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Figure 1: One circular parameterization of the memory behavior of bubble sort (box (a)) morphing into another (box (b)), highlighting both their
similarities and differences, and giving two views of the recurrent nature of the program.

ABSTRACT

We demonstrate the application of topological analysis techniques to
the rather unexpected domain of software visualization. We collect
a memory reference trace from a running program, recasting the
linear flow of trace records as a high-dimensional point cloud in a
metric space. We use topological persistence to automatically detect
significant circular structures in the point cloud, which represent
recurrent or cyclical runtime program behaviors. We visualize such
recurrences using radial plots to display their time evolution, offer-
ing multi-scale visual insights, and detecting potential candidates
for memory performance optimization. We then present several
case studies to demonstrate some key insights obtained using our
techniques.

Keywords: Memory reference traces, circular coordinates, visual-
ization, topological analysis.

1 INTRODUCTION

As the gap between processor and memory speed widens [29], it
becomes crucial to investigate the memory behavior of a program
for better structural understanding and higher performance. Though
hardware caches are used to manage this speed difference, the oper-
ation of such caches, and the memory subsystem in general, remain
hidden in abstraction from the programmer, who can reason only
vaguely without explicit feedback from the machine about the pro-
gram’s memory interactions.

If the goal is to achieve the highest possible performance through
software design, it is possible to lift this curtain of abstraction, by
rigging a running program to produce a memory reference trace, a
temporally linear record of all addresses accessed by the program
during its execution, indexed by logical time. Each reference repre-
sents one load or store instruction. Such a record represents the full
interaction of a program with the memory, and provides a starting
point for any memory analysis performed by the programmer.

However, such a raw memory reference trace is linear, whereas an
application generally has non-linear programming constructs such
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as branches and loops, which are evident in its source code. It is
important to understand the dynamic memory behavior of a program
with respect to its static source code.

In particular, a program exhibits spatial and temporal locality, the
tendency to reference nearby memory locations in relatively quick
succession. For example, a program exhibits recurrent memory ac-
cess patterns, which may or may not be directly reflected through its
programming constructs. For instance, a loop may execute several
times, each time accessing memory locations in similar patterns,
therefore inducing a circular memory access pattern. Conversely,
two different stretches of the source code from two different func-
tions may share similar memory access patterns, if they both perform
similar sets of reads and writes upon the memory.

Detecting and visualizing memory access patterns can lead to a
better understanding of the program behavior, as well as insights into
its performance characteristics. We accomplish this goal by encoding
a non-linear high dimensional structure over the memory reference
trace, specifically revealing its inherent circular behavior through
topological analysis, while providing a correspondence between the
runtime memory behavior and the source code. Topological analysis
reveals complex, multiscale features in reference traces that would
be difficult to find using simple pattern matching approaches. In
this paper, we propose an approach to study certain aspects of the
temporal behavior of memory reference traces through topological
analysis and visualization. The results in this paper are:

• We recast sequences of consecutive memory accesses within
the raw memory reference trace as points in high dimensional
space, therefore creating a point cloud abstraction of the tem-
poral information encoded within the linear trace.

• We equip the point cloud with an architecturally meaningful
metric, which reflects the similarity between two sequences of
memory accesses, thus capturing the notion of spatiotemporal
locality.

• We perform automatic topological analysis on the point cloud
to detect circular structures which represent the recurrent, cycli-
cal memory behaviors.

• We use topological persistence to guide our selection of mean-
ingful circular structures: those with high persistence likely
represent significant features within the runtime behavior of a
program.

• We provide a visualization approach that connects the runtime
memory behaviors with program source code. It correlates the
source code with the non-linear memory behavior structures,
providing insights to potential performance optimizations.



2 RELATED WORK

Even simple applications produce very large references traces which
limits how they can be analyzed. Computational approaches include
cache simulation [26], in which the full trace is used to produce
cache statistics such as hit rates, essentially summarizing the trace
by a much smaller set of measurements. Along these same lines,
traces can be manipulated in such a way as to reduce their size
without affecting the results they produce in a cache simulator;
such approaches give either exact [1, 18] or approximate [8, 15, 23]
results. These approaches work by eliminating trace records that
do not substantially affect the simulation output, which is also their
biggest drawback, as important, detailed structural information is
lost as well, preventing the investigation of detailed patterns and
structures in these traces. A different approach is to restructure traces
to yield new insights. Reference affinity [31] is one such example
that places a hierarchical ordering on a reference trace, grouping
together correlated references as much as possible, generalizing the
notion of spatial and temporal locality. The structure can be used as
a guide to select caching strategies, or more generally to understand
the access pattern present in a trace.

Visualization is also a common approach to understanding the
content of reference traces, though most visualization approaches
deal more closely with the cache than the trace itself. The Cache
Visualization Tool [27] shows cache block residency, visualizing
cache line contention due to the layout and access patterns of several
active data structures. Yu et al. [30] use cache simulation to produce
a static view of cache behavior over time. Each pixel in an image
corresponds to the cache effect (hit or miss) of a single reference;
as a whole, the image serves as a time-indexed “map” of cache
performance. YACO [22] is a cache optimization tool focusing on
performance statistics, plotting cache misses in different ways, high-
lighting performance bottlenecks in lines of code and data structures.
By contrast, the Memory Trace Visualizer [6] visualizes reference
traces directly, highlighting access patterns and showing their ef-
fects in a simulated cache, while follow-on work [7] visualizes the
detailed data motion between the levels of a simulated cache.

However, all of these approaches are, in a sense, local: though
they handle the flow of time via animation, at any particular moment
they only demonstrate what is happening in a trace in a limited
temporal range. Our goal in the current work is to find and visualize
higher-order structures in reference traces that may extend through
time, forming cycles that may be executed multiple times. de Silva
et al. [10] and Wang et al. [28] present approaches to finding topo-
logical features, such as circles and branches, in general point sets.
In the current work we adapt these approaches to a reformulation of
a reference trace as a point cloud.

3 TECHNICAL OVERVIEW

Here we give a brief overview of the pipeline of data transformation
that leads to our visualization. To begin, we collect a memory
reference trace, a complete list of the memory accesses performed
by a running program. We accomplish this stage using Pin [20], a
binary rewriting framework that allows intercepting load and store
instructions, and logging their target addresses to disk. The trace
also contains information correlating individual memory accesses
to line numbers in source code, allowing the visualization phase to
similarly correlate memory references to source code.

The reference trace is a single-dimensional, time-indexed signal
indicating the memory behavior of the program. To detect cyclical
behavior, we convert the trace to a high-dimensional point cloud by
considering windows of the trace. For some window size w, we take
a sequence of w adjacent reference trace records and consider them
as a point in a w-dimensional space. By collecting windows begin-
ning at every trace record, a high-dimensional point cloud is formed.
We next use topological analysis [11, 28] to detect circular features
within the point cloud. These circular features represent cyclical
behavior in the trace, as the points within such circles represent
roughly the same pattern of memory access. This procedure pro-
duces several parameterizations for the point cloud, each of which
indicates a different set of circular features.

Finally, we perform visualization on the various parameteriza-
tions. The parameterizations of the point cloud are circle-valued
functions, allowing them to be plotted in two dimensions. Each
point also has an associated logical time that is encoded in the radial
direction. Finally, the source code correlation information is used
to color code the plotted points, allowing a visual correlation to
different parts of the program. In this view, the circular features
are clearly visible while radial color correspondences indicate re-
currence of particular lines of code, forming easily visible patterns.
The different parameterizations visualize the same data in different
ways, therefore we also provide a morphing mechanism to smoothly
transition between parameterizations. Such animation is helpful for
pinning down which features are compressed or expanded between
different parameterizations and helps lead to a better understanding
of the results. In the following sections we provide a deeper descrip-
tion of the analysis leading to parameterizations, their subsequent
visualization, and finally demonstrate several results of our method.

4 TOPOLOGICAL ANALYSIS OF REFERENCE TRACES

Given a memory reference trace T = (P,E) that combines a trace of
memory operations P and the program executable E, we first encode
the temporal information in P as a high-dimensional point cloud X .
We then perform topological analysis on X that detects its circular
features.

4.1 Encode Memory Operations as a Point Cloud
Given a set of m memory operations P = {p1, p2, ..., pm} and a win-
dow size w, we encode its temporal behavior as a high dimensional
point cloud X with a metric μ as follows. We move a scanning
window along P and encode every w consecutive operations as a
point in w dimensions. w is the size of a scanning window that looks
ahead w operations in time. Thus, X is a collection of n points of
dimension w, X = {x1,x2, ...,xn}, where n = m−w+ 1. For each
xi ∈ X (1 ≤ i ≤ n), xi = (pi, ..., pi+w−1). Most atomic actions taken
by a program result in only a few memory accesses, suggesting a
window size of around 3. To capture temporal patterns, however,
we expand the window size by a small factor so that each window
touches multiple consecutive actions. Therefore, in our studies we
have fixed w = 10. Though the optimal window size is probably
application or trace dependent, we have gotten excellent results with
this value, and we note here that the choice of window size deserves
further study.

Now that we have constructed a high dimensional point cloud
X ⊂ R

w, we need to choose a proper distance metric μ on X . Since
we care about temporal behavior of a memory reference trace, the
number of modifications needed between two temporal windows
is more important that the actual operations within each window.
Therefore, given two points xi,x j ∈X , the distance μ(xi,x j) between
them is their Levenshtein distance. More precisely, we treat each
point xi as a string of w characters, with one character for each
dimension. The Levenshtein distance between two ordered tuples is
the minimum number of edits needed to transform one tuple into the
other, where the allowable edit operations are insertion, deletion or
substitution of a single element. By definition, 0 ≤ μ(xi,x j)≤ w.

4.2 Detecting Circular Features in a Point Cloud
Given a high dimensional point cloud X ⊂ R

w, we would like to
detect its circular features. With the technical tools described in
[10, 28], we now give an overview of our algorithm. Here we assume
basic knowledge in topology and homology. For non-specialists, we
give brief descriptions for relevant topological concepts along the
way. See [21] or [16] for an easier to read background or [13] for a
more computationally oriented treatment.

Suppose we represent our point cloud data X with a simplicial
complex K that contains vertices, edges and triangles. Homology
deals with topological features such as “cycles” in a topological
space, 0-, 1- and 2-dimensional homology groups correspond to
components, tunnels and voids. In a nutshell, 1-dimensional homol-
ogy classes are non-bounding cycles represented by a collection of
edges in K. Dual to homology groups, 1-dimensional cohomology
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Figure 2: Algorithm pipeline: (a)-(c) data points to nested family of
simplicial complexes; (d) detection of significant cohomology class
and its transformation into a circle-valued function; (e) color map
encoding.

classes are non-bounding cocycles, which are functions that map a
collection of edges in K to integers.

Technically, we rely on the following principle from homotopy
theory, which shows that in an algebraic way, 1-dimensional co-

homology represents circular structures in data. Let [X ,S1] be the
set of equivalence classes of continuous maps from the space X
to the unit circle S

1. Let H1(X ;Z) be the group of 1-dimensional
cohomology classes with integer coefficients. For topological spaces
with the homotopy type of a cell complex, there is an isomorphism

(i.e. identical structure), H1(X ;Z)∼= [X ,S1] [16]. This relates coho-
mology with circular coordinates. It implies that if X has non-trivial

1-dimensional cohomology class α ∈ H1(X ;Z), we can construct

a continuous function θ : X → S
1 from α (see [10] for a formal

proof).
Given a point cloud X ⊂R

w, we output global circular coordinate

functions θ : X → S
1 that give the values for each point x in X . Our

overall pipeline is as follows:
1. Represent the point cloud data X as a family of simplicial

complexes.
2. Use the concept of persistent cohomology [10, 28] to detect

a significant cohomology class in K, and convert such a class

into a circle-valued function θ : X → S
1.

3. Encode each circular coordinate in θ with a color map transfer
function to highlight the circular structures.

Now we give a high-level description of each step in the above
process. For the technical details, see [10, 28]. For non-specialists,
we give an example afterwards as illustrated in Figure 2.
Data Points to Simplicial Complex. Point cloud data X ⊂R

w with
a metric μ can be represented as a single simplicial complex, or more
usefully as a nested family of simplicial complexes [9]. We use the
Vietoris-Rips complex, Rips(X ,ε), where there is a p-simplex for
every finite set of p+1 points in X with diameter at most ε . Since

we are only interested in computing H1, we use its 2-skeleton, that is,
the vertices, edges and triangles. For ε0 ≤ ε1 ≤ ...≤ εn, we obtain
a nested family of simplicial complexes, K : K(ε0)⊆ ...⊆ K(εn),
where K(εi) = Rips(X ,εi).
Simplicial Complex to Circular Coordinate Function. Now we
are given a nested family of simplicial complexes that represent the
structure at different parameter values ε . We introduce the notion of
spatial scale for learning the structure through the concept of per-
sistsence. Persistence studies the evolution of vectors in a sequence
of vector spaces [4]. One main example of such a sequence comes
from the cohomology groups of a nested sequence of simplicial
complexes constructed at different scales. Persistence provides a
way of ranking the significance of the cohomology classes and is
essential to achieving robustness of the proposed methods. Intu-
itively, persistence separates features from noise by measuring the

Figure 3: The circular structure on the left has high persistence while
the one on the right is considered topological noise [10].

significance (e.g. size) of circular structures. An illustrative example
is shown in Figure 3, where the feature on the left corresponds to
high persistence, or significant circle structure, while the feature on
the right might be considered topological noise.

The algorithm that computes the persistent cohomology of a
sequence of simplicial complexes [11] is a modified version of the
persistent homology algorithm [3, 14], which in turn is a variation of
the classic Smith normal form algorithm [21]. It involves a specific
ordering in conducting matrix reduction on the coboundary matrices
of the nested simplicial complexes. After the matrix reduction, we
obtain a collection of cocyles, each represented as a set of edges
with coefficients. Each cocycle is then transformed into a circle-

valued coordinate function θ : X → S
1 through lifting, smoothing

and integration using well-established procedures [10]. For the story
behind persistent homology, see [12, 13].
Color Map Encoding. Each circular coordinate function θ : X →
S

1 is then encoded with a color map transfer function to highlight
the corresponding circular structure (Figures 3 and 4). For a high-
dimensional point cloud X , a dimension reduction technique such
as ISOMAP [25] is applied first, in order to project X onto a low-
dimensional space of dimension 2 or 3. However, as shown in
Figure 5(a), color map encoding serves as a naive visualization of
the circular structures in the point cloud data. For better circular
structure visualization and visual analytics, we apply the techniques
discussed in Section 5.
Example. To illustrate persistence and our pipeline, we give an
example shown in Figure 2. In Figure 2(a)-(c), for ε0 < ε1 < ε2, we
build a nested family of simplicial complexes, K : K(ε0)⊆K(ε1)⊆
K(ε2). For a small diameter ε0 in (a), no vertices are connected in
the Vietoris-Rips complex, therefore K(ε0) contains only vertices
from the original point cloud. For a slightly larger diameter ε1 in
(b), some edges and triangles appear in K(ε1), giving birth to a non-
trivial circular structure (represented by a 1-dimensional cocycle)
that looks like a tunnel within an annulus. For a larger diameter ε2 in
(c), the circular feature in the middle of the space gets filled in and
dies (disappears). The persistence of such a feature is its death time
minus its birth time, that is, ε2 − ε1. If ε2 is much larger than ε1, we
consider the above circular feature (cocyle) to be significant. We
then fix our attention on the simplicial complex when such a feature
appears, that is, K(ε1), where such a cocycle is then computed and
transformed to a circle-valued coordinate function, as shown in

Figure 4: A point cloud X is sampled from a genus-4 surface. We
construct four circle-valued coordinate functions that correspond to
its significant circular structures, visualized by color map transfer
functions.
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Figure 5: Two reference traces analyzed using our topological meth-
ods and projected onto 2D using ISOMAP. Their circular features are
visualized by color map. (a) A small trace showing 18 different circular
structures, with one of them visualized by color map. (b) The naive
ISOMAP embedding of a circular structure that is better represented
using our visualization methods in Figure 10(a).

Figure 2(d). Furthermore, it is encoded with a color map transfer
function, as shown in Figure 2(e).
Parameter Selection and Limitations. We require only one pa-
rameter, ε , in our topological analysis. It is used in computing the
2-skeleton of the Vietoris-Rips complex. In particular, for ε = ∞,
computing the 2-skeleton of the Vietoris-Rips complex for n high-

dimensional points results in O(n3) simplices, giving a worst-case

time complexity of O(n3). This is, however rare in practice [32].

The persistence algorithm runs in time O(v3), where v is the number
of simplices [5]. However this takes roughly linear time in practice
[2]. For a detailed performance analysis, see [28]. Usually ε is
chosen with prior knowledge of the problem domain, to be just large
enough to detect the topology. This decreases the above bound to an
expected linear or even constant behavior.

5 VISUALIZING CYCLES IN REFERENCE TRACES

As stated, dimension reduction techniques can work well for sim-
ple circular structures. The technique can fail however when the
high-dimensional structure of the memory reference trace becomes
complicated. Figure 5(b) shows an example where dimension reduc-
tion produces a visualization which is extremely difficult to interpret.
What is needed instead is a visualization approach that is more robust
to complex structure.

5.1 Circular Visualization
As an alternative, we propose using the circular parameterization θ
of all points as means of formulating a visualization. The parameter
θ is first conditioned by performing a scale and offset such that
θ ∈ [0 : 2π]. θ contains points which are cycle members, but may
also contain non-members in the form of a preamble and post-amble
which need to be separated from the cycle. This is accomplished
by selecting the first and last members of θ as θpre and θpost re-
spectively. Neighboring parameterizations are collected into the pre-
and post-amble while |θi−θpre|< ε or |θi−θpost |< ε , respectively.
Finally, points are mapped to the image by placing cycle members
on a fixed radius circle, while the pre- and post-ambles then have
their radii set to increase monotonically away from the center of the
output domain.

Finally, the visualization is assembled. Points which are temporal
neighbors are connected using arcs that undergo polar interpolation.
Isocontouring is then applied to form a summary structure. Fig-
ure 6(a) shows an example of this visualization which indicates that
we do truly have a circular structure.

5.2 Spiral Visualization
Unfortunately, while the circular visualization summarizes the pa-
rameterization, it fails to illuminate many interesting structures
within it. We have extended this visualization to be more descriptive
by adding an additional dimension of activity to the visualization.

From the visualization standpoint, the visual information channel
represented by the radius r was underutilized while from the param-
eterization standpoint, the temporal relationship between points was

(a) (b) (c) (d)

Figure 6: Available visualization options for parameterized data. (a)
The parameterization is placed in a circular structure. (b) Time is
applied to the radius. (c-d): The data points are correlated back to
source code using a color map.

underutilized as well. A more informative visualization is created by
linking the temporal property of the parameterization with the radius
of the output point by simply varying the radius ri of θi by the value
i. The radius then encodes time, with earlier events appearing in the
center of the output domain and later events appearing towards the
periphery. Figure 6(b) demonstrates this capability, producing a far
more informative visualization than the circular visualization from
the prior section.
Correlation with Source Code. While the circular structures dis-
covered by our method are interesting, it is difficult to interpret their
meaning as a standalone representation. As a final addition to our
visualization, we provide users a color coding system that correlates
the structures that have been discovered with the familiar context
of source code. Figure 6(c)-(d) show the result of this final stage.
Once the color coding is in place it becomes more obvious what
programmatic structures correlate to the circular structures. We also
offer the ability to collapse program structures (e.g. functions) such
that groups of source code elements can also be grouped by color in
the visualization.
Morphing Between Parameterizations. Most reference traces pro-

duce multiple parameterizations θ j. These various parameteriza-
tions can have many relationships to one another. They may high-
light structures of different scales (outer loops versus inner loops),
they may be duals of one another (pointing to some kind of inter-
leaving operations), or they may be entirely unrelated. Morphing
between two parameterizations gives the opportunity to better iden-
tify these relationships. Since the time associated with individual

points does not change between parameterizations, we have r j
i = rk

i
for each point. To morph between the parameterizations, we vary

the angle of each point θi between θ j
i and θ k

i . Figure 1 shows an ex-
ample. The points of the visualization are interpolated in a coherent
manner, but the connecting structure may having popping effects as
the geometry switches from rotating clockwise to counterclockwise
or vise-versa. For additional examples, see the supplemental video.

Data Set Original 
Trace Size

Records 
Used

Sample 
Interval

Persistence Rank Total 
Parameterizations

Sorted 141K 680 0 (a) 1 (b) 1 14
Reverse 141K 1275 0 (c) 2 (d) 1 6
Shuffled 141K 1115 0 (e) 2 (f) 1 2

Sorted 141K 460 0 (g) 1 6
Reverse 141K 690 0 (h) 1 3

Standard 173 K 1000 0 (a) 3 (b) 2 (c) 1 4
Blocked 92 K 1000 0 (d) 2 (e) 1 (f) 1 4

Interpolation 1.0 M 2000 0 (a) 1 (b) 1 9

Fig. 11 (a) 2.8 M 1000 0 (a) 2 2
Fig 11 (b)-(c) 2.8 M 1000 10 (b) 3 (c) 1 5

Bubble sort using array (Fig. 7)

Matrix Multiply (Fig. 9)

Material Point Method - 5 particle (Fig. 10)

Material Point Method - 60 particle (Fig. 11)

Bubble sort using vector (Fig. 7)

Table 1: Details of the data used in our experiments.



6 RESULTS

We now illustrate our results on several memory reference traces
using the proposed methods, focusing on different kinds of program
structures. The first data set performs bubble sort on a list of numbers.
The second uses the first half of a trace originating from a program
that performs matrix multiplication. The third data set comes from
a material point method (MPM) simulation code, which involves
particles moving on a grid.

Table 1 enumerates the details of the data used for our experi-
ments. The processing of data through our system takes on the order
of a few minutes, at most. The most time consuming component
is collecting the memory trace, which takes on the order of a few
seconds to a few minutes for our examples. Computing the param-
eterizations takes on the order of seconds, and the visualization
renders at highly interactive rates. We use topological persistence to
guide our selection of meaningful circular structures. In general, all
circular features selected have high persistence rankings, indicating
their significance.

In the following sections, we demonstrate that our method offers
insights into various non-linear memory behavior structures by con-
necting the source code with topological analysis and visualization.

6.1 Analyzing Loop Contents
We start by analyzing loop-based recurrent behavior within a bubble
sort data set. Bubble sort works by repeatedly sweeping through
the list to be sorted, comparing each pair of adjacent items and
swapping them if they are in the wrong order. These sweeps become
progressively shorter as items are sorted into place. For example,
as shown in Figure 7(left column), sorting through a list of five
ascending-ordered numbers results in 4 standalone comparisons,
while sorting through a list of five descending-ordered numbers
performs 10 comparisons followed by swaps. Sorting the given list
of randomly shuffled numbers results in 6 comparisons followed by
swaps, and 4 standalone comparisons.

Figure 7 shows various recurrent runtime structures captured by
the proposed method, with each image highlighting some specific
features of the algorithm computation.

Figures 7(a) and 7(b) represent memory structures within sort-
ing five ascending-ordered numbers. Figure 7(a) shows 4 circular
structures corresponding to the comparison operation occurring in
the if statement (line 5). The circle itself represents one of the
two C++ Standard Template Library (STL) vector lookups, while
the zig-zag secondary feature corresponds to the other. It serves
to distinguish the 2 instances of vector lookups while keeping the
recurrent nature of comparisons in view. On the other hand, Fig-
ure 7(b) shows each lookup on its own circle. There are 2 vector
lookups per comparison, with 4 independent comparisons leading
to a total of 8 circles. This image shows that the 2 vector lookups
occurring per comparison have almost identical memory signatures,
which is not directly evident in the source code. To better understand
the correlations between these two circular features, we construct a
morphing between them as shown in Figure 1, which showcases the
expansions of secondary features from Figure 7(a) to (b).

Figure 7(c) and 7(d) show a bubble sort proceeding on a
descending-ordered list. In (c), the outer loop (line 2) forms the
4 circles, while the 10 comparisons followed by swaps appear as
teeth-like features within each repetition, showcasing the properties
of the input data, and the corresponding computational structure of
the algorithm. By contrast, (d) indicates the recurrent structure of
the inner loop (line 4). Each of the 10 bundled circular structures
contains 3 circular sub-structures, which reflect 2 vector lookups in
the comparison (line 5) and 1 swap (line 6). Here, the appearance of
properly spaced bundles serves to separate the important recurring
features. Figure 7(e) represents the sorting of five random-ordered
numbers. The circular structures correspond to the 6 comparisons
followed by swaps, while the blue teeth-like features indicate the 4
standalone comparisons that are not followed by swaps. The analy-
sis is able to pick up on this feature, encoded in the neighborhood
information in the point cloud, which turns out to have significance
in this program. By contrast, Figure 7(f) is the dual of Figure 7(e),
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Figure 8: The block and loop structure of blocked matrix multiplication.

showing the non-swapping comparisons as cycles, and the swapping
comparisons as teeth-like features.

For comparison, Figure 7(g-h) shows a version of the bubble sort
program that uses bare arrays rather than STL vectors. Note that
Figures 7(g) and (h) have similar memory signatures as Figures 7(b)
and (c), respectively, but with fewer memory accesses. Although
the volume of memory access changes due to modifications of data
structures, the characteristics of the memory behavior stay the same.

6.2 A Closer Look at Nested Loops

For the bubble sort described above, the main work loop is repeated
a fixed number of times, while variations in input and computation
are shown as various features within the visualization. We are also
interested in more complex loop structures such as those nested
loops found in the matrix multiplication. As shown in Figure 9,
there are two types of methods developed for matrix multiplication:
the standard (top source code) and the blocked implementation
(bottom source code). The blocked implementation operates on
small blocks (or sub-matrices) of data that can fit into cache and
be used repeatedly. For example, as shown in Figure 8, two 4-
by-4 matrices A and B are multiplied with a block size of 2, and
the blocked implementation operates on sub-matrices of A and B,
accumulating the results in the matrix product C. Given an matrix
A and B, each with 2 row partitions and 2 column partitions, their
product C with 2 row partitions and 2 column partitions can be

calculated by Ci j = ∑2
k=1AikBk j , where Ai j , Bi j and Ci j (1 ≤ i, j ≤

2) are their corresponding partitions. Our implementation is a slight
variation on this basic algorithm, using only 5 nested loops instead
of 6, as it appears in Hennessy and Patterson [17].

Since the standard implementation uses triply nested loops, Fig-
ures 9(a-c) show its various runtime structures at three different
scales. Circular structures in (a) correspond to the outermost i loops
(matmult.cpp, line 2), while the intermediate j loops (matmult.cpp,
line 3) are compressed into teeth-like features that oscillate as they
move out radially, and the innermost k loops (matmult.cpp, line 4)
are compressed into linear features. The j loops dominate as cir-
cular features in (b), encoding the compressed k loops as teeth-like
features and the i loops as a single green point. Finally in (c), the
k loops along with the multiplication itself in the innermost loop
(matmult.cpp, line 5) becomes visible. In particular, the bundled
circular structures are well-spaced, showing 4 matrix accesses for
each iteration of the k loop. The shifting in alignment between the
4th and the 5th bundles indicates the slight change in memory loca-
tions required in moving to the next row. This example demonstrates
how the same sequence of memory events can be parameterized in
different scales, where as a single class of event rises to prominence,
the other events are compressed as secondary features. The anal-
ysis focuses on the various loops because of their self-similarities
and heavy recurrences, which provide meaningful context for the
software engineer.

By comparison, Figure 9(d-f) gives a glimpse of the runtime struc-
tures of a block matrix multiplication by focusing on the 3 innermost
loops. Circular structures in (d), (e) and (f) correspond to the i, k,
and j loops (blocked-matmult.cpp, lines 4, 5 and 7), respectively,
while compressing the other loops into secondary features. In partic-
ular, (f) showcases bundled circular structures, where each bundle
represents the two instances of the j loop due to blocking.
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Figure 7: Various recurrent runtime structures within a bubble sort of five numbers ordered (a-b) ascendingly, (c-d) descendingly, and (e-f)
randomly. (g-h) Versions of (b-c) in which a bare array has been used in place of STL vectors, eliminating many overhead memory accesses
associated with the STL.

6.3 Non Loop-Based Recurrent Behavior

Now that we have seen loop-based recurrent features in the previous
sections, we move on to study non loop-based recurrent behavior,
e.g. that of repeated calls to the same function, or to different
functions with similar or identical memory access patterns, such
as those found within a material point method (MPM) simulation
code. MPM [24] simulates solid bodies, modeled as collections of
particles, moving in response to applied loads. The particles carry
physical attributes such as mass, velocity, stress, etc., which in one
phase of the algorithm, can be interpolated to a fixed background grid
to compute spatial gradients, as necessary for solving the equations
of motion.

Figure 10 shows the parameterized recurrent structures during
the interpolation phase, where mass and momentum are being inter-
polated from the particles to the 2D grid nodes via an interpolation
kernel, the so-called shape function. In Figure 10(a), the mass
(MPM.cpp, line 3) and momentum (MPM.cpp, line 4) of a single
particle are interpolated onto 3 grid nodes, respectively, where each
of the 3 grid nodes makes 2 calls to the shape function (MPM.cpp,
lines 3 and 4), resulting in 6 completely bundled circular features. In
particular, each bundle reflects the dimensionality of the simulation.
Upon close inspection, each bundle corresponds to one call to the
shape function, which internally defers to one x directional (Grid.h,
line 3) and one y directional (Grid.h, line 4) function call. These two
functions differ only in the directional grid spacing, and therefore
have extremely similar memory access patterns that are picked up
by our analysis and visualization. Finally, Figure 10(b) is dual to
Figure 10(a), compressing the latter’s circular features to reflect the
repeated calls to the indexify function (Grid.h, line 2) instead, which

calculates linear index for multidimensional data. For additional
examples, see the supplemental document.

6.4 Analyzing Large Traces

Often we are interested in recurrent structure over much longer pe-
riods of time, and for such cases we use sampling techniques to
extend the effective range of our methods. Figure 11(a) shows a vi-
sualization of 1000 reference trace records of a 60 particle MPM run,
capturing only the first 10 initializations of the mass and momentum
variables. On the other hand, we sample 10000 trace records by
choosing every 10th record. Figure 11(b) shows the resulting 1000
records, spanning ten times the duration of Figure 11(a). The highly
regular patterns in the 3 cycles reflect strong recurrent behavior on
a larger time scale, capturing all 60 initializations of the mass and
momentum variables, while showing the remainder of the memory
activity as a rising linear feature. Because of this time compres-
sion effect, each of these cycles no longer correlates directly to a
specific line of source code, but rather expresses general program
structures. Figure 11(c) is the dual of (b), showing the initialization
phase as a linear structure, and expanding the remainder of the trace,
interpolation of the mass and momentum to the background grid, as
time-sampled cycles.

By increasing the sampling interval, we are able to display a much
longer trace while keeping the ability to distinguish different parts
of the program. Sampling the trace allows the analysis to find large-
scale structures, providing a picture of the entire run of a program,
rather than details of individual functions, loops, or lines of code. As
such, sampling can be used to manage level-of-detail for reference
traces.



7 DISCUSSION

Performance Optimizations. When the visualization reveals recur-
rent runtime behavior that reflects the repetitive nature of a portion
of the program, it can suggest potential performance optimizations.
For example, in Figure 10(a) the two bundled circles represent nearly
identical function executions, differing only in the value of a single
parameter, suggesting that the two executions could coalesce into
one, sparing the duplication of several computations and memory
accesses. This is similar to the idea of loop fusion [19], in which
loop bodies from independent loops may be combined to eliminate
loop overheads and gain possible caching benefits from increased
data reference locality. Knowing whether transformation would
increase performance requires further study, but the focus of our
technique lies in highlighting the possibility, which is much harder
to see with existing techniques.

Our approach also reveals the circular structures of program con-
structs usually hidden by programming abstractions, such as helper
functions, standard libraries, or operator overloading. For example,
as shown in Figure 7(d), in the bubble sort case study, using the

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9: Various recurrent runtime structures within matrix multipli-
cation algorithms. (a-c) Standard matrix multiplication. (d-f) Blocked
matrix multiplication. Top: source code for standard implementation.
Bottom: source code for blocked implementation.

(a) (b)

Figure 10: Interpolating mass and momentum in MPM. (a) Interpola-
tion operation for a single particle. (b) A dual view of (a), expanding a
non-interpolation action into the circular structures.

STL vectors involves many more memory accesses than the naive
implementation. Prior to running our analysis, we were not fully
conscious of such complexities within the STL library. Our visual-
ization may suggest places where such extra memory references can
be eliminated. Though other techniques exist for simply counting
memory accesses, our approach highlights the difference visually
while pointing out the cyclical nature of both programs, thus adding
value over previous approaches.

In short, our tool would aid understanding of the correlations
among different portions of the code, revealing hidden program
constructs, and identifying potential candidates for performance op-
timizations. Nevertheless, further study of the potential application
of this approach to performance optimization is needed.
Topological Persistence. Once the parameter ε is chosen, we per-
form automatic topological analysis to detect circular structures.
Once running, the analysis does not require fine-tuning of param-
eters or user intervention. We then use topological persistence to
guide our selection of meaningful circular structures. As our exam-
ples strongly suggest, those with high persistence likely represent
significant features within the runtime behavior of a program. As
displayed in Table 1, all significant circular features presented have
highly ranked persistence. Furthermore, there is a clear separa-
tion in persistence measures between interesting and trivial circular
features.

8 CONCLUSION

In conclusion, we have presented a general framework for exploring
and discovering recurrent behavioral patterns in memory reference
traces. We first recast a list of reference trace records, a staple of
software memory analysis, as a high-dimensional point cloud. We
then employ topological analysis to detect its circular features. The
novelty of our work lies in (a) the design of a proper metric that
allows the computation of meaningful circular structures, based on
the nature of source code and the program runtime behavior, and
(b) the application of topological analysis of circular features within
the field of software visualization. We have demonstrated that both
loop-based and non loop-based recurrent structures can be captured
by our analysis and visualization. While the former confirms the
expected structures of a program, the latter highlights less obvious
features that are possible candidates for performance optimization.

We consider several extensions to our work as follows.
Visualization. From the aspect of visualization, it would be interest-
ing to combine salient features from different parameterizations into



(a) (b) (c)

Figure 11: Analyzing the MPM trace at a larger scale. (a) 1000
consecutive trace records (no sampling). (b) 1000 trace records
produced by sampling 1 of every 10 records from a segment of 10000
consecutive trace records. (c) A dual view of (b) showing recurrences
later in the trace.

a single view such that the user can expand and collapse particular
circular features during exploration. Selecting the interesting param-
eterizations to be spliced together remains a challenge. Providing
additional interaction modes such as brushing and linking would
be beneficial. Finally, a usability study is needed to judge both the
interaction and the usefulness of our approach.
Adaptive Sampling of Memory Reference Traces. In the previ-
ous section, we have discussed a naive subsampling of the memory
trace in an effort to analyze larger program structures. One possible
alternative to this approach is to use source code or previous analysis
results as a guide for adaptive sampling of the source code. For
example, many functions have deterministic memory access patterns
that can be found using either the source code or previously discov-
ered structures. Using this knowledge, those portions of the memory
trace could be removed or sampled less frequently in further analysis,
thereby revealing new, larger structures in the memory trace.
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