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Metaboverse enables automated discovery 
and visualization of diverse metabolic 
regulatory patterns

Jordan A. Berg    1,9 , Youjia Zhou2,3,12, Yeyun Ouyang1,9,12, Ahmad A. Cluntun    1, 
T. Cameron Waller    4, Megan E. Conway5, Sara M. Nowinski1,10, Tyler Van Ry1,6,11, 
Ian George1, James E. Cox    1,6,7, Bei Wang    2,3 & Jared Rutter    1,7,8 

Metabolism is intertwined with various cellular processes, including 
controlling cell fate, influencing tumorigenesis, participating in stress 
responses and more. Metabolism is a complex, interdependent network, 
and local perturbations can have indirect effects that are pervasive across 
the metabolic network. Current analytical and technical limitations have 
long created a bottleneck in metabolic data interpretation. To address 
these shortcomings, we developed Metaboverse, a user-friendly tool to 
facilitate data exploration and hypothesis generation. Here we introduce 
algorithms that leverage the metabolic network to extract complex reaction 
patterns from data. To minimize the impact of missing measurements 
within the network, we introduce methods that enable pattern recognition 
across multiple reactions. Using Metaboverse, we identify a previously 
undescribed metabolite signature that correlated with survival outcomes in 
early stage lung adenocarcinoma patients. Using a yeast model, we identify 
metabolic responses suggesting an adaptive role of citrate homeostasis 
during mitochondrial dysfunction facilitated by the citrate transporter, 
Ctp1. We demonstrate that Metaboverse augments the user’s ability 
to extract meaningful patterns from multi-omics datasets to develop 
actionable hypotheses.

Metabolism plays a central role in many biological processes, including 
cell fate decisions, protein homeostasis, stress responses, energy pro-
duction, cell signalling, DNA replication and silencing, and more1–13. The 
rigorous study of metabolism, including the use of high-throughput tran-
scriptomics, proteomics and metabolomics, has generated a systematic 

map of metabolic reactions and their constituents. Large consortium 
projects, such as the Kyoto Encyclopedia of Genes and Genomes14,15, the 
Human Metabolome Database16 and the Reactome Pathway Database17–19, 
have helped formalize systematic maps of metabolism. These resources 
and tools provide a more holistic understanding of metabolism.
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Metaboverse introduces a broad collection of algorithms that 
enable the rapid and automated discovery of various complex 
regulatory patterns (Extended Data Fig. 2a), including using infor-
mation about reaction catalysts and inhibitors to identify more 
complex patterns. Generally, Metaboverse compares the inputs 
(substrates), outputs (products) and modifiers (catalysts and inhibi-
tors) of each reaction to determine if there is a net change across 
the reaction (Supplementary Notes 2 and 3, equations (1)–(11)). It 
then returns an interactive list of reactions that pass the specified 
fold change and/or statistical thresholds. Users may also select 
annotated pathways in which that reaction is found for exploration 
and contextualization.

Data sparsity and the identification of complex patterns
Missing data points, particularly in metabolomics experiments, are 
frequent and make the identification of network regulatory patterns 
challenging22,23. Over 1,000 metabolites are known to participate in 
human metabolism, yet current metabolomics technologies limit the 
number of metabolites that are typically quantified. This results in 
gaps in the measured metabolic network and can confound pattern 
recognition across reactions. We developed algorithms that collapse 
up to three connected reactions with intermediate missing data points 
if they can be bridged with measured data on the distal ends of the 
reaction series (Extended Data Figs. 2b and 3 and Methods). Thus, if an 
intermediate reaction component is unmeasured in the user’s dataset, 
but an input to the reaction producing the unmeasured component 
or an output to the reaction consuming the unmeasured component 
was quantified, these two reactions can be combined into one repre-
sentative reaction. Similar concepts have been used to define amino 
acid-related metabolites28.

Metabolic signatures in LUAD
We first used public steady-state metabolomics data from early stage 
human lung adenocarcinomas (LUAD)29 to test whether Metaboverse 
could capture the metabolic perturbations identified in this study 
as well as additional signatures. In this specific study, the authors 
asked which metabolites could be used as diagnostic markers to 
identify early stage adenocarcinomas (Fig. 1a). Metaboverse reli-
ably prioritized patterns in nucleotide metabolism using collapsed 
and uncollapsed reaction representations (Fig. 1d–g and Extended 
Data Fig. 4) that were consistent with the original study29 and our 
manual re-analysis of the data using MetaboNet and DyMetaboNet24. 
Metaboverse also identified reaction patterns related to xanthine 
metabolism, a metabolite highlighted in the original study29 (Fig. 1d,g 
and Extended Data Fig. 4a), and a collapsed reaction pattern driven by 
a reduced relative abundance of citric acid and an increased relative 
abundance of both glutamic acid and malic acid, with cross-pathway 
connections to a decrease in lysine (Fig. 1b,c and Extended Data  
Fig. 4b). Although changes in the concentrations of these metabolites 
were identified in the original study, their relevance to the study 
cohort and their connectedness within the metabolic network were 
not discussed29.

Comparing the substrate and product measurements of a reac-
tion allows us to identify multi-dimensional patterns that provide 
further insight into metabolic behaviours24. Strikingly, the top-ranking 
Average reaction pattern (Supplementary Note 3, equation (2)) sug-
gested spermine synthase activity (SMS) (Fig. 2a), catalysing a reaction 
connected to polyamine synthesis. The second top-ranking Average 
reaction pattern (Supplementary Note 3, equation (2)) suggested the 
activity of glycerate kinase (GLYCTK) (Extended Data Fig. 5), a pattern 
identified in our previous manual re-analysis of the data24, which could 
implicate perturbations in serine metabolism—a pathway that contrib-
utes to tumorigenesis30. These particular connections were missed in 
the original study but were quickly and automatically highlighted by 
Metaboverse.

To circumvent the challenges associated with the inherent com-
plexity of metabolic networks, it is common to adopt reductionist 
approaches. Although such strategies are vital to advancing our bio-
logical understanding, they can conceal multi-dimensional properties 
of metabolism as biological perturbations lead to complex, coop-
erative effects, many of which may seem negligible in isolation. Thus, 
reductionism can limit insight20,21. Additional challenges arise with the 
sparsity of metabolomics datasets22,23 and the use of different network 
visualization parameters, which each influence how effectively one can 
interpret metabolic data24.

To address these limitations, we created Metaboverse, an inter-
active application for exploring multi-omics data in the context of 
the metabolic network and for generating data-driven hypotheses. 
Metaboverse delivers four critical innovations or contributions that 
provide a powerful interface for the interpretation of data. First, 
Metaboverse uses a diverse library of possible metabolic patterns to 
search the metabolic network. Second, Metaboverse generates summa-
rized reaction representations that span multiple reactions, enabling 
the discovery of patterns across sparse datasets and between pathways. 
Third, Metaboverse automates pre-processing and network cura-
tion tasks for a diverse set of model organisms. Fourth, Metaboverse 
enhances the contextualization of these patterns by providing a 
dynamic exploratory interface to facilitate hypothesis generation.

In this Technical Report, we detail these components and their 
integration into Metaboverse, present two vignettes in which we use 
Metaboverse to analyse public and newly generated datasets, and 
outline important patterns that were detected using Metaboverse 
but not by existing methods. We will present benchmarks between 
Metaboverse and other comparable tools, as well as sensitivity analy-
sis detailing Metaboverse pattern recognition with sparse datasets. 
Metaboverse is available at https://github.com/Metaboverse.

Results
Dynamic reaction visualization augments hypothesis creation
Metaboverse curates a reaction network database on the basis of a 
Reactome knowledgebase17–19, BiGG25 or BioModels26,27 network. Users 
provide any combination of transcriptomics, proteomics and/or 
metabolomics data, which are then integrated into the reaction network 
as log2(fold change) and statistical values for each measurement and 
sample comparison (Extended Data Fig. 1). An interactive data format-
ting aid is available for users requiring assistance to format their data 
for Metaboverse. Additional methods during data processing allow 
for the interpolation of protein complex measurements or protein 
measurements from upstream components, such as protein or gene 
measurements.

Once Metaboverse integrates user data onto the network, interac-
tive tools help visualize and explore reactions and their components 
individually, by canonical pathway definitions or by nearest reaction 
neighbourhood networks for any given network component. Nearest 
reaction neighbourhood networks consequently aid in identifying 
upstream or downstream patterns that may occur between pathways24. 
We integrated visualization options to limit the display of metabolic 
hubs as detailed in our previous work24 to assist the user’s exploration 
of the data beyond the most familiar pathways.

Pattern recognition enables robust data interpretation
Previously, we described MetaboNet and DyMetaboNet, wherein we 
identified multi-dimensional, reaction-based patterns by manually 
comparing inputs and outputs of reactions and looking for general 
trends across a reaction24. While this approach identified several inter-
esting patterns within datasets, it was time consuming and incomplete. 
Similarly, other existing tools may provide some pattern identifica-
tion capabilities, but the scope of the patterns they can capture is lim-
ited and fails to capture vital metabolic signatures (Supplementary  
Note 1 and Supplementary Table 1).

http://www.nature.com/naturecellbiology
https://github.com/Metaboverse
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Metaboverse signatures correlate with patient prognosis
To assess whether the reaction patterns identified by Metaboverse 
could provide meaningful insights into the clinical outcomes, we ana-
lysed a LUAD cohort from The Cancer Genome Atlas (TCGA) using 

Cox regression analysis with an optimized expression cut-off31–33, and 
observed striking correlations between the expression of the gene 
encoding SMS and patient survival outcomes (optimized FPKM (frag-
ments per kilobase of transcript per million) cut-off: 49.5413; Fig. 2b 

b c

d e

f g

a

KARS

KARS

KARS dimer

FPGS-1

AK3
AK3

PXLP-K279-GOT2

PXLP-K279-GOT2

GOT2 dimer

OAA

CS dimer

CS(1–466)

CS(1–466)

CoA-SH

Me3K525-EEF2

ADP-ribo-EEF2

HAL

HAL

DPH6

DPH6

DT(33–225)

THF

tRNA(Lys)

Zn2+

HAL

HAL

NAPRT1

NAPRT1

GMP

NAPRT1 dimer

PRPP

HPRT1

HPRT1

p-T90-PRDX1

p-T89-PRDX2

p-T89-PRDX2

p-T90-PRDX1

XDH

XDH

PRDX1,2,5

P30044

MSRA

MSRA

TXN

2× HC-TXN

HPRT1 tetramer

NAMPT
NAMPT

NH4+
GDA

GDA dimer

GDA

Lysine
Value: –1.37
Statistic: <0.01

Citric acid
Value: –0.64
Statistic: <0.01

Glutamic acid
Value: 0.47
Statistic: <0.01

Nicotinamide
Value: 0.48
Statistic: <0.01

Methionine sulfoxide
Value: –0.84
Statistic: 0.02

Phosphoric acid
Value: 0.22
Statistic: 0.06

FAD
Value: 0.24
Statistic: 0.02

XDH dimer
Value: 0.23
Statistic: 0.10

Xanthine
Value: 1.35
Statistic: < 0.01

Histidine
Value: –0.63
Statistic: <0.01

Glutamic acid
Value: 0.47
Statistic: <0.01

Xanthine
Value: 1.35
Statistic: <0.01

GMP, IMP
Value: 1.79
Statistic: <0.01

Nicotinamide
Value: 0.48
Statistic: <0.01

Inosine 5’-monophosphate
Value: 1.79
Statistic: <0.01

Histidine
Value: –0.63
Statistic: <0.01

Fig. 1 | Metaboverse identifies key regulatory signatures in early stage LUAD 
steady-state metabolomics data using collapsed reaction representations. 
a, Concept map of the study analysed by Metaboverse. Paired normal and 
tumour lung samples were acquired from each patient and MS was performed 
to quantify metabolite abundances (Metabolomics Workbench project 
PR000305; subpanel created with BioRender.com). b–g, Representations of 
six top-ranking, non-redundant collapsed reaction patterns. Dashed-black 
edges indicate connections between distal ends of two to three reactions 
that were collapsed. Stars with a dashed-purple border indicate a collapsed 
reaction. Collapsed reactions were identified using the Average reaction 
pattern. b, Lysine + tRNA(Lys) + ATP → Lys-tRNA(Lys) + AMP + pyrophosphate // 
Adenylate Kinase 3 is a GTP-AMP phosphotransferase // mitochondrial FPGS-1 

transforms THF to THFPG. c, Acetyl-CoA + H2O + oxaloacetate → citrate + CoA // 
oxaloacetate + glutamate ↔ aspartate + alpha-ketoglutarate (GOT2) (cross-
pathway). d, Histidine → urocanate + NH4

+ // guanine + H2O → xanthine + NH4
+ 

(cross-pathway) e, Histidine → urocanate + NH4
+ // DPH6 ligates ammonium 

to diphthine-EEF2 // DT fragment A ADP-ribosylates target cell EEF. f, HPRT1 
catalyses the conversion of guanine or hypoxanthine to GMP or IMP // NAPRT1 
dimer transfers PRIB to NCA to form NAMN // NAMPT transfers PRIB to NAM 
to form NAMN (cross-pathway) g, XDH oxidizes xanthine to form urate // 
PRDX1,2,5 catalyse TXN reduced + H2O2 → TXN oxidized + 2H2O // MSRA reduces 
l-methyl-(S)-S-oxide to l-methionine. P values were derived using a two-tailed, 
homoscedastic Student’s t-test and adjusted using the Benjamini–Hochberg 
correction procedure. Source numerical data are available at ref. 55.

http://www.nature.com/naturecellbiology
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and Extended Data Fig. 5). Notably, the log-rank P value for SMS gene 
expression ranked in the top 0.65% of all regressions (118 of 18,169 
surveyed genes) (Fig. 2c).

Alternatively, the log-rank P value for GLYCTK gene expression in 
the LUAD cohort was poor (optimized FPKM cut-off: 0.913; Extended 
Data Fig. 5), possibly due to the lower DepMap dependency score 
of GLYCTK compared with SMS gene expression in LUAD cell lines 
(Extended Data Fig. 6a) (refs. 34,35). Additionally, at the time of writ-
ing, SMS is the only spermine-producing enzyme annotated in humans 
(Reactome), whereas the product of the reaction catalysed by the 
GLYCTK enzyme, 3-phosphoglyceric acid, can also be produced by the 
glycolytic enzyme phosphoglycerate kinase 1 (PGK1). It is also inter-
esting to note the modest correlation between the top-ranking LUAD 
reaction pattern enzymes and their corresponding survival statistics 
in LUAD gene expression data (Extended Data Fig. 6b).

SMS has been implicated in the silencing of Bim, which encodes 
a pro-apoptotic factor, in colon adenocarcinomas36, and SMS gene 
expression tends to correlate with more proliferative cell types in 
the lung (Extended Data Fig. 6c) (refs. 36,37). Similar patterns in SMS 
have also been identified in mouse xenografts of lung cancer38. Thus, 
Metaboverse-guided predictions may inform research directions and 
treatment strategies for this disease.

Metabolic signatures of respiratory impairment in yeast
To further demonstrate Metaboverse in the context of multi-omics 
and time course or multi-condition datasets, we analysed a model of 
mitochondrial fatty acid synthesis (mtFAS) deficiency in Saccharo-
myces cerevisiae. mtFAS is an evolutionarily conserved pathway that 
produces lipoic acid, a critical co-factor for many metabolic enzymes. 
Recent work has uncovered additional biological roles for this pathway, 
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Fig. 2 | Metaboverse identifies and contextualizes a putative regulatory 
signature in early stage LUAD steady-state metabolomics data. a, Reaction 
between spermidine and 5 -methylthioadenosine identified by Metaboverse’s 
reaction pattern recognition module as the highest-ranking Average reaction 
pattern. Metabolomics values are shown as node shading, where an increasingly 
blue shade indicates decreased abundance compared with normal tissue, and an 
increasingly red shade indicates increased abundance compared with normal 
tissue. Measured log2(fold change) and Benjamini–Hochberg corrected P values 
for each entity are displayed below the node name. Green edges indicate a 

catalyst. b, Kaplan–Meier plot of Cox regression analysis for the optimal 
expression cut-off calculated for SMS (FPKM cut-off: 49.5413; high: 105 tumours; 
low: 382 tumours). Shading indicates 95% confidence intervals for each 
expression group. Dashed lines indicate the median survival times for each 
group. Risk tables are displayed below the plot. P value was derived from the 
log-rank test. c, Distribution of Benjamini–Hochberg-corrected log-rank P values 
for the Cox regression of each gene in the TCGA–LUAD RNA-seq cohort. SMS is 
indicated by the dashed-green line. Source numerical data are available at ref. 55.
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including in the generation of acylated-mitochondrial acyl carrier pro-
tein, which controls the assembly and activation of mitochondrial oxi-
dative phosphorylation complexes39–41. The discovery of patients with 
mutations in genes encoding key mtFAS enzymes further illustrates the 
physiological importance of this pathway42. Deletion of the MCT1 gene 
(homologous to the Malonyl-CoA-Acyl Carrier Protein Transacylase 
in humans) abolishes the activity of the mtFAS pathway40, allowing 
us to use an mct1Δ mutant to determine the effects of mtFAS pathway 
perturbation on metabolism.

We utilized previously generated proteomics data in mct1Δ yeast 
after a shift from glucose- to raffinose-supplemented growth media, 
which triggers the biogenesis of mitochondria and tends to pronounce 

respiratory defects40, together with RNA sequencing (RNA-seq) at 0, 3 
and 12 h and steady-state metabolomics at 0, 0.25, 0.5, 1, 3 and 12 h after 
this shift in growth media (Fig. 3a). By layering these multi-omics data 
onto the S. cerevisiae metabolic network, we could explore acute and 
chronic responses to mtFAS deficiency.

The top-ranked ModReg and TransReg reaction patterns (Sup-
plementary Note 3, equations (4) and (5)) at 12 h predictably centred 
around the abundance of mitochondrial carrier proteins, Coenzyme 
A-related reactions and iron–sulfur cluster biogenesis (Fig. 3b and 
Extended Data Fig. 7a–c,e). We also observed respiratory signatures 
consistent with previous studies40,43, including the identification of pat-
terns in electron transfer from ubiquinol to cytochrome C via Complex 
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Fig. 3 | Metaboverse identifies signatures of mitochondrial dysfunction from 
multi-omics data in yeast. a, Concept map of the study analysed by 
Metaboverse. Yeast were pre-incubated in S-glucose media and then grown over a 
time course in either S-glucose or S-raffinose media. Samples were analysed 
using RNA-seq (n = 4), proteomics (n = 3) and metabolomics (n = 6, except  
for the 3 h WT group, where n = 5) (subpanel created with BioRender.com).  
b–d, Reaction pattern catalysed by Leu5 (b) and Ctp1 (c and d) using late (12 h) 
RNA-seq, proteomics and metabolomics data (b and c) or early (3 h) RNA-seq and 

metabolomics data (d). Reaction pattern graph values are shown as node 
shading, where an increasingly blue shade indicates decreased abundance 
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entity are displayed below the node name. e, Log2 fold changes of citrate, malate 
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III of the electron transport chain (ETC) (Extended Data Fig. 7g). We 
have observed similar patterns using mtFAS perturbation models in 
the past39,40.

The second expected pattern of interest was the general reduction 
in the abundances of tricarboxylic acid (TCA) cycle-related enzymes 
and intermediate metabolites (Extended Data Fig. 7d). We observed 
an increase in Dic1 protein abundance (Fig. 4e and Extended Data  
Fig. 8), consistent with reports that DIC1 gene expression may be essen-
tial for growth in the presence of certain carbon sources due to its role 
in shuttling phosphate across the mitochondrial inner membrane in 
exchange for malate or succinate44. Yeast with respiratory defects may 
adapt by increasing Dic1 protein levels to facilitate substrate transport 

to maintain TCA cycle flux and mitochondrial respiration. Indeed, we 
found that whole-cell malate levels were elevated in mct1Δ mutants 
relative to wild type (WT) (Extended Data Figs. 8 and 9l).

Metaboverse signatures correlate with metabolic adaptations
One unexpected top-ranking reaction pattern identified using the 
12 h multi-omics datasets involved the tricarboxylate transporter, 
Ctp1, which transfers citrate across the mitochondrial inner mem-
brane (Fig. 3c and Extended Data Fig. 7h) (ref. 45). This reaction was 
also identified at the 3 h timepoint using metabolomics and RNA-seq 
data (Fig. 3d). Earlier metabolomics measurements showed citrate 
levels initially decreasing then increasing over the time course (Fig. 3e). 
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mechanisms to mitochondrial dysfunction in yeast. a, Spot growth 
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overexpression of CTP1–GFP construct on SR-URA. b, GO term enrichment 
results for genes identified in the SpQN-corrected co-expression analysis of 
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signaling pathway. A more complete legend for the shading criteria can be found 
in Extended Data Fig. 8. e,f, Heat maps of amino acid-regulated enzymes (e) and 
anaplerotic enzymes (f) for WT and mct1Δ mutant strain proteomics at 12 h after 
the switch to raffinose from glucose. Heat map values were mean centred at 0 
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(or UPGMA). Source plate images and numerical data are available at ref. 55.
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Since citrate is a key metabolite in the TCA cycle, we hypothesized that 
Ctp1 protein levels decrease in response to early respiratory stresses 
in mtFAS-deficient cells.

We hypothesized that if mct1Δ cells adaptively downregulate Ctp1, 
then overexpression of Ctp1 should cause growth defects. Indeed, we 
observed a specific sensitivity to Ctp1 overexpression in the mct1Δ 
background (Fig. 4a and Extended Data Fig. 10a). We found that over-
expression of a C-terminal green fluorescent protein (GFP)–CTP1 fusion 
vector ablated this growth defect, and verified that this did not result 
from spurious effects from protein overexpression, such as the forma-
tion of inclusion bodies (Fig. 4a and Extended Data Fig. 10b). These 
data suggest that the GFP–Ctp1 is inactive, mislocalized or otherwise 
perturbed, and the observed growth defect was due to functional Ctp1 
localizing to the mitochondria46–48.

We performed co-expression analysis of CTP1 gene expression 
using thousands of uniformly processed WT yeast RNA-seq experi-
ments49,50 and discovered that correlating gene sets (SpQN-normalized 
Pearson’s r > 0.5) included programmes related to the biosynthesis of 
aspartate, lysine and other amino acids (Fig. 4b). Aspartate can be con-
verted into fumarate, which might partially explain increased fumarate 
concentrations despite an impaired ETC, while lysine can be used as a 
substrate for the generation of acetyl-CoA, which plays a central role 
in the mtFAS pathway40. Metabolic rewiring of these and other amino 

acids was also apparent in the metabolomics (Fig. 4c) and proteomics 
datasets (Fig. 4e), potentially explaining the ability of Mct1Δ mutants 
to maintain growth despite metabolic dysfunction (Fig. 4a). However, 
CTP1 gene overexpression appears to disrupt this biosynthetic rewir-
ing, disabling the ability of mct1Δ cells to tune their growth (Fig. 4a).

We observed increased protein abundance levels in components 
of anaplerotic pathways, namely Mae1, Pyc1, Pyc2, Cit2/Cit3 and 
Gdh2 (Fig. 4f). These enzymes sequentially catalyse the conversion of 
malate to pyruvate to oxaloacetate to citrate, respectively. PYC1 and 
CIT2 are also targets of the retrograde signalling pathway, which elicits 
mitochondrial-to-nuclear communication during mitochondrial stress51. 
Work on the retrograde pathway has suggested that elevated Cit2 expres-
sion functions to maintain metabolite pools for anabolic growth51, which 
we also see in the mct1Δ (Fig. 4f and Extended Data Fig. 10). Pyruvate 
dehydrogenase levels are reduced in mtFAS-deficient cells, so upregu-
lation of Pyc1 and Pyc2 probably provides an alternative pathway for 
converting pyruvate to oxaloacetate, which can then be converted into 
citrate for biosynthetic fuel52,53 (Source Data Fig. 4).

Metaboverse identifies meaningful and verifiable patterns
We evaluated how Metaboverse can offer a more comprehensive expe-
rience when analysing metabolism-related datasets for known and 
novel regulatory patterns compared with existing metabolic network 
exploration tools. The scope and performance of many of these tools 
are summarized in Supplementary Note 1 and Supplementary Table 1. 
However, we seek to emphasize that the key findings and hypotheses 
we present in this manuscript regarding SMS in LUAD and CTP1 in yeast 
were uniquely discovered, contextualized and/or prioritized using 
Metaboverse. For benchmarking purposes, we decided to focus our 
analysis on Metabolic Network Segmentation (MNS54) and Ingenuity 
Pathway Analysis (IPA; Qiagen), the two options with operable code or a 
graphical user interface at the time of writing (Supplementary Table 1).

We evaluated the ability of MNS to prioritize verifiable or canonical 
signatures within the LUAD metabolomics dataset (Figs. 1 and 2). MNS 
was able to identify both SMS (ranked number 27 in MNS and number 1 
in Metaboverse) and GLYCTK (ranked number 125 in MNS and number 
2 in Metaboverse), but their relevance to the dataset and their roles 
within the metabolic network were opaque. While MNS identified xan-
thine dehydrogenase (XDH, ranked number 4 in MNS), Metaboverse, 
ranked this reaction as number 11 due to a poorer statistical value 
for hypoxanthine (Benjamini–Hochberg corrected P = 0.11) (Fig. 5a). 
Another challenge we experienced in using this software was the sheer 
number of genes per result, ranging from 1 to 447 for the top ten results 
from the dataset. The scope of these lists can greatly hamper the user’s 
ability to generate actionable hypotheses (Source Data).

Next, we evaluated MNS prioritization of verifiable or canoni-
cal signatures from the mct1Δ model (Figs. 3 and 4). We were only 
able to integrate single timepoint metabolomics data from the mct1Δ 
experiments as MNS does not have any multi-omics analysis capabili-
ties (we chose to evaluate the 12 h timepoint). ETC defects are strong 
hallmarks of mtFAS dysfunction40 and were successfully prioritized by 
Metaboverse but not by MNS (see KGD1,2; LPD1; FXN:NFS1:ISD11:ISCU; 
SDH in Fig. 5b, which range from hit 24 to 243 in MNS). While other 
citrate-related reactions were prioritized by MNS (‘CIT2; CIT1; CIT3’,  
1 in MNS; ‘ACO1’, 2 in MNS; ‘PFK1; PFK2; FBP1’, 12 in MNS), their relation-
ship to the transport reaction catalysed by CTP1, which we verified as 
a contributor to biogenesis during mitochondrial dysfunction, was 
missed (Figs. 3 and 4).

When comparing Metaboverse to IPA, we used the LUAD meta-
bolomics data described previously29. The IPA graphical summary 
included ‘Concentration of phosphotidylcholine’, ‘PPARGC1B’ and 
‘ARNT’, with no further context. IPA’s pattern identification tools, 
‘Upstream regulators’ and ‘Causal networks’, identified most of  
the SMS- and GLYCTK-related metabolites. However, IPA did  
not identify either enzyme (SMS or GLYCTK) and the ‘Upstream 
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regulators’ analysis identified spermidine 184 times, spermine 0 times, 
5 -methylthioadenosine 31 times, glyceric acid 1 time (but as regulator 
number 613) and 3-phosphoglyceric acid 65 times. ‘Causal networks’ 
analysis likewise identified spermidine 160 times, spermine 0 times, 
5 -methylthioadenosine 31 times, glyceric acid 0 times and 
3-phosphoglyceric acid 56 times. In either case, these instances rank 
from 1 to 934 out of 940 total results, and within large aggregate lists 
of other metabolites, which resemble overly general set enrichment 
analysis. This approach, therefore, requires non-trivial parsing of large 
lists to identify relevant patterns.

Metaboverse pattern analysis is robust against sparse data
To evaluate the ability of Metaboverse to identify relevant metabolic 
signatures under conditions of data sparsity, a frequent hallmark of 
metabolomics data22, we randomly removed 0–60% of quantified pro-
teins and 0–90% of quantified metabolites from the two data vignettes 
presented herein. For each dataset, we highlighted the reaction pattern 

type where the most relevant patterns were found in the Metaboverse 
analyses (the Average pattern for the LUAD study and the ModReg and 
TransReg patterns for the mct1Δ study).

The LUAD metabolomics study generated 183 consistent metabo-
lite quantifications between paired adenocarcinoma and adjacent 
normal tissue29. We first evaluated the total number of possible reac-
tion patterns (Methods) and found that the LUAD dataset contained 
2,160/3,853 (56.06%) and 239/2,219 (10.77%) metabolic reactions with 
enough measured data with or without reaction collapsing, respec-
tively. By randomly dropping out varying numbers of the 183 metabo-
lites, we noticed a consistent decline in the number of reaction patterns 
Metaboverse was able to identify without collapsed reaction represen-
tations (Fig. 6a). With collapsed reaction representations, Metaboverse 
was more resilient against data sparsity (Fig. 6b). Metaboverse some-
times identified more reaction patterns with missing data (Fig. 6a). In 
these cases, reactions with more than one measured input or output can 
be detrimentally weighted by low values, thus lowering the reaction’s 
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Fig. 6 | Metaboverse pattern recognition is resilient to missing data.  
a–d, Random analyte dropout datasets for each omics type (n = 6 per dropout). 
a, Box plots of the number of Average reaction patterns Metaboverse could 
identify within the LUAD metabolomics dataset with or without reaction 
collapsing with 0–90% of the original input metabolomics data missing.  
b, Heat maps of the proportion of replicates that identified each of the signature 
reaction patterns for the LUAD dataset, as described as part of Fig. 5a. c, Box 
plots of the number of ̀ Modifier' reaction patterns Metaboverse could identify 

within the mct1Δ dataset within this study with or without reaction collapsing 
with 0–90% of the original input metabolomics data missing and 0%, 30% or 60% 
of the original input proteomics data missing. d, Heat maps of the proportion 
of replicates that identified each of the signature reaction patterns for the yeast 
dataset, as described as part of Fig. 5b. Box plot centre lines indicate mean, box 
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range, diamonds indicate outliers and dots indicate replicates. Source numerical 
data are available at ref. 55.
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score. This emphasizes the importance of exploring the data with a 
variety of the different reaction pattern types provided by Metaboverse 
to capture the breadth of metabolic signatures.

Applying this evaluation design to the mct1Δ 12 h proteomics 
and metabolomics datasets, which contained 662/986 (67.14%) and 
172/604 (28.48%) metabolic reactions with enough measured data 
with and without reaction collapsing, respectively. We again observed 
a steady decline in the number of identified reaction patterns. However, 
similar to the LUAD study, the use of collapsed reaction representa-
tions provided more resilience in the number of identified patterns  
(Fig. 6c). Strikingly, we observed that proteomics data appears to buffer 
Metaboverse pattern recognition despite missing data points (Fig. 6d). 
Reassuringly, in some cases, reaction patterns could be identified 100% 
of the time with up to 60% of the original metabolomics or proteomics 
data missing (Fig. 6d).

Discussion
Metaboverse provides an easy-to-use interactive visualization tool for 
exploring multi-omics data in the context of the metabolic network 
and guiding hypothesis generation (Extended Data Fig. 1). Importantly, 
Metaboverse introduces pattern recognition and data sparsity handling 
algorithms to identify metabolic signatures within a user’s dataset 
(Extended Data Fig. 2).

Using public metabolomics data from LUADs, we demonstrated 
that Metaboverse could not only identify reaction patterns correspond-
ing to known metabolic signatures (Fig. 1), but it identified biologi-
cally relevant patterns that were undetected by existing data-driven 
approaches. For example, Metaboverse identified a previously unde-
scribed reaction pattern centred around SMS, and we subsequently 
determined a positive correlation of LUAD patient survival with SMS 
gene expression (Fig. 2).

Using multi-omics datasets in a yeast model of mtFAS dysfunc-
tion, we demonstrated that Metaboverse could identify important 
regulatory and compensatory mechanisms, including adaptations to 
respiratory defects that enable these mutants to maintain their growth 
(Figs. 3 and 4). Specifically, the insights from Metaboverse implicate 
altered Ctp1 activity and citrate homeostasis as part of the broader 
biosynthetic response to mitochondrial dysfunction, allowing for 
continued cellular growth and survival.

We benchmarked Metaboverse against existing tools with similar 
goals to Metaboverse and found that Metaboverse consistently ranked 
relevant reactions higher and provided an intuitive format to explore 
these patterns (Fig. 5). We tested the ability of Metaboverse to identify 
critical reaction patterns with missing data points and found that the 
number of identified reactions decreased with increasing data sparsity, 
but this was buffered by the use of collapsed reaction representations 
and multi-omics data integration (Fig. 6).

Metaboverse integrates multiple data layers onto the metabolic 
network across model organisms, allowing users to easily analyse 
data to identify interesting patterns. Thus, Metaboverse provides an 
integrated platform for pattern recognition and hypothesis genera-
tion, and can assist users in their design of future experiments with a 
more holistic mindset.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Network curation
Biological networks are curated using the current version of the 
Reactome knowledgebase17–19. In particular, the pathway records and 
Ensembl- and UniProt-Reactome mapping tables are integrated into 
the network database for Metaboverse. Additionally, the ChEBI and 
The Human Metabolome databases are also referenced for metabolite 
synonym mapping to accept more flexible metabolite input nomencla-
ture from the user16,56. These data are used to generate a series of map-
ping dictionaries for entities to reactions and reactions to pathways 
for the curation of the total reaction network. Reaction annotations 
are additionally obtained from the Reactome knowledgebase17–19. At 
the time of writing, users can also provide BiGG25 and BioModels26,27 
networks; however, full support cannot always be guaranteed due to 
the more bespoke nature of some network models from these sources. 
The resulting curation file is output as a pickle-formatted .mvdb file. 
For further details, we refer the reader to the accompanying Supple-
mentary Note 2.

To overlay user data on the global network, first, user-provided 
gene expression, protein abundance and/or metabolite abun-
dances’ names are mapped to Metaboverse compatible identifiers. 
Metaboverse accepts any data input that can be appropriately mapped 
to a standard gene, protein or metabolite identifier or name. For com-
ponents that Metaboverse is unable to map, a table is returned to the 
user so they can provide alternative names to aid in mapping. Second, 
provided data values are mapped to the appropriate nodes in the net-
work. In cases where gene expression data are available, but protein 
abundance values are missing, Metaboverse will take the average of the 
available gene expression values to broadcast to the protein node. For 
complexes, the median of all available component values (metabolites, 
proteins and so on) is calculated (Supplementary Note 3, equation (12)). 
An aggregated P value is inferred by multiplying the geometric mean 
of the P values, as in refs. 57,58 (Supplementary Note 3, equation (13)).

Collapsing reactions with missing values
After data mapping is complete, Metaboverse will generate a collapsed 
network representation for optional viewing during later visualiza-
tion. Metaboverse enforces a limit of up to three reactions that can 
be collapsed as data down a pathway should only be inferred so far. 
Reaction collapsing allows for partial matches between inputs and 
outputs of two reactions to account for key metabolic pathways where 
a metabolite that is output by one reaction may not be required for 
the subsequent reaction. To perform a partial collapse, Metaboverse 
operates by largely the same scheme as outlined below, but addition-
ally if a perfect match between reactions is not available, checks for 
partial matches by filtering out high-degree nodes (quartile 98 of all 
non-reaction node degrees) and then checking if, by default, at least 
30% of the nodes match with its neighbour. For further details, we refer 
the reader to the accompanying Supplementary Note 2 and Extended 
Data Fig. 3.

Regulatory pattern searches and prioritization
Metaboverse provides a variety of different regulatory patterns for 
the user to explore. To identify a reaction pattern is to compare some 
value that is computed from a reaction with a user-specified threshold. 
Equations for the reaction patterns available at the time of publication 
are included in the accompanying Supplementary Note 3 (equations 
(1)–(11)). Metaboverse provides a variety of reaction pattern sorting 
methods, which are detailed further in the accompanying Supplemen-
tary Notes 2 and 3. A complete and current list and description of all 
available reaction pattern modules can be found in the documentation 
at https://metaboverse.readthedocs.io.

Stoichiometry is not directly accounted for in reaction pattern 
identification as log2(fold change) values are utilized and factor out 
stoichiometric constants between experiment and control conditions 

and instead focus on relative magnitude changes of a given reaction 
component.

Nearest neighbourhood searches and prioritization
To visualize all connections to a given network component, a user can 
select an entity (a gene, protein or metabolite) and visualize all reac-
tions in which the component is involved. By doing so, the user can 
visualize other downstream effects the change of one entity might 
have across the total network, which consequently aids in bridging and 
identifying any reaction that may occur between canonically annotated 
pathways. These neighbourhoods can be expanded to view multiple 
downstream reaction steps and their accompanying genes, proteins 
and metabolites by modulating the appropriate user option in the 
software.

The user can also limit which entities are shown by enforcing a 
degree threshold. By setting this value at 50, for example, the network 
would not show nodes that have 50 or more connections. One caveat, 
however, is that this feature will occasionally break synchronous path-
ways into multiple pieces if one of these high-degree nodes formed the 
bridge between two ends of a pathway.

Perturbation networks
Perturbation networks are generated by searching each reaction in the 
total reaction network for any reaction where at least one component 
is substantially perturbed. The user can modify the necessary criteria 
to base the search on the expression or abundance value or the statisti-
cal value and can choose the thresholding value to be used. For the 
expression thresholding, the provided value is assumed to be the 
absolute value, so a thresholding value of 3 would include any reactions 
where at least one component showed a greater than 3 measured 
change or less than −3 measured change, the value of which is depend-
ent on the data provided by the user. Thus, these networks could rep-
resent reactions where a component was perturbed to a notable degree 
on a log2 fold change scale, z-score scale, or another appropriate unit 
for that biological context. Once a list of perturbed reactions is col-
lected, the network is constructed, including each of these reactions 
and their components. Perturbed neighbouring reactions that share 
components are thus connected within the network, and perturbed 
reactions that are not next to other perturbed reactions are shown as 
disconnected subnetworks.

Network visualization and exploration
Force-directed layouts of networks are constructed using D3 (https://
d3js.org) by taking a user-selected pathway or entity and querying the 
reactions that are components of the selected pathway or entity. All 
inputs, outputs, modifiers and other components of these reactions, 
along with edges where both source and target are found in the subnet-
work as nodes, are included and displayed. Relevant metadata, such as 
user-provided data and reaction descriptions, can be accessed by the 
user in real time. To visualize a pathway, a user selects a pathway, and 
all component reactions and their substrates, products, modifiers and 
metadata are queried from the total reaction database. Super-pathways 
help categorize these pathways and are defined as any pathway contain-
ing more than 200 nodes.

Time course and multiple condition experiments are automati-
cally detected from the user’s input data. When users provide these data 
and specify the appropriate experimental parameters on the variable 
input page, they will have the option to provide timepoint or condition 
labels. Provided data should be listed in the data table in the same order 
that the labels are provided. Within all visualization modules, the data 
for each timepoint or condition can then be displayed using a slider bar, 
which will allow the user to cycle between timepoints or conditions.

Compartments are derived from Reactome annotations17–19. Com-
partment visualizations are generated using D3’s hull plotting feature. 
Compartment boundaries are defined at the reaction levels and made 
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to encompass each reaction’s substrates, products and modifiers for 
that given compartment.

Some performance optimization features are included by default 
to prevent computational overload. For example, nearest neighbour 
subnetworks with more than 1,500 nodes, or nodes with more than 500 
edges, will not be plotted because the plotting of this information in 
real time can be prohibitively slow.

Software packaging
The Metaboverse application is packaged using Electron (https://elec-
tronjs.org). Back-end network curation and data processing are per-
formed using Python (https://www.python.org/) and the NetworkX59, 
pandas60,61, NumPy62, SciPy61,63 and Matplotlib63 libraries. This back-end 
functionality is packaged as a single, operating system-specific execut-
able using the PyInstaller library (https://www.pyinstaller.org) and is 
available to the app’s visual interface for data processing. Front-end 
visualization is performed using Javascript and relies on the D3 (https://
d3js.org) and JQuery packages (https://jquery.com). Saving network 
representations to a PNG file is performed using the (https://github.
com/edeno/d3-save-svg) and string-pixel-width (https://github.
com/adambisek/string-pixel-width) packages. Documentation for 
Metaboverse is available at https://metaboverse.readthedocs.io. 
Continuous integration services are performed by GitHub Actions 
to routinely run test cases for each change made to the Metaboverse 
architecture. The Metaboverse source code can be accessed at https://
github.com/Metaboverse/metaboverse. The code used to draft and 
revise this manuscript, as well as all associated scripts used to generate 
and visualize the data presented in this manuscript, can be accessed 
at ref. 55.

Human LUAD metabolomics and analysis
Data were accessed from Metabolomics Workbench project PR000305 
and processed as in our previous re-study of these data24. P values were 
derived using a two-tailed, homoscedastic Student’s t-test and adjusted 
using the Benjamini–Hochberg correction procedure.

The initial Kaplan–Meier survival analysis was performed using 
tools and data hosted on The Human Protein Atlas (version 20.1; 
released 24 February 2021) (refs. 65–67). Survival analysis as dis-
played in this manuscript was performed in R (version 4.0.3) using 
the survival (version 3.2-11) and survminer (version 0.4.9) packages. 
Correlation analysis between Metaboverse reaction pattern rank and 
survival statistic was performed using the Pearson correlation coef-
ficient and a loess regression using the ggscatter() function from 
the ggpubr (version 0.4.0) package. TCGA FPKM gene expression data 
were obtained from the Human Protein Atlas project (https://www.
proteinatlas.org/download/rna_cancer_sample.tsv.zip) and clinical 
patient data were obtained from TCGA (https://portal.gdc.cancer.gov/
projects/TCGA-LUAD). Clinical data were censored as ‘Dead’ or ‘Alive’, 
and ‘Alive’ patients were right censored using days since last follow-up. 
Patients were stratified into two gene expression groups (High, Low) 
using the optimized surv_cutpoint() function from the survminer 
package (version 0.4.9) with the minimum proportion for a group set 
at 0.2 (ref. 33).

DepMap data (21Q4 Public) were subsetted to include only 
non-small cell lung cancer cell lines. The scatter plot was generated 
from the DepMap online interface (https://depmap.org/).

Yeast growth assays and experiments
The S. cerevisiae BY4743 (MATa/α, his3/his3, leu2/leu2, ura3/ura3, met15/ 
MET15 and lys2/LYS2) WT or mct1Δ strains as described in ref. 40 
were used for all yeast experiments. Growth assays were performed 
using S-minimal (S-min) medium with no uracil added and contain-
ing either 2% glucose or 2% raffinose. Equal numbers of WT or mct1Δ 
yeast transformed with empty vector (EV), CTP1 overexpression and 
CTP1-C-terminal GFP-overexpression plasmids were spotted as tenfold 

serial dilutions during mid-log phase (OD600 0.3–0.6). Plates were 
incubated at 30 °C for 2–3 days before imaging.

Protein expression validation
Yeast cultures were grown to mid-log phase and lysed. Proteins were 
run on a sodium dodecly-sulfate-page gel and assayed using antibod-
ies for α-GFP (1/2,000 dilution; rabbit; Cell Signaling Technology no. 
2956; RRID: AB_1196615) and α-Pgk1 (1/3,000 dilution; mouse; Abcam 
no.ab113687; RRID: AB_10861977).

RNA-seq
RNA-seq data were generated by growing S. cerevisiae biological repli-
cates for strains mct1Δ (n = 4) and WT (n = 4). Briefly, cells were grown 
in glucose and switched to raffinose-supplemented growth medium 
(SR-URA) for 0, 3 and 12 h, such that at the time of collection, cultures 
were at OD600 of 1. Cultures were flash frozen, and later total RNA was 
isolated using the Direct-zol kit (Zymo Research) with on-column DNase 
digestion and water elution. Sequencing libraries were prepared by 
purifying intact poly(A) RNA from total RNA samples (100–500 ng) with 
oligo(dT) magnetic beads, and stranded messenger RNA-seq librar-
ies were prepared as described using the Illumina TruSeq Stranded 
mRNA Library Preparation Kit (RS-122-2101 and RS-122-2102). Purified 
libraries were qualified on an Agilent Technologies 2200 TapeStation 
using a D1000 ScreenTape assay (cat. nos. 5067-5582 and 5067-5583). 
The molarity of adaptor-modified molecules was defined by quan-
titative polymerase chain reaction (PCR) using the Kapa Biosystems 
Kapa Library Quant Kit (cat. no. KK4824). Individual libraries were 
normalized to 5 nM, and equal volumes were pooled in preparation for 
Illumina sequence analysis. Sequencing libraries (25 pM) were chemi-
cally denatured and applied to an Illumina HiSeq v4 single-read flow cell 
using an Illumina cBot. Hybridized molecules were clonally amplified 
and annealed to sequencing primers with reagents from an Illumina 
HiSeq SR Cluster Kit v4-cBot (GD-401-4001). Following the transfer 
of the flow cell to an Illumina HiSeq 2500 instrument (HCSv2.2.38 and 
RTA v1.18.61), a 50-cycle single-read sequence run was performed using 
HiSeq SBS Kit v4 sequencing reagents (FC-401-4002).

Sequence FASTQ files were processed using XPRESSpipe (version 
0.6.0) (ref. 68). Batch and log files are available at ref. 55. Notably, reads 
were trimmed of adaptors (AGATCGGAAGAGCACACGTCTGAACTC-
CAGTCA). On the basis of library complexity quality control, 
de-duplicated alignments were used for read quantification due to the 
high number of duplicated sequences in each library. Differential 
expression analysis was performed using DESeq2 (version 1.22.1)  
(ref. 69) by comparing mct1Δ samples with WT samples at the 12 h 
timepoint to match the steady-state proteomics data. log2(fold change) 
and false discovery rate (FDR; ‘p-adj’) values were extracted from the  
DESeq2 output.

Proteomics
Steady-state quantitative proteomics data were previously processed 
and obtained from ref. 40 (ProteomeXchange: PXD035000).

Briefly, cells were grown in glucose and switched to SR-URA over-
night and collected at the mid-log phase. Cells were resuspended, 
lysed and clarified. Proteins were then subjected to disulfide reduc-
tion and digested for 16 h with LysC (1:100 enzyme:protein ratio) at 
room temperature, followed by trypsin (1:100 enzyme:protein ratio) 
for 6 h at 37 °C. Proteins were again quantified and subjected to tan-
dem mass tag (TMT)-11 labelling, after which samples were pooled. 
Pooled TMT-labelled peptide samples were fractionated using basic 
pH reversed-phase high-performance liquid chromatography (LC) 
(Agilent 1260 Infinity pump equipped with a degasser and a single wave-
length detector set at 220 nm). Fractions were desalted via StageTip, 
dried via vacuum centrifugation and reconstituted in 5% acetonitrile, 
5% formic acid for LC–tandem mass spectrometry (MS/MS) process-
ing. MS data were collected using an Orbitrap Fusion Lumos mass 
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spectrometer (Thermo Fisher Scientific) equipped with a Proxeon 
EASY-nLC 1000 LC system (Thermo Fisher Scientific). The multi-notch 
MS3-based TMT method was used70. MS2 mass spectra were processed 
using the Sequest algorithm71. Spectra were converted to mzXML, fol-
lowed by database searching using the yeast proteome downloaded 
from Uniprot (UniProt-Consortium, 2015) in both forward and reverse 
directions, along with common contaminating protein sequences. 
Peptide-spectrum matches were adjusted to a 1% FDR72. Linear dis-
criminant analysis was used to filter peptide-spectrum matches, as 
described previously73. Each TMT channel was summed across all 
quantified proteins and normalized to enforce equal protein loading. 
Each protein’s quantitative measurement was then scaled to 100.

For the analysis used within this manuscript, we compared the 
mct1Δ (n = 3) with the WT (n = 3) cell populations. log2(fold change) 
values and Benjamini–Hochberg-corrected P values were generated 
by comparing mct1Δ with the WT cells. P values were generated before 
correction using a two-tailed, homoscedastic Student’s t-test.

Gas chromatography metabolomics
Metabolomics data were generated by growing the appropriate yeast 
strains in synthetic complete media supplemented with 2% glucose 
until they reached saturation (n = 6; except in one 3 h WT sample, where 
n = 5). Cells were then transferred to S-minimal medium containing 
2% raffinose and leucine and collected after 0, 15, 30, 60 and 180 min 
(n = 6 per timepoint per strain, except for the 3 h WT samples, where 
n = 5) at OD600 0.6–0.8.

A 75% boiling ethanol (EtOH) solution containing the internal 
standard d4-succinic acid (Sigma 293075) was then added to each 
sample. Boiling samples were vortexed and incubated at 90 °C for 
5 min. Samples were then incubated at −20 °C for 1 h. After incubation, 
samples were centrifuged at 5,000g for 10 min at 4 °C. The superna-
tant was then transferred from each sample tube into a labelled, fresh 
13 × 100 mm glass culture tube. A second standard was then added 
(d27-myristic acid CDN Isotopes: D-1711). Pooled quality control sam-
ples were made by removing a fraction of the collected supernatant 
from each sample, and process blanks were made using only extraction 
solvent and no cell culture. The samples were then dried en vacuo. This 
process was completed in three separate batches.

All gas chromatography–MS analysis was performed with an 
Agilent 5977b GC-MS MSD-HES and an Agilent 7693A automatic liq-
uid sampler. Dried samples were suspended in 40 μl of 40 mg ml−1 
O-methoxylamine hydrochloride (MP Bio no. 155405) in dry pyridine 
(EMD Millipore no. PX2012-7) and incubated for 1 h at 37 °C in a sand 
bath. Then, 25 μl of this solution was added to autosampler vials and 
60 μl of N-methyl-N-trimethylsilyltrifluoracetamide (MSTFA) with 1% 
trimethylchlorosilane (TMCS) (Thermo Fisher no. TS48913) was added 
automatically via the autosampler and incubated for 30 min at 37 °C. 
After incubation, samples were vortexed, and 1 μl of the prepared 
sample was injected into the gas chromatograph inlet in the split mode 
with the inlet temperature held at 250 °C. A 10:1 split ratio was used 
for the analysis of the majority of metabolites. For those metabolites 
that saturated the instrument at the 10:1 split concentration, a split of 
50:1 was used for the analysis. The gas chromatograph had an initial 
temperature of 60 °C for 1 min followed by a 10 °C min−1 ramp to 325 °C 
and a hold time of 5 min. A 30 m Phenomenex Zebron AB-5HT with a 5 m 
inert Guardian capillary column was employed for chromatographic 
separation. Helium was used as the carrier gas at a rate of 1 ml min−1.

Data were collected using MassHunter software (Agilent). Metabo-
lites were identified, and their peak area was recorded using Mass-
Hunter Quant. These data were transferred to an Excel spreadsheet 
(Microsoft). Metabolite identity was established using a combination of 
an in-house metabolite library developed using pure purchased stand-
ards, and the NIST (https://www.nist.gov) and Fiehn libraries74. Result-
ing data from all samples were normalized to the internal standard 
d4-succinate. P values were derived using a homoscedastic, two-tailed 

Student’s t-test and adjusted using the Benjamini–Hochberg correc-
tion procedure.

Liquid chromatography metabolomics
Metabolomics data were generated by growing the appropriate yeast 
strains in synthetic complete medium supplemented with 2% glucose 
until they reached saturation (n = 3). Cells were then transferred to 
S-minimal medium containing 2% raffinose and leucine and collected 
after approximately 8 h (n = 3) at OD600 0.6–0.8.

The procedures for metabolite extraction were performed as 
previously described75. Yeast cultures were pelleted, snap-frozen and 
kept at −80 °C. Then 5 ml of 75% boiled EtOH was added to every fro-
zen pellet. Pellets were vortexed and incubated at 90 °C for 5 min. All 
samples were then centrifuged at 5,000g for 10 min. Supernatants were 
transferred to fresh tubes, evaporated overnight in a Speed Vacuum 
and then stored at −80 °C until they were run on the mass spectrometer.

The conditions for LC are described in previous studies76,77. Briefly, 
a hydrophilic interaction LC method with an Xbridge amide column 
(100 × 2.1 mm, 3.5 μm) (Waters) was employed on a Dionex (Ultimate 
3000 UHPLC) for compound separation and detection at room tem-
perature. The mobile phase A was 20 mM ammonium acetate and 
15 mM ammonium hydroxide in water with 3% acetonitrile, pH 9.0, and 
the mobile phase B was acetonitrile. The linear gradient was as follows: 
0 min, 85% B; 1.5 min, 85% B, 5.5 min, 35% B; 10 min, 35% B, 10.5 min, 35% 
B, 14.5 min, 35% B, 15 min, 85% B and 20 min, 85% B. The flow rate was 
0.15 ml min−1 from 0 to 10 min and 15 to 20 min, and 0.3 ml min−1 from 
10.5 to 14.5 min. All solvents were LC–MS grade and purchased from 
Thermo Fisher Scientific.

MS was performed as described in previous studies76,77. Briefly, 
the Q Exactive MS (Thermo Scientific) is equipped with a heated elec-
trospray ionization probe, and the relevant parameters are as listed: 
evaporation temperature, 120 °C; sheath gas, 30; auxiliary gas, 10; 
sweep gas, 3; spray voltage, 3.6 kV for positive mode and 2.5 kV for nega-
tive mode. The capillary temperature was set at 320 °C and S-lens was 
55. A full scan range from 60 to 900 m/z was used. The resolution was 
set at 70,000. The maximum injection time was 200 ms. Automated 
gain control was targeted at 3,000,000 ions.

Data were collected, metabolites were identified and their peak area 
was recorded using El-Maven software (version 0.12.0) (refs. 78–80).  
A pre-entered compound list of m/z values and corresponding metabo-
lites was utilized to enable El-Maven EIC (extracted ion chromatogram) 
extraction of all samples. A manual visual examination of peaks selected 
by El-Maven was performed and misannotated peaks were manually cor-
rected and exported as an Excel spreadsheet (Microsoft), as described in 
refs. 78,80. Metabolite identity was established using a combination of an 
in-house metabolite library developed using pure purchased standards, 
and the NIST (https://www.nist.gov) and Fiehn libraries74. P values were 
derived using a homoscedastic, two-tailed Student’s t-test and adjusted 
using the Benjamini–Hochberg correction procedure.

Correlation analysis
To correct the expression bias arising from highly expressed genes, 
gene expression data were first corrected using spatial quantile nor-
malization (SpQN; version 1.0.0) for each dataset with the first four 
principal components being removed for each dataset50. Genes were 
considered co-expressed in refine.bio datasets if SpQN-normalized 
Pearson’s r > 0.5 and in the WT data generated for this study if >0.75.

Gene Ontology (GO) enrichment analysis was performed by pro-
cessing the correlated gene sets from each dataset using the PAN-
THER Overrepresentation Test (version 16; released 20210224) on 
the GO biological process complete annotation dataset (https://doi.
org/10.5281/zenodo.4735677; released 2021-05-01) (refs. 81,82) via 
the GO Resource83,84. Enrichments were determined using Fisher’s 
exact test and P values were corrected using the PANTHER FDR calcula-
tion81,82. Enrichments were prioritized by fold change. For overlapping 
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GO terms, the GO term with the highest fold change was used for the 
visualization. Enrichment FDRs and fold changes were visualized as 
bubble plots generated using seaborn (version 0.11.0) and Matplotlib 
(version 3.4.2) (refs. 63,85). Scatter plots of co-expressed genes against 
the gene of interest were generated using the regplot() function from 
seaborn (version 0.11.0) and Matplotlib (version 3.4.2) (refs. 63,85).

Sensitivity analysis
For the original input metabolomics datasets from Wikoff, et al.29 and 
the 12 h timepoint mct1Δ yeast, six replicates each of 10%, 20%, 30%, 
40%, 50%, 60%, 70%, 80% and 90% of metabolites missing were gener-
ated. For the proteomics dataset for the 12 h timepoint mct1Δ yeast, 
0%, 30% or 60% of proteins missing were generated as above. The 
random seed for each replicate was distinct but consistent between 
re-analyses. Each of these datasets were then processed by Metaboverse 
version 0.10.0 using default parameters, and ‘Average’ patterns from 
the Wikoff dataset and ‘ModReg’ patterns from the mct1Δ were output. 
Box plots and heat maps of the resulting data were generated using 
pandas (version 1.4.0) (refs. 59,60), NumPy (version 1.22.3) (ref. 61), 
Matplotlib (version 3.5.1) (ref. 63) and Seaborn (version 0.12.1) (ref. 85). 
Quantification of the number of reactions that could be measured with 
or without reaction collapsing was performed by counting the number 
of reactions with at least two reaction component types (reactants, 
products and modifiers) each having at least one measurement. Scripts 
to reproduce these analyses are available at ref. 64.

Other visualization
Heat maps were generated using the clustermap() function from 
seaborn (version 0.11.0) and Matplotlib (version 3.4.2) using custom 
gene, protein or metabolite lists63,85. Heat map values were mean cen-
tred at 0 (z score). Hierarchical clustering was performed where indi-
cated by the linkage lines using a simple agglomerative (bottom-up) 
hierarchical clustering method (or unweighted pair group method with 
arithmetic mean (UPGMA)). Gene comparison box plots were gener-
ated using the swarmplot() and boxplot() functions from seaborn 
(version 0.11.0) and Matplotlib (version 3.4.2) (refs. 63,85). Single-cell 
dot plots were generated using scanpy (version 1.8.2) (ref. 86). The path-
way images in Fig. 4d and Supplementary Fig. 7 were generated manu-
ally using Adobe Illustrator (https://www.adobe.com/). Hex values for 
each protein or metabolite were determined by converting the fold 
change values in Python https://www.python.org/) using Matplotlib64.

Biological materials availability
All biological materials related to this manuscript are available without 
restriction. Requests for biological materials should be directed to J.R. 
(rutter@biochem.utah.edu).

Statistics and reproducibility
P values associated with log2 fold changes for Metaboverse integration 
were calculated using a two-tailed, homoscedastic Student’s t-test and 
adjusted using the Benjamini–Hochberg correction procedure, except 
for RNA-seq data, which used DESeq2 (version 1.22.1) to determine 
FDRs69. Other details are listed in Methods. For yeast experiments, 
samples were prepared with separate and fresh preparations with three 
to six biological replicates in each experimental or control group, as 
detailed in Methods and elsewhere as appropriate within the manu-
script. In the case of the refine.bio yeast cohort, the entire WT sample 
cohort was used as specified in the manuscript text. For the public 
human LUAD datasets, the Wikoff 2015 study29 contained 39 tumour 
tissue samples and 39 paired normal tissue samples; and TCGA data 
contained 487 gene expression samples total that were relevant to 
this study. No statistical method was used to predetermine the sample 
size. Sample sizes for high-throughput data generated for this study 
were chosen on the basis of a first-principles estimated understand-
ing of the number of samples needed to generate expected statistical 

distributions on the basis of the data type. Statistical values were then 
adjusted for false positives following the convention for the respective 
data type. Other data were previously generated for other studies. For 
survival analysis, TCGA data were right censored and then removed if no 
days to death or censored days to death were available. Metabolomics 
samples that did not pass basic quality control (n = 1) were excluded 
from further analysis. No additional data were excluded. All biological 
assays were repeated at least three times. All replication attempts were 
successful. Verification of plasmid construct expression by western 
blot was performed once as a simple validation that the construct 
was being overexpressed. Samples were randomized during sample 
preparation, but not during sample collection for the yeast RNA-seq 
and yeast metabolomics data, or were previously collected (human 
TCGA data, human metabolomics data and yeast proteomics data), 
or otherwise not amenable to randomization (yeast growth spot tests 
and so on). Yeast sample ordering and handling would have otherwise 
been randomized during sample processing. Data were either previ-
ously collected (human TCGA data, human metabolomics data and 
yeast proteomics data), blinded during sample preparation but not 
sample collection (yeast RNA-seq and yeast metabolomics) or were 
otherwise not amenable to blinding (yeast growth spot tests and so 
on). Yeast samples were additionally difficult to blind during growth 
and collection as exact growth rates need to be measured throughout, 
and often correlate with genetic background.

All analysis code, raw and processed data are available in the 
above-named repositories or at ref. 55. This archive is organized by 
the figure number, and the source data, references to source data and 
code needed to replicate associated figures are included.

Protocols
A step-by-step protocol describing use of Metaboverse can be found 
at Nature Protocol Exchange87.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Gene expression counts for LUAD were obtained from the Human 
Protein Atlas project’s TCGA FPKM gene expression data (https://
www.proteinatlas.org/download/rna_cancer_sample.tsv.zip) and 
clinical patient data were obtained from TCGA (https://portal.gdc.
cancer.gov/projects/TCGA-LUAD). Single-cell data were obtained from 
the Human Lung Cell Atlas project version 1.0 (https://zenodo.org/
record/6337966#.YkzVrOjMIQ-). Metabolomics data were obtained 
from the Metabolomics Workbench repository under project identi-
fier PR000305, study identifiers ST000390 and ST000391. mct1Δ and 
accompanying WT transcriptomics time course data are deposited 
at the GEO repository under identifier GSE151606. mct1Δ and WT 
proteomics data are deposited at the ProteomeXchange repository 
under identifier PXD035000. Metabolomics data are deposited at 
the Metabolomics Workbench repository under project identifier 
PR000961, study identifier ST001401 and project identifier PR001422, 
study identifier ST002232. For gene co-expression analyses, all yeast 
samples available at https://www.refine.bio were accessed and down-
loaded on 16 March 2021 (ref. 49). The curated Metaboverse files 
for the datasets analysed for this manuscript were processed using 
Metaboverse version 0.9.0, unless otherwise specified, and are avail-
able at ref. 55. Source data are provided with this paper. All other source 
data needed to replicate the results of this work have been deposited in 
the above-mentioned repositories or are available at ref. 55.

Code availability
The Metaboverse source code is available at https://github.com/
Metaboverse/Metaboverse and https://github.com/Metaboverse/
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metaboverse-cli. The latest version of the software can be found at 
https://github.com/Metaboverse/Metaboverse/releases/latest. The 
source code and data for this manuscript and the related analyses are 
available at ref. 55. Source code is archived at Zenodo: https://zenodo.
org/record/7384508 and https://zenodo.org/record/7384509.
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Extended Data Fig. 1 | Metaboverse provides a simple, interactive user 
interface for processing and exploring multi-omics datasets and metabolic 
patterns. a. An overview of the graphical user interface of Metaboverse and a 
summary of analytical submodules contained within the platform. b. Overview 
of back-end metabolic network curation and data layering. .sbml refers to 
the systems biology markdown language-formatted resource containing 
the metabolic network information for the model organism. Colored circles 

represent subcellular compartments, biochemical reactions are stars, 
metabolites are circles, and proteins are squares. Grey arrows represent core 
reaction relationships and red arrows represent reaction inhibitor relationships. 
Progressively blue shades indicate decreased measurements between two 
conditions and progressively red shades indicate increased measurements 
between two conditions. The dashed box represents an identified reaction 
pattern, or net change across the measured components of a reaction.
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Extended Data Fig. 2 | Metaboverse identifies a variety of metabolic patterns 
and enables pattern identification with sparse measurements. a. Examples 
of a selection of reaction patterns available in Metaboverse. Reactions are 
depicted as stars, metabolites as circles, protein complexes as squares, and 
proteins as diamonds. Core interactions (inputs, outputs) are depicted as grey 
arrows, reaction catalysts as green arrows, and reaction inhibitors as red arrows. 
Component measurements are depicted in a blue-to-red color map, where lower 
values are more blue and higher values are more red. b. Example sub-networks 

where a reaction collapse would occur. Measured components are depicted as 
red circles, unmeasured components as white circles, and reactions as stars. 
Core interactions (inputs, outputs) are depicted as grey lines and identical 
components that would form the bridge between two reactions are depicted 
as dashed black lines between circles. A collapsed reaction is depicted as a star 
with a dashed border and its summarized connections between measured 
components are dashed black lines between a measured component and a 
reaction node.
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Extended Data Fig. 3 | Visual summary of Algorithm 4. Reactions are 
indicated by stars, and metabolites by circles. Measured reaction components 
are indicated by filled red circles, and unmeasured reaction components are 

indicated by empty white circles. The original reaction being considered at each 
step is marked with an asterisk. Collapsed edges are marked with dashed edges, 
and canonical reaction relationships are marked with solid edges.
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Extended Data Fig. 4 | Metaboverse identifies reaction patterns in xanthine 
and TCA metabolism. a. Identification of xanthine regulation by both the 
pattern recognition and perturbation analysis modules. b. Disruptions of TCA 
metabolism support canonical disruptions during adenocarcinoma 
development. Metabolomics values are shown as node shading, where an 
increasingly blue shade indicates downregulation, and an increasingly red shade 
indicates upregulation. Measured log2 (fold change) and statistical values for 
each entity are displayed below the node name. A gray node indicates a reaction. 
A bold gray node with a purple border indicates a motif at this reaction. Circles 
indicate metabolites, squares indicate complexes, and diamonds indicate 

proteins. Gray edges indicate core relationships between reaction inputs and 
outputs. Green edges indicate a catalyst, and red edges indicate inhibitors. 
Dashed blue edges point from a metabolite component to the protein complex in 
which it is involved. Dashed orange edges point from a protein component to the 
protein complex in which it is involved. Protein complexes with dashed borders 
indicate that the values displayed on that node were inferred from the 
constituent protein and metabolite measurements. Hub limit was set at 30 
during generation of the network visualization as shown in sub-panel b. Source 
numerical data are available at64.
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Extended Data Fig. 5 | Overall survival outcomes correlations of SMS and 
GLYCTK gene expression in early-stage adenocarinomas are stronger than 
in later stage adenocarcinomas. (top) gene FPKM distributions for SMS 
and GLYCTK (Glycerate Kinase, FPKM cut-off: 0.913; high: 104 tumors, low: 
383 tumors). (middle) Kaplan-Meier plots using Cox regression analysis for 
early-stage (stage IA-B) samples for SMS and GLYCTK and distribution of all genes’ 
Benjamini-Hochberg log-rank p-values. (bottom) Kaplan-Meier plots using 

Cox regression analysis for late stage (stage II+) samples for SMS and GLYCTK 
and distribution of all genes’ Benjamini-Hochberg log-rank p-values. Shading 
in Kaplain-Meier plots indicates 95% confidence intervals for each expression 
group. Dashed lines indicate median survival times for each expression group. 
Risk tables are displayed below each Kaplan-Meier plot, and include the number 
of individuals in each risk category at time = 0 years. Source numerical data  
are available64.
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Extended Data Fig. 6 | Correlations between reaction pattern rank, survival 
statistic, and gene dependency in lung adenocarcinomas and associated 
cell types. a. DepMap-generated plot of SMS and GLYCTK dependency scores 
selecting for lung adenocarcinoma cell lines only. b. Pearson correlation with 
loess regression of top 12 Average reaction patterns’ component enzymes and 
their genes’ survival statistics. The rank of each enzyme is plotted on the x-axis, 
and the corresponding survival BH statistic is plotted on the y-axis. The rank of 
an enzyme corresponds with the reaction pattern rank for which that enzyme is 
involved. Several of these reactions contained 2-5 gene components per enzyme 
(such as UPP1/2 complex (reactions #4 & 5) and alpha-amylase (reaction #9)). 
Reactions without a rank (reaction #8, sucrase-isomaltase dimer) did not have 

a corresponding survival statistic from the TCGA gene expression dataset to 
investigate. Shading indicates 95% confidence interval of regression. c. Dotplot 
of gene markers (horizontal axis) across annotated cell types (vertical axis) in the 
Human Lung Cell Atlas (HLCA) project. Proliferative gene markers were sourced 
from Whitfield, M., George, L., Grant, G. et al. Common markers of proliferation. 
Nat Rev Cancer 6, 99-106 (2006). The other genes displayed are based on the 
top Metaboverse hits’ corresponding enzymes from the LUAD metabolomics 
dataset. Dot size is scaled by fraction of cells in a cell type group expressing the 
given gene marker. Dot shade is scaled by mean expression of gene marker within 
the cell type group. Source numerical data are available64.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Top-ranking ModReg and TransReg reaction patterns 
identified in steady-state proteomics and metabolomics data in the mct1 
Δ background. Stamp view snapshots of four of the top-ranking ModReg and 
four of the top-ranking TransReg reaction patterns in the mct1 Δ vs. wild-type 
comparison using steady-state (12-hr) proteomics and metabolomics data 
and sorted by associated statistical values. In cases where the substrates, 
products, and modifiers were identical, only the first reaction pattern is shown. 
Reaction patterns were sorted by difference in magnitude of the different 
relevant components. Only results where the input/output and modifier were 
both statistically significant are shown. 12-hr RNA-sequencing comparisons 
contained n=4 in each group, 12-hr proteomics comparisons contained n = 3 

in each group, and 12-hr metabolomics comparisons contained n = 3 in each 
each comparison group. a.ModReg reaction #1: propionyl-CoA + carnitine 
= > propionylcarnitine + CoA SH, b.ModReg reaction #2: alpha-ketoadipate + 
CoA SH + NAD+ = > glutaryl-CoA + CO2 + NADH + H+, c.ModReg reaction #3: 
FXN:NFS1:ISD11:ISCU assembles 2Fe-2S iron-sulfur cluster, d.ModReg reaction 
#4: Succinate < = > Fumarate (with FAD redox reaction on enzyme), e.TransReg 
reaction #1: SLC25A16 transports cytosolic CoA SH to mitochondrial matrix, 
f.TransReg reaction #2: SLC25A18,A22 cotransport Glu, H+ from cytosol to 
mitochondrial matrix, g.TransReg reaction #4: Electron transfer from ubiquinol 
to cytochrome c of complex III, and h.TransReg reaction #6: Transport of Citrate 
from Mitochondrial Matrix to cytosol. Source numerical data are available64.

http://www.nature.com/naturecellbiology
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Extended Data Fig. 8 | Graphical model of mct1 Δ regulation. Graphical overview of yeast glycolysis and the TCA cycle pathways and other related reactions overlaid 
with summary annotations based on RNA-sequencing, proteomics, and metabolomics measurements. Source numerical data are available64.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Metabolite relative abundance changes during CTP1 
overexpression in mct1 Δ or wild-type backgrounds at 12 hours growth in 
raffinose. Boxplot overlaid with swarm plot for metabolites quantified by LC-MS 
in the mct1 Δ or wild-type background with either an empty vector or vector 
overexpressing CTP1 for a. glucose, b. fructose 6-phosphate (F6P), c. fructose 
1,6-bisphosphate (F16BP), d. pyruvate, e. CoenzymeA species (CoA), f. citrate, 
g.α-ketoglutarate (a-KG), h. glutamine, i. glutamate, j. succinate, k. fumarate,  
l. malate, m. adenine, n. alanine, o. arginine, p. asparagine, q. aspartate, r. ATP,  

s. inosine, t. leucine, u. lysine, v. uracil, and w. valine. Cells were transferred from 
media with 2% glucose to media with 2% raffinose, allowed to grow for 12 hours, 
then harvested. All measurements were normalized using the average of the 
WT + EV samples for each metabolite. Each comparison group contained n = 3 
samples. Center line represents data median, top and bottom lines represent 
1.5x interquartile range. Individual data points are visualized as points. Source 
numerical data are available64.
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Extended Data Fig. 10 | Supplemental data for the mct1 Δ yeast model. a. Spot 
dilutions of wild-type and mct1 Δ yeast transformed with either empty vector 
(EV), CTP1 overexpression (CTP1) vector, or CTP1-GFP fusion overexpression 
(CTP1-GFP) vector on synthetic media lacking uracil supplemented with either 
2% glucose (left) or 2% raffinose (right). Cells were plated at mid-log phase 
(OD600=0.3-0.6). Experiment was repeated 3 times. b. Western blots of wild-type 
and mct1 Δ yeast transformed with either empty vector (EV), CTP1 overexpression 
(CTP1) vector, or CTP1-GFP fusion overexpression (CTP1-GFP) vector. Experiment 
was repeated 1 time. c. Heatmap of amino acid and nucleotide metabolites for 

wild-type and mct1 Δ mutant strain proteomics at 180 minutes post-raffinose 
carbon source shift. Metabolomics comparisons contained n = 6 in each each 
comparison group, except for the 3-hour wild-type group, which contained n = 5. 
Heatmap values were mean-centered at 0 (z-score). Hierarchical clustering was 
performed where indicated by the linkage lines using a simple agglomerative 
(bottom-up) hierarchical clustering method (or UPGMA (unweighted pair group 
method with arithmetic mean)). Source unprocessed blots, plate images, and 
numerical data are available64.
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