(X,X ′; r) ∨ Čech(Y, Y ′; r),
K = Čech(X ∨ Y,X ′ ∨ Y ′; r), and T = {σ ∈ K \ L | b /∈ σ}.

I Corollary 7. Let X ⊆ X ′ and Y ⊆ Y ′ be pointed metric spaces. For any homological
dimension i ≥ 0 and field k, the persistence modules PHi(Čech(X,X ′; r) ∨ Čech(Y, Y ′; r))
and PHi(Čech(X ∨ Y,X ′ ∨ Y ′; r)) are isomorphic.
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3.3 Vietoris–Rips complexes of set-wise gluings
We now develop the machinery necessary to prove, in Theorem 10, that the Vietoris–Rips
complex of two metric graphs glued together along a sufficiently short path is homotopy
equivalent to the union of the Vietoris–Rips complexes. First, we prove a more general result
for arbitrary metric spaces that intersect in a sufficiently small space.

I Theorem 8. Let X and Y be metric spaces with X ∩ Y = A, where A is a closed
subspace of X and Y , and let r > 0. Consider X ∪A Y , the metric gluing of X and Y

along the intersection A. Suppose that if diam(SX ∪ SY ) ≤ r for some ∅ 6= SX ⊆ X \ A
and ∅ 6= SY ⊆ Y \ A, then there is a unique maximal nonempty subset σ ⊆ A such that
diam(SX ∪ SY ∪ σ) ≤ r. Then VR(X ∪A Y ; r) ' VR(X; r) ∪VR(A;r) VR(Y ; r). Hence if
VR(A; r) is contractible, then VR(X ∪A Y ; r) ' VR(X; r) ∨VR(Y ; r).

Proof. We first restrict our attention to the case when X and Y (and hence A) are finite.
Let n = |A|. Order the nonempty subsets σ1, σ2, . . . , σ2n−1 of A so that for every i, j with
i ≤ j, we have |σi| ≥ |σj |. For i = 1, 2, . . . , 2n − 1, let Ti be the set of all simplices of the
form SX ∪ SY such that
∅ 6= SX ⊆ X \A and ∅ 6= SY ⊆ Y \A,
diam(SX ∪ SY ) ≤ r, and
σi is the maximal nonempty subset of A satisfying diam(SX ∪ SY ∪ σi) ≤ r.

Let L0 = VR(X; r) ∪VR(A;r) VR(Y ; r). We apply Lemma 2 repeatedly to obtain

L0 'L0 ∪{S∈T1} {τ | S ⊆ τ ⊆ σ1 ∪ S} =: L1

'L1 ∪{S∈T2} {τ | S ⊆ τ ⊆ σ2 ∪ S} =: L2

...
'L2n−3 ∪{S∈T2n−2} {τ | S ⊆ τ ⊆ σ2n−2 ∪ S} =: L2n−2

'L2n−2 ∪{S∈T2n−1} {τ | S ⊆ τ ⊆ σ2n−1 ∪ S} =: L2n−1.

The fact that each Lj is a simplicial complex follows since if SX ∪SY ∈ Tj and ∅ 6= S′X ⊆ SX
and ∅ 6= S′Y ⊆ SY , then we have S′X ∪ S′Y ∈ Ti for some i ≤ j (meaning σj ⊆ σi). For each
j = 1, . . . , 2n − 1, we set K = Lj , L = Lj−1, T = Tj , and σ = σj and apply Lemma 2 to get
that Lj ' Lj−1 (This works even when Tj = ∅, in which case Lj = Lj−1).

To complete the proof of the finite case it suffices to show L2n−1 = VR(X ∪A Y ; r). This
is because any simplex τ ∈ VR(X ∪A Y ; r) \ L0 is necessarily of the form τ = SX ∪ SY ∪ σ,
with ∅ 6= SX ⊆ X \ A, with ∅ 6= SY ⊆ Y \ A, with σ ⊆ A, and with diam(SX ∪ SY ∪
σ) ≤ r. By assumption, there exists a unique maximal non-empty set σj ⊆ A such that
diam(SX ∪ SY ∪ σj) ≤ r. Since σj is unique, we have that σ ⊆ σj . Therefore SX ∪ SY ∈ Tj ,
and τ will be added to Lj since SX ∪ SY ⊆ τ ⊆ SX ∪ SY ∪ σj . Hence τ ∈ L2n−1 and so
L2n−1 = VR(X ∪A Y ; r).

Now let X and Y be arbitrary metric spaces. Note that for any finite subsets X0 ⊆ X and
Y0 ⊆ Y with A0 = X0 ∩ Y0 6= ∅, we have VR(X0; r) ∪VR(A0;r) VR(Y0; r) ' VR(X0 ∪A0 Y0; r)
by the finite case. Hence we can apply Lemma 3 with L = VR(X; r) ∪VR(A;r) VR(Y ; r) and
K = VR(X ∪A Y ; r) to complete the proof. J

I Corollary 9. Let X and Y be metric spaces with X ∩ Y = A, where A is a closed subspace
of X and Y , and X∪AY is their metric gluing along A. Let r > 0, and suppose diam(A) ≤ r.
Then VR(X ∪A Y ; r) ' VR(X; r) ∨VR(Y ; r).
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GX GY

YX

A

GX GY

YX

A
GA

GA

v

v0

v

v0

x

Figure 2 Illustration of Theorem 10 on metric graph gluings and both infinite (left) and finite
(right) subsets thereof. The metric graphs GX and GY are shown with thin, dotted red and blue lines
respectively; X and Y are shown in the infinite case with thick, solid red and blue lines respectively;
GA corresponds to the black solid line while A corresponds to the pink solid line. The finite subset
case uses the same color scheme.

Proof. The fact that diam(A) ≤ r implies that if diam(SX ∪ SY ) ≤ r for some SX ⊆
X \ A and SY ⊆ Y \ A, there is a unique maximal nonempty subset σ ⊆ A such that
diam(SX ∪ SY ∪ σ) ≤ r. Indeed, the set of all such σ ⊆ A satisfying diam(SX ∪ SY ∪ σ) ≤ r
is closed under unions since diam(A) ≤ r, and hence there will be a unique maximal σ.
The definition of the metric on X ∪A Y implies that σ 6= ∅. The claim now follows from
Theorem 8 and from the fact that VR(A; r) is contractible. J

Note that if A is a single point (i.e. |A| = 1), then X∪AY is the same as X∨Y . Therefore,
Proposition 4 is a special case of Corollary 9.

The setup of the following theorem regarding metric graph gluings is illustrated in Figure 2.
In a graph, the degree of a vertex without self-loops is the number of incident edges to that
vertex. A path graph (or simply a path) is one in which the n vertices can be ordered, and in
which the n− 1 edges connect pairs of successive vertices.

I Theorem 10. Let G = GX ∪GA
GY be a metric graph, where GA = GX ∩GY is a closed

metric subgraph of the metric graphs GX and GY . Suppose furthermore that GA is a path,
and that each vertex of GA besides the two endpoints has degree 2 not only as a vertex in GA,
but also as a vertex in G. Suppose the length of GA is at most `

3 , where any simple loop in G
that goes through GA has length at least `. Let X ⊆ GX and Y ⊆ GY be arbitrary subsets such
that X ∩GY = Y ∩GX = X ∩ Y := A. Then VR(X ∪A Y ; r) ' VR(X; r)∪VR(A;r) VR(Y ; r)
for all r > 0. Hence if VR(A; r) is contractible, then VR(X ∪A Y ; r) ' VR(X; r)∨VR(Y ; r).

Proof. Let the length of GA be α ≤ `
3 . If r ≥ α, then the conclusion follows from Corollary 9.

For the case r < α ≤ `
3 , let v and v′ be the endpoints of the path GA. We claim that no

point z ∈ (X∪AY )\A is within distance r of both v and v′. Indeed, if there were such a point
z ∈ (X∪AY )\A satisfying d(z, v) ≤ r and d(z, v′) ≤ r, then we could produce a homologically
non-trivial loop through the gluing path GA that is shorter than `, giving a contradiction. It
follows that if diam(SX∪SY ) ≤ r for some SX ⊆ X\A and SY ⊆ Y \A, then there is a unique
maximal nonempty set σ ⊆ A such that diam(SX ∪SY ∪σ) ≤ r. To be more explicit, one can
show that this maximal set is σ = A∩

⋂
z∈SX∪SY

B(z, r); it is nonempty since it contains either
v or v′. Hence, Theorem 8 implies that VR(X ∪A Y ; r) ' VR(X; r) ∪VR(A;r) VR(Y ; r). J

I Corollary 11. Let G, GX , GY , GA, X, Y , and A satisfy the same hypotheses as in
the statement of Theorem 10. Suppose furthermore that VR(A; r) is contractible for all
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r > 0. Then for any homological dimension i ≥ 0 and field k, the persistence modules
PHi(VR(X; r) ∨VR(Y ; r); k) and PHi(VR(X ∪A Y ; r)) are isomorphic.

Remarks on set-wise gluings in the Čech case. It seems natural to ask if our results
in Section 3.3 extend to Čech complexes. In other words, is it necessarily the case that
Čech(X; r) ∪Čech(A;r) Čech(Y ; r) ' Čech(X ∪A Y ; r), where X,Y and A are as described
in Theorem 10? Interestingly, while the desired result may hold true, the arguments of
Section 3.3 do not all directly transfer to the Čech case. In particular, Theorem 8 can
be extended to the Čech case by replacing the condition diam(SX ∪ SY ∪ σ) ≤ r with⋂
z∈SX∪SY ∪σ B(z; r) 6= ∅. However, the arguments for Corollary 9 do not transfer to the

Čech case no matter how small the size of the gluing portion A is, which subsequently makes
it hard to adapt the strategy behind Theorem 10 to the Čech case. An example to illustrate
this is given in the full version. This suggests that a different technique needs to be developed
in order to show an analog of Theorem 10 for the Čech setting (if such an analog holds).

4 Applicability to certain families of graphs

The results in Section 3 provide a mechanism to compute the homotopy types and persistent
homology of Vietoris–Rips complexes of metric spaces built from gluing together simpler
ones. For the sake of brevity, if the results of Section 3 can be used to completely describe
the homotopy types and persistence module of the Vietoris–Rips complex of metric space
X, then we will simply say that space X can be characterized. Figure 3 shows examples of
two metric graphs that can be characterized (a and b) and two that cannot (c and d). In
Section 4.1, we describe some families of metric spaces that can be characterized, and in
Section 4.2, we discuss graphs (c) and (d).

(a) (b) (c) (d)

Figure 3 Graphs (a) and (b) can be characterized while (c) and (d) cannot.

4.1 Families of graphs
In this section we consider finite metric spaces and metric graphs that can be understood using
the results in this paper. Examples of finite metric spaces whose Vietoris–Rips complexes are
well-understood include the vertex sets of dismantlable graphs (defined below) and vertex
sets of single cycles [2]. Examples of metric graphs whose Vietoris–Rips complexes are
well-understood include trees and single cycles [3].

Let G be a graph with vertex set V and with all edges of length one.5 The vertex set
V is a metric space equipped with the shortest path metric. We say that a vertex v ∈ V is
dominated by u ∈ V if v is connected to u, and if each neighbor of v is also a neighbor of u.

5 We make this assumption for simplicity’s sake, even though it can be relaxed.
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We say that a graph is dismantlable if we can iteratively remove dominated vertices from G

in order to obtain the graph with a single vertex. Note that if v is dominated by u, then v
is dominated by u in the 1-skeleton of VR(V ; r) for all r ≥ 1. It follows from the theory of
folds, elementary simplicial collapses, or LC reductions [6, 9, 27] that if G is dismantlable,
then VR(V ; r) is contractible for all r ≥ 1. Examples of dismantlable graphs include trees,
chordal graphs, and unit disk graphs of sufficiently dense samplings of convex sets in the
plane [25, Lemma 2.1]. We will also need the notion of a k-cycle graph, a simple cycle with
k vertices and k edges. The following proposition specifies a family of finite metric spaces
that can be characterized using the results in this paper.

I Proposition 12. Let G be a finite graph, with each edge of length one, that can be obtained
from a vertex by iteratively attaching (i) a dismantlable graph or (ii) a k-cycle graph along
a vertex or along a single edge. Let V be the vertex set of the graph G. Then we have
VR(V ; r) '

∨n
i=1 VR(V (Cki

); r) for r ≥ 1, where n is the number of times operation (ii) is
performed, ki are the corresponding cycle lengths, and V (Cki

) is the vertex set of a ki-cycle.

Proof. It suffices to show that an operation of type (i) does not change the homotopy type
of the Vietoris–Rips complex of the vertex set, and that an operation of type (ii) has the
effect up to homotopy of taking a wedge sum with VR(V (Ck); r). The former follows from
applying Corollary 9 (or alternatively Theorem 10), as the Vietoris–Rips complex of the
vertex set of a dismantlable graph is contractible for all r ≥ 1, and the latter also follows
from Corollary 9 (or alternatively Theorem 10). J

The iterative procedure outlined in Proposition 12 can be used to obtain some recognizable
families of graphs. Examples include trees and wedge sums of cycles (Figure 3(a)). More
complicated are polygon trees [18] in which cycles are iteratively attached along a single edge.
Graph (b) in Figure 3 is an example that is built by using both (i) and (ii).

A similar procedure is possible for metric graphs, except that we must replace arbitrary
dismantlable graphs with the specific case of trees.6 Note that any tree, T , is obtained by
starting with a single vertex and iteratively taking the wedge sum with a single edge. This
implies that VR(T ; r) is contractible; thus, the persistent homology filtration of any tree is
trivial, a result that is also established in [14, 28].

I Proposition 13. Let G be a metric graph, with each edge of length one, that can be obtained
from a vertex by iteratively attaching (i) an edge along a vertex or (ii) a k-cycle graph along
a vertex or a single edge. Then we have VR(G; r) '

∨n
i=1 VR(Cki ; r) for r ≥ 1, where n is

the number of times operation (ii) is performed, ki are the corresponding cycle lengths, and
Cki is a loop of length ki.

Proof. The proof is analogous to that of Proposition 12. J

Proposition 13 can be generalized to allow for arbitrary edge lengths, as long as the
conditions of Theorem 10 hold (see the full version for further discussion and an example).

4.2 Obstructions to using our results
When gluing two metric graphs, G1 and G2, the most restrictive requirement is that the
gluing path must be a simple path with all vertices except the endpoints having degree 2.

6 The case of C3, a cyclic graph with three unit-length edges, is instructive. Since C3 is dismantlable we
have that VR(V (C3); r) is contractible for any r ≥ 1. But since the metric graph C3 is isometric to a
circle of circumference 3, it follows from [3] that VR(C3; r) is not contractible for 0 < r < 3

2 .
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This requirement is what disallows the configuration (c) in Figure 3. Notice that every pair
of shortest cycles shares only a simple path of length 2. However, once one pair is glued, the
third must be glued along a path of length 4 which traverses both of the two other cycles. This
path includes a vertex of degree 3 in its interior, meaning that Theorem 10 is not applicable.
Moreover, when r < 4, (where 4 is the diameter of the gluing set), then Corollary 9 is also
not applicable. Nevertheless, we can computationally verify that for (c), the homology of
the Vietoris–Rips complex is still the direct sum of the homology groups of the component
cycles (where VR(V (C9); r) ' S1 for r = 1 or 2, and where VR(V (C9); 3) ' S2 ∨ S2 [4]). In
light of this example, in future work, we hope to extend the results in this paper to gluing
metric graphs along admissible isometric trees (a generalization of isometric simple paths).

The final graph (d) in Figure 3, the cube graph, is another case for which Theorem 10
is not applicable. However, unlike example (c) above, we cannot compute the homology of
the vertex set of the cube as the direct sum of the homology groups of smaller component
pieces. Indeed, if V is the vertex set of the cube with each edge of length one, then
dim(H3(VR(V ; 2))) = 1 since VR(V ; 2) is homotopy equivalent to the 3-sphere. However,
this graph is the union of five cycles of length four, and the Vietoris–Rips complex of the
vertex set of a cycle of length four never has any 3-dimensional homology.

5 Discussion

We have shown that the wedge sum of Vietoris–Rips (resp. Čech) complexes is homotopy
equivalent to the corresponding complex for the metric wedge sum, and generalized this
result in the case of Vietoris–Rips complexes for certain metric space gluings. Our ultimate
goal is to understand to the greatest extent possible the topological structure of large classes
of metric graphs via persistent homology. Building on previous work in [3] and [20], the
results in this paper constitute another important step toward this goal by providing a
characterization of the persistence profiles of metric graphs obtainable via certain types of
metric gluing. Many interesting questions remain for future research.

Gluing beyond a single path. We are interested in studying metric graphs obtainable via
metric gluings other than along single paths of degree 2, such as gluing along a tree or
self-gluing. For the case of gluings along a tree, the gluing graph may have vertices of degree
greater than 2. Examples include gluing four square graphs together into a larger square
with a degree 4 node in the center. Moreover, the techniques of our paper do not allow one
to analyze self-gluings such as forming an n-cycle Cn from a path of length n.

Generative models for metric graphs. Our results can be considered as providing a gener-
ative model for metric graphs, where we specify a particular metric gluing rule for which we
have a clear understanding of its effects on persistent homology. Expanding the list of metric
gluing rules would in turn lead to a larger collection of generative models.

Approximations of persistent homology profiles. A particular metric graph that arises
from data in practice may not directly correspond to an existing generative model. However,
we may still be able to approximate its persistent homology profile via stability results
(e.g. [15, 30]) by demonstrating close proximity between its metric and a known one.
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