
Convergence between Categorical Representations of

Reeb Space and Mapper

Elizabeth Munch
University at Albany – SUNY

Bei Wang∗

University of Utah

Abstract

The Reeb space, which generalizes the notion of a Reeb graph, is one of the few tools
in topological data analysis and visualization suitable for the study of multivariate scientific
datasets. First introduced by Edelsbrunner et al. [9], it compresses the components of the level
sets of a multivariate mapping and obtains a summary representation of their relationships.
A related construction called the mapper [21], and a special case of mapper called the Joint
Contour Net [2] have been shown to be effective in visual analytics. Mapper and JCN are
intuitively regarded as discrete approximations of the Reeb space, however without formal proofs
or approximation guarantees. An open question has been proposed by Dey et al. [7] as to whether
the mapper converges to the Reeb space in the limit.

In this paper, we are interested in developing the theoretical understanding of the relationship
between the Reeb space and its discrete approximations to support its use in practical data
analysis. Using tools from category theory, we formally prove the convergence between the Reeb
space and mapper in terms of an interleaving distance between their categorical representations.
Given a sequence of refined discretizations, we prove that these approximations converge to the
Reeb space in the interleaving distance; this also helps to quantify the approximation quality of
the discretization at a fixed resolution.

∗This work was partially support by NSF IIS-1513616.
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1 Introduction

Motivation and prior work. Multivariate datasets arise in many scientific applications, ranging
from oceanography to astrophysics, from chemistry to meteorology, from nuclear engineering to
molecular dynamics. Consider, for example, combustion or climate simulations where multiple
physical measurements (e.g. temperature and pressure) or concentrations of chemical species are
computed simultaneously. We model these variables mathematically as multiple continuous, real-
valued functions defined on a shared domain, which constitute a multivariate mapping f : X→ Rd,
also known as a multi-field. We are interested in understanding the relationships between these
real-valued functions, and more generally, in developing efficient and effective tools for their analysis
and visualization.

Recently, topological methods have been developed to support the analysis and visualization
of scalar field data with widespread applicability. In particular, a great deal of work for scalar
topological analysis has been focused on computing the Reeb graph [20]. The Reeb graph contracts
each contour (i.e. component of a level set) of a real-valued function to a single point and uses a
graph representation to summarize the connections between these contours. When the domain is
simply connected, this construction forms a contour tree [23]. The Reeb graph has been shown
to be effective in many applications, including volume rendering [24], shape comparison [12], and
data simplification and exploratory visualization [3]. From a computational perspective, both
randomized [10] and deterministic [17] algorithms exist that compute the Reeb graph for a function
defined on a simplicial complex K in time O(m logm), where m is the total number of vertices,
edges and triangles in K. Recent work by de Silva et al. [6] has shown that the data of a Reeb graph
can be stored in a category-theoretic object called a cosheaf, which opens the way for defining a
metric for Reeb graphs known as the interleaving distance.

Unlike for real-valued functions, very few tools exist for studying multivariate data topologically
as the situation becomes much more complicated. The most notable examples of these tools are
the Jacobi set [8] and the Reeb space [9]. The Jacobi set analyzes the critical points of a real-
valued function restricted to the intersection of the level sets of other functions. On the other
hand, the Reeb space, a generalization of the Reeb graph, compresses the components of the level
sets of the multivariate mapping (i.e. f−1(c), for c ∈ Rd) and obtains a summary representation
of their relationships. These two concepts are shown to be related as the image of the Jacobi sets
under the mapping corresponds to certain singularities in the Reeb space. An algorithm has been
described by Edelsbrunner et al. [9] to construct the Reeb space of a generic piecewise-linear (PL),
Rd-valued mapping defined on a combinatorial manifold up to dimension 4. Let n be the number
of (d − 1)-simplices in the combinatorial manifold. Assuming d is a constant, the running time of
the algorithm is O(nd), polynomial in n [18].

A related construction called mapper [21] takes as input a multivariate mapping and produces a
summary of the data by using a cover of the range space of the mapping. Such a summary converts
the mapping with a fixed cover into a simplicial complex for efficient computation, manipulation,
and exploration [14, 16]. When the mapping is a real-valued function (i.e. d = 1) and the cover
consists of a collection of open intervals, it is stated without proof that the mapper recovers the
Reeb graph precisely as the scale of the cover goes to zero [21]. A similar combinatorial idea has also
been explored with the α-Reeb graph [5], which is another relaxed notion of a Reeb graph produced
by a cover of the range space consisting of open intervals of length at most α. Recently, Dey et
al. [7] extended mapper to its multiscale version by considering a hierarchical family of covers and
the maps between them. At the end of their exposition, the authors raised an open question in
understanding the continuous object that the mapper converges to as the scale of the cover goes to
zero, in particular, whether the mapper converges to the Reeb space. In addition, Carr and Duke [2]
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introduced a special case of mapper called the Joint Contour Net (JCN) together with its efficient
computation, for a PL mapping defined over a simplicial mesh involving an arbitrary number of
real-valued functions. Based on a cover of the range space using d-dimensional intervals, the JCN
quantizes the variation of multiple variables simultaneously by considering connected components
of interval regions (i.e. f−1(a, b)) instead of the connected components of level sets (i.e. f−1(c)).
It can be computed in time O(kmα(km)), where m is the size of the input mesh, k is the total
number of quantized interval regions, and α is the slow-growing inverse Ackermann function [2].
The authors stated that the JCN can be considered as a discrete approximation that converges in
the limit to the Reeb space [2], although this statement was supported only by intuition and lacked
approximation guarantees.

Contributions. In this paper, we are interested in developing theoretical understandings between
the Reeb space and its discrete approximations to support its use in practical data analysis. Using
tools from category theory, we formally prove the convergence between the Reeb space and mapper
in terms of an interleaving distance between their categorical representations (Theorem 4.1). Given
a sequence of refined discretizations, we prove that these approximations converge to the Reeb
space in the interleaving distance; this also helps to quantify the approximation quality of the
discretization at a fixed resolution. Such a result easily generalizes to special cases of mapper such
as the JCN. Our work extends and generalizes the tools from the categorical representation of Reeb
graphs [6] to a new categorical framework for Reeb spaces. In particular, we provide for the first
time the definition of the interleaving distance for Reeb spaces (Definition 5.1). We demonstrate
that such a distance is an extended pseudometric (Theorem 5.2) and it provides a simple and
formal language for structural comparisons. Finally in the settings of Reeb graphs (when d = 1),
we demonstrate that the mapper converges to the Reeb graph geometrically on the space level
(Corollary 8.1). We further provide an algorithm for constructing a continuous representation of
mapper geometrically from its categorical representation.

2 Topological Notions

We now review the relevant background on the Reeb space [9, 18] and mapper [7, 21]. In theory, we
assume the data given is a compact topological space X with an Rd-valued function, f : X → Rd,
often denoted (X, f). In practice, we assume the data we work with is a multivariate PL mapping
f defined over a simplicial mesh; more restrictively (for easier exposition of our algorithms and
proofs), we consider a generic, PL mapping f from a combinatorial manifold1 to Rd.

Reeb Space. Let f : X→ Rd be a generic, continuous mapping2. Intuitively, the Reeb space of
f parametrizes the set of components of preimages of points in Rd [9]. Two points x, y ∈ X are
equivalent, denoted by x ∼f y, if f(x) = f(y) and x and y belong to the same path connected
component of the preimage, f−1(f(x)) = f−1(f(y)). The Reeb space is the quotient space obtained
by identifying equivalent points, that is, R(X, f) = X/ ∼f , together with the quotient topology
inherited from X. A powerful analysis tool, the Reeb graph, can be considered a special case in

1A combinatorial s-manifold M is the geometric realization of a simplicial complex for which the closed star of each
vertex can be mapped by a homeomorphism onto a combinatorial s-ball in Rs such that each simplex of M is mapped
affinely to a simplex in Rs [19]. Assuming the function values for a multivariate mapping are only known on the
vertices of M, we use barycentric coordinates to extend the function to the higher-order simplices by PL interpolation,
creating a PL mapping f : |M| → Rd defined over the underlying space |M|. The mathematical assumption of the
continuity of f is then preserved. For simplicity, let X = |M|.

2For simplicity, assume f is a PL mapping defined on a combinatorial manifold.
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this context when d = 1. Reeb spaces have been shown to have triangulations and canonical
stratifications into manifolds for nice enough starting data [9].

Mapper. An open cover of a topological space X is a collection U = {Uα}α∈A of open sets for
some indexing set A such that

⋃
α∈A Uα = X. In this paper, we will always assume that each

Uα is path-connected and a cover means a finite open cover. We define a finite open cover U to
be a good cover if every finite nonempty intersection of sets in U is contractible. Given a cover
U = {Uα}α∈A of X, let Nrv(U) denote the simplicial complex that corresponds to the nerve of
the cover U , Nrv(U) =

{
σ ⊆ A | ⋂α∈σ Uα 6= ∅

}
. Given a (potentially multivariate) continuous map

f : X → Y where Y is equipped with a cover U = {Uα}α∈A, we write f∗(U) as the cover of X
obtained by considering the path connected components of f−1(Uα) for each α, referred to as the
pullback cover of X (induced by U via f). Given such a function f , its mapper M is defined to
be the nerve of such a pullback cover, M(U , f) := Nrv(f∗(U)) [21]. Intuitively, considering a real-
valued function f : X→ R and a cover Uε of image(f) ⊆ R consisting of intervals of length at most
ε, the corresponding mapper M(Uε, f) can be thought of as a relaxed Reeb graph that has been
conjectured to converge to the Reeb graph of f as ε tends to zero [7, 21], although no formal proofs
have been previously provided.

3 Categorical Notions

Here, we give a brief introduction to the necessary concepts from category theory. A more thorough
treatment can be found, for example, in [15].

Figure 1: The data of a Reeb graph
(on the left) can be stored as a func-
tor. First, we give the middle functor
f−1 : Open(R) → Top which sends
each open set I to the topological space
f−1(I); and sends each inclusion map
between open sets I ⊆ J to an inclu-
sion map f−1(I) → f−1(J). Then the
Reeb graph information is represented by
composing this functor with the functor
π0 : Top → Set, producing a functor on
the right π0f

−1 : Open(R) → Set. Via
π0, the inclusion maps on the topological
spaces become set maps.

Category and opposite category. Category theory
can be thought of as a generalization of set theory in the
sense that the item of study is still a set (technically a
proper class), but now we are additionally interested in
studying the relationships between the elements of the
set. Mathematically, a category is an algebraic struc-
ture that consists of mathematical objects with a no-
tion of morphisms (colloquially referred to as arrows for
the most of the remaining paper) between the objects.
Thus, the data of a category consists of two pieces: the
objects and the arrows. A category has the ability to
compose the arrows associatively, and there is an iden-
tity arrow for each object. Examples are abundant and
those important to our exposition are: the category of
topological spaces (as the objects) with continuous func-
tions between them (as the arrows), denoted as Top; the
category of sets with set maps, denoted as Set; the cat-
egory of open sets in Rd with inclusion maps, denoted
as Open(Rd); the category of vector spaces with linear
maps, denoted as Vect; and the category of real num-
bers with inequalities connecting them, denoted as R.
In addition, any simplicial complex K induces a cate-
gory Cell(K) where the objects are the simplices of K,
and there is a morphism σ → τ if σ is a face of τ . In-
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tuitively, we could think of a category as a big (probably infinite) directed multi-graph with extra
underlying structures (due to the associativity and identity axioms obeyed by the arrows): the
objects are the nodes, and each possible arrow between the nodes is represented as a directed edge.
One common example used extensively throughout this paper is the idea of a poset category, which
is a category P in which any pair of elements x, y ∈ P has at most one arrow x → y. Categories
such as Open(Rd) and R are poset categories since there is exactly one arrow I → J between open
sets if I ⊆ J and exactly one arrow a→ b between real numbers if a ≤ b. We often abuse notation
and denote arrows in this category by the relation providing the poset structure, e.g. I ⊆ J instead
of I → J and a ≤ b instead of a→ b. In the graph description, a poset category can be thought of
as a directed graph which is not a multigraph.

The opposite category (or dual category) Cop of a given category C is formed by reversing the
arrows (morphisms), i.e. interchanging the source and target of each arrow.

Functor. A functor is a map between categories that maps objects to objects and arrows to
arrows. A functor F : C → D for categories C and D maps an object x in C to an object F (x)
in D, and maps an arrow f : x → y of C to an arrow F [f ] : F (x) → F (y) of D in a way
that respects the identity and composition laws. In the above graph allegory, a functor is a map
between graphs which sends nodes (objects) to nodes and edges (arrows) to edges in a way that
is compatible with the structure of the graphs. An example of a functor is the homology functor
Hp : Top → Vect which sends a topological space X to its p-th singular homology group Hp(X)
(a vector space assuming field coefficients), and sends any continuous map f : X→ Y to the linear
map between homology groups, Hp[f ] := f∗ : Hp(X) → Hp(Y). Another functor used extensively
in this paper is π0 : Top → Set which sends a topological space X to a set π0(X) where each
element represents a path connected component of X, and sends a map f : X → Y to a set map
π0[f ] := f∗ : π0(X)→ π0(Y).

F (x) G(x)

F (y) G(y)

ϕx

F [f ] G[f ]

ϕy

Figure 2: The dia-
gram for a natural
transformation.

Natural transformation. In addition, we can make any collection of
functors of the form F : C → D into a category by defining arrows between
the functors. A natural transformation ϕ : F ⇒ G between functors F,G :
C → D is a family of arrows ϕ in D such that (a) for each object x of C, we
have ϕx : F (x) → G(x), an arrow of D; and (b) for any arrow f : x → y
in C, G[f ] ◦ ϕx = ϕy ◦ F [f ], that is, the diagram of Figure 2 commutes.
Any collection of functors F : C → D can thus be turned into a category,
with the functors themselves as objects and the natural transformations as
arrows, notated as DC . This notation is used heavily throughout this paper
where always D = Set. If for every object x of C, the arrow ϕx is an isomorphism in D, then ϕ is a
natural isomorphism (equivalence) of functors. Two functors F and G are (naturally) isomorphic
if there exists a natural isomorphism from F to G.

Categorical Reeb graph. For a real-valued function f : X → R, the data of its corresponding
Reeb graph can be stored as a functor F := π0f

−1 : Open(R) → Set, defined by sending each
open set I to a set F (I) := π0f

−1(I) that contains all the path connected components of f−1(I);
and by sending an inclusion I ⊆ J to a set map F [I ⊆ J ] : F (I)→ F (J) induced by the inclusion
f−1(I) ⊆ f−1(J). This is illustrated in Figure 1. The objects F (I) store the connected components
sitting over any open set; the information from the arrows F (I) → F (J) gives the information
needed to glue together all of this data. This construction produces a categorical representation of
the Reeb graph, referred to as the categorical Reeb graph. It was used in [6] to define the interleaving

4



distance for Reeb graphs which we generalize to Reeb spaces in Section 5.

F (x)

L N

F (y)

F [f ]

ϕx

ψx

u

ϕy

ψy

Figure 3: Defining a colimit.

Colimit. The final category theoretic notion necessary for our
results are colimits. The cocone (N,ψ) of a functor F : C → D is
an object N of D along with a family of ψ of arrows ψx : F (x)→ N
for every object x of C, such that for every arrow f : x→ y in C, we
have ψy ◦F [f ] = ϕx. We say that a cocone (N,ψ) factors through
another cocone (L,ϕ) if there exists an arrow u : L → N such
that u ◦ ϕx = ψx for every x in C. The colimit of F : C → D,
denoted as colimF , is a cocone (L,ϕ) of F such that for any other
cocone (N,ψ) of F , there exists a unique arrow u : L → N such
that (N,ψ) factors through (L,ϕ). In other words, the diagram of
Figure 3 commutes. The colimit is universal; in particular, this means that if the colimit (L,ϕ)
factors through another cocone (M, δ), then L is isomorphic to M and the isomorphism is given by
the unique arrow u′ : M → L that defines it. We will use this property in the proof of Lemma 7.1.

Because we often wish to consider these colimits over a full subcategory A ⊆ C, we will denote
the restriction as colimA∈A F (A). The properties of a colimit also imply that if we have nested
subcategories A ⊆ B (⊆ C), then there is a unique map colimA∈A F (A)→ colimB∈B F (B) since we
can consider colimB∈B F (B) as cocone over A.

4 Main Results Overview

Rd-Top

SetCell(K)op SetOpen(Rd)

CK

C

PK

Data

Categorical mapper Categorical Reeb space

Figure 4: The diagram for connecting categorical
representations of the Reeb space and the mapper.

The main focus of this paper is to provide
a convergence result between the continuous
Reeb space and the discrete mapper. We de-
fine their distance as the interleaving distance
between their corresponding categorical rep-
resentations and emphasize that neither the
Reeb space nor the interleaving distance must
ever be computed for this result. Instead, we
provide a theoretical bound on the distance
which requires only knowledge of the quanti-
zation resolution of the cover. To define the
desired distance measure, we use the diagram
in Figure 4 as our roadmap. The remainder of
this section is dedicated to describing the various categories at the nodes of the diagram as well as
the functors that connect them.

Data. In our context, data comes in the form of a topological space X with an Rd-valued mapping,
called an Rd-space. We store such data in the category Rd-Top. Specifically, an object of Rd-Top
is a pair consisting of a topological space X with a continuous map f : X→ Rd, denoted as (X, f).
An arrow in Rd-Top, ν : (X, f) → (Y, g), is a function-preserving map; that is, it is a continuous
map on the underlying spaces ν : X→ Y such that g ◦ ν(x) = f(x) for all x ∈ X. Note that many
nice constructions such as PL functions on simplicial complexes or Morse functions on manifolds
are objects in Rd-Top.
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Categorical Reeb space. Recall the categorical representation of a Reeb graph is a functor
Open(R) → Set. In order to define a categorical representation of the Reeb space, we need a
higher dimensional analogue of Open(R), namely, Open(Rd). Open(Rd) is a category with open
sets I ⊆ Rd as objects, and a unique arrow I → J if and only if I ⊆ J ; that is, Open(Rd) is a
poset category. The data of the Reeb space can be stored as a functor π0f

−1 : Open(Rd)→ Set,
defined by sending each open set I to a set π0f

−1(I) representing the path connected components
of f−1(I); and by sending the inclusion arrow I ⊆ J to a set map π0f

−1(I)→ π0f
−1(J) induced by

the inclusion f−1(I) ⊆ f−1(J). These functors, referred to as the categorical Reeb spaces, become

objects of the category of functors SetOpen(Rd).

Reeb space construction. Constructing a Reeb space from the data is now represented by
the functor C : Rd-Top → SetOpen(Rd) in Figure 4. In particular, C maps an object (X, f) in

Rd-Top, representing the data, to a functor F : Open(Rd) → Set in SetOpen(Rd), representing
its corresponding Reeb space. The functor C restricts to the Reeb graph construction when d = 1
[6]. In addition, from the generalized persistence module framework [1], we can also extend the
idea of the interleaving distance between Reeb graphs (in the case d = 1) to these categorical Reeb
spaces (in the case d ≥ 1). The definition of functor C and the Reeb space interleaving distance are
covered in Section 5.

Figure 5: An example of a Reeb space for d = 1 (a Reeb
graph), denoted as R(X, f), is shown on the left. Its asso-
ciated data (X, f) is an object in Rd-Top with function f
given by height. A cover U is shown by the green intervals,
and the corresponding mapper is shown to its right. The
mapper data is equivalently stored as the CK(X, f) functor
defined on simplicial complex K = Nrv(U). The geometric
representation of this data, MK(X, f) := DPKCK(X, f) is
shown at the far right. Corollary 8.1 asserts that the inter-
leaving distance between the leftmost and rightmost graphs
is bounded by ε = res(U).

Categorical mapper and its con-
struction. Instead of working with
continuous objects, we can instead
consider discrete ones, by choosing
a quantization represented by a cell
complex K. Given a cover U =
{Uα}α∈A for image(f) ⊆ Rd, let K =
Nrv(U). Through the machinery de-
tailed in Section 6, we create a cate-
gorical representation of the mapper
(referred to as the categorical map-
per) as a functor F : Cell(K)op →
Set (an object of SetCell(K)op); and
such a construction is represented by
the CK functor3.

Comparing Reeb space and map-
per. It should be noted that the
Reeb space and the mapper are in-
herently different objects. The Reeb
space comes equipped with an Rd-
valued function, while there is no such
function built into the mapper even
though its construction is highly de-
pendent on the functions chosen to
partition the data set [21]. In particular, the two objects are in completely different categories.

3A related but slightly different categorical mapper was introduced by Stovner [22], as a functor from the category
of covered topological spaces to the category of simplicial complexes.
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So, to compare these objects, we study the image of the categorical mapper under the functor PK ,
which turns the categorical mapper (a discrete object) into a continuous one comparable with the
categorical Reeb space. In particular, for data given as (X, f) in Rd-Top, we compare its image in

SetOpen(Rd) via the functor C, to its image in SetOpen(Rd) via the functor PKCK . Symbolically, fol-
lowing Figure 4, we are comparing PKCK(X, f) to C(X, f). This relationship and the construction
of functor PK are covered in Section 7.

We then prove our main result, the categorical convergence theorem below.

Theorem 4.1 (Convergence between Categorical Reeb Space and Categorical Mapper). Given a
multivariate function f : X → Rd defined on a compact topological space4, the data is represented
as an object (X, f) in Rd-Top. Let U = {Uα}α∈A be a good cover of f(X) ⊆ Rd, K be the nerve of
the cover and res(U) be the resolution of the cover, that is, the maximum diameter of the sets in
the cover res(U) = sup{diam(Uα) | Uα ∈ U}. Then

dI(C(X, f),PKCK(X, f)) ≤ res(U).

Theorem 4.1 states that for increasingly refined covers, the image of the categorical mapper
converges to the categorical Reeb space in the interleaving distance. In other words, the distance
between the mapper and the Reeb space is bounded above by the resolution of the quantization.
Thus, we can make approximation guarantees about the accuracy of the mapper based on a property
of the chosen quantization.

Summary. The various categorical representations can be summarized in Figure 4, some of which
are illustrated in Figure 5 for the case when d = 1. The initial data received is an object (X, f)
in Rd-Top. Then we can either construct its categorical Reeb space through the functor C, or
construct its categorical mapper using the functor CK . In order to compare these two objects in
the same category, we push the mapper along using the PK functor, and then compute the distance
between C(X, f) and PKCK(X, f) in SetOpen(Rd). We should stress before we continue that this
diagram does not necessarily commute. In a way, the above distance is measuring how far the
diagram is from being commutative. Making no assumptions about U , Theorem 4.1 states that the
interleaving distance between the results of the two paths in the diagram is bounded by the reso-
lution of U . Furthermore in Section 8, for the special case when d = 1, we can turn our categorical
convergence theorem, Theorem 4.1, into the geometric convergence theorem, Corollary 8.1. Fi-
nally, we provide an algorithm for producing a geometric representation of the image of categorical
mapper, PKCK(X, f).

5 Interleaving Distance between Reeb Spaces

As described in Section 4, we start by generalizing the categorical Reeb graph to the categorical
Reeb space. Given the data received as a topological space X equipped with an Rd-valued function
f : X→ Rd, denoted as (X, f), we define the functor C : Rd-Top→ SetOpen(Rd) as follows: C maps

an object (X, f) in Rd-Top to a functor C(X, f) := π0f
−1 : Open(Rd)→ Set in SetOpen(Rd), and

an arrow ν : (X, f) → (Y, g) to a natural transformation C[ν] induced by the inclusion νf−1(I) ⊆
g−1(I). The functor C turns the given data into the categorical representation of the Reeb space,
and the functoriality of π0 makes it a well-defined functor.

Our first goal is to define the interleaving distance for these categorical Reeb spaces. Denote
the ε-thickening of a open set I ∈ Open(Rd) to be the set Iε := {x ∈ Rd | ‖x − I‖ < ε}.

4For simplicity, we assume a combinatorial s-manifold; however this is not necessary for the proof.
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Using this, we can define a thickening functor Tε : Open(Rd) → Open(Rd) by Tε(I) := Iε, and

Tε[I ⊆ J ] := {Iε ⊆ Jε}. Let Sε be the functor from SetOpen(Rd) to itself defined by Sε(F) := FTε,
for every functor F : Open(Rd)→ Set. Given the two functors F and S2ε(F), both of which are
defined on Open(Rd)→ Set, there is an obvious natural transformation η : F ⇒ S2εF defined by
ηI = F [I ⊆ I2ε]. We write τ : G ⇒ S2ε(G) for the analogous natural transformation for G.

Definition 5.1 (Interleaving distance between Categorical Reeb spaces). An ε-interleaving between
functors F ,G : Open(Rd)→ Set is a pair of natural transformations, ϕ : F ⇒ Sε(G) and ψ : G ⇒
Sε(F) such that the diagrams below commute.

F Sε(G) G Sε(F)

S2ε(F) S2ε(G)

ϕ

η Sε[ψ]

ψ

τ Sε[ϕ]

Given two functors F ,G : Open(Rd)→ Set, the interleaving distance is defined to be

dI(F ,G) = inf{ε ∈ R≥0 | F ,G are ε-interleaved}.

We define dI(F,G) =∞ if the set on the right-hand side is empty.

We have the following property of dI .

Theorem 5.2. The interleaving distance dI , between two categorical representations of Reeb spaces,
is an extended pseudometric on SetOpen(Rd).

Proof. We will use Theorem 3.21 of [1], which states that as long as Tε has the properties we need,
that is, if maps Tε comprise a superlinear family in the poset Open(Rd), then the interleaving
distance dI defined using Tε in Definition 5.1 is guaranteed to be an extended pseudometric.

Let P = (P,≤) be a poset category. A translation of P is a functor Γ : P → P which has
a natural transformation ηΓ : 1 ⇒ Γ where 1 is the identity functor [1]. Let TransP denote the
category that contains the collection of translations of P. The functor Tε is a translation of the
poset category Open(Rd) since we can choose ηI : 1(I) → Tε(I) to be induced by the inclusion
I ⊆ Iε.

A superlinear family of translations is a function Ω : [0,∞) → TransP defined by Ω(ε) = Γε
such that Γα+β ≤ ΓαΓβ for all α, β ≥ 0. The family of translations Tε satisfies this requirement since
Tα+β(I) = Iα+β and TαTβ(I) =

(
Iβ
)α

= Iα+β. So since Tε is a superlinear family of translations
in Open(Rd), the interleaving distance is an extended pseudometric.

Special case for Reeb graphs. When d = 1 we have much more control of the situation. In
particular, [6] gives us that the category of Reeb graphs, defined to be finite graphs with real valued
functions that are strictly monotone on the edges, is equivalent to a well-behaved subcategory of
SetOpen(R). Theorem 5.3 (as a direct consequence of Corollary 4.9 in [6]) says that the above
defined interleaving distance dI is an extended metric, not just a pseudometric, when restricted to
these objects.

Theorem 5.3 ([6]). When d = 1, dI(C(X, f), C(Y, g)) is an extended metric on the categorical Reeb
spaces.
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Theorem 5.3 means that for d = 1, if dI(C(X, f), C(Y, g)) = 0 (that is, when the categorical
mapper converges to the categorical Reeb graph), then C(X, f) and C(Y, g) are isomorphic as
functors. This implies that, in the special case when d = 1, the mapper converges to the Reeb
space not only categorically but also geometrically. This is discussed in Section 8.

While recent work is beginning to elucidate the case where d > 1, the technical finesse needed
to make a similar statement to Theorem 5.3 is beyond the scope of this paper. Thus, we will stick
to statements about the categorical representations for Reeb spaces when d > 1, and make concrete
geometric statements when they are available for d = 1 (see Section 8).

6 Categorical Representation of Mapper and its Construction

The beauty of working with category theory is that we can store a categorical representation of
the mapper as sets over the nerve of a cover, rather than working directly with its complicated
topological definition (given in Section 2). Given a choice of finite open cover for image(f) ⊆ Rd,
U = {Uα}α∈A, let K = Nrv(U). In order to ensure that K faithfully represents the underlying
structure, we will assume that U is a good cover. This ensures that the nerve lemma applies, that is,
K has the homotopy type of image(f) ⊆ Rd (see, e.g., Corollary 4G.3 [11] or Theorem 15.21 [13]).

For simplicity of notation, we denote Uσ =
⋂
α∈σ Uα to be the open set in Rd associated to the

simplex σ ∈ K. One important property of this construction is that for σ ≤ τ in K, the associated
inclusion of spaces is reversed: Uσ ⊇ Uτ . So, if we wish to represent the connected components
for a particular Uσ for σ ∈ K, we can still consider π0f

−1(Uσ), however, the face relation σ ≤ τ
induces a “backwards” mapping π0f

−1(Uτ ) → π0f
−1(Uσ). We keep track of this switch using the

opposite category. Recall Cell(K) is a category with simplices of K as objects and a unique arrow
σ → τ given by the face relation σ ≤ τ . Then the opposite category, Cell(K)op, has the simplices
of K as objects and a unique arrow τ → σ given by the face relation σ ≤ τ .

Thus, given an object (X, f) in Rd-Top, we have a functor CfK : Cell(K)op → Set that maps

every σ to CfK(σ) := π0f
−1(Uσ). We are required to use the opposite cell category so that CfK

maps the morphism σ ≤ τ (equivalently notated τ → σ in the opposite category) to the set map
π0f

−1(Uτ )→ π0f
−1(Uσ) induced by the inclusion Uτ ⊆ Uσ as discussed above. This functor is used

to represent the categorical mapper of (X, f) for the cover U .

CfK(τ) = π0f
−1(Uτ ) CgK(τ) = π0g

−1(Uτ )

CfK(σ) = π0f
−1(Uσ) CgK(σ) = π0g

−1(Uσ)

CfK [σ≤τ ]

CK [ν]τ

CgK [σ≤τ ]

CK [ν]σ

Figure 6: Commutative diagram for Ck[v] being a
natural transformation.

Note that the functor CfK is an object of

the category of functors SetCell(K)op . The
process of building the mapper is thus rep-
resented itself by the functor CK : Rd-Top→
SetCell(K)op , which is defined as follows. For
the objects, CK maps an Rd-space (X, f) in

Rd-Top to the functor CK(X, f) := CfK as
given above. For the morphisms, it sends a
function preserving map ν : (X, f) → (Y, g)

to a natural transformation (which is an arrow in SetCell(K)op), CK [ν] : CfK → C
g
K .

Checking that CK [ν] is indeed a natural transformation amounts to observing that the diagram in
Figure 6 commutes by functoriality of π0. Recall CK [ν]σ is defined by setting CK [ν]σ : π0f

−1(Uσ)→
π0g
−1(Uσ) to be the map induced by the restriction ν : f−1(Uσ) → g−1(Uσ), which is well-defined

since ν is function preserving.
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7 Convergence between Mapper and Reeb Space

�

U�

A

Figure 7: The simplex
(triangle) σ is in KA

since Uσ ∩ A 6= ∅. The
set A ⊆ R2 is the pink
circle, Uσ is the solid
blue rectangle, and the
blue squares with dot-
ted boundaries repre-
sent the cover elements
in U associated with σ.

In order to compare the discrete mapper with the continuous Reeb space,
we must move them both into the same category. At the moment, for data
given as (X, f) in Rd-Top, we have the categorical Reeb space represen-

tation C(X, f) in SetOpen(Rd), and the categorical mapper representation
CK(X, f) in SetCell(K)op . Thus we must first define the functor PK in

order to push the mapper representation into the SetOpen(Rd) category,
then prove the convergence result there using the interleaving distance
from Section 5.

Given a simplicial complex K which is the nerve of the cover U , we
define KA for a open set A ⊆ Rd to be the collection of simplices in K such
that the associated intersection Uσ intersects A, KA = {σ ∈ K | Uσ ∩A 6=
∅} (see Figure 7 for an example when d = 2). Now we can construct

the functor PK : SetCell(K)op → SetOpen(Rd) as follows. Given a functor
F : Cell(K)op → Set, PK sends it to a functor PK(F ) : Open(Rd)→ Set
by defining

PK(F )(I) = colim
σ∈KI

F (σ)

for every I in Open(Rd). Here, the colimit construction can be thought of
as a set representing the connected components over the collection of open
sets Uσ for the simplices σ ∈ KI , or equivalently, over the union

⋃
σ∈KI Uσ.

The morphisms in the two functor categories SetCell(K)op and SetOpen(Rd)

are natural transformations; PK sends arrows to arrows in a well-defined way via the colimit as
discussed at the end of Section 3, since if I ⊆ J , then KI ⊆ KJ . Additionally, we must check that
PK sends a natural transformation η : F ⇒ G to a natural transformation PK(F ) → PK(G); we
omit this bookkeeping here. Since the mapper depends on the choice of a cover, it makes sense
that the cover, in particular, its resolution, will be a key factor in understanding the convergence.
With all of this machinery, we have our main result, Theorem 4.1.

Theorem 4.1 implies that if we have a sequence of covers Ui such that res(Ui) → 0, then the
categorical representations of the mapper converge to the Reeb space in the interleaving distance.
Its proof relies on a main technical result, Lemma 7.1 below, which relates the functor PKCK(X, f)
to one which avoids the combinatorial structure of K as much as possible and instead works with
inverse images of subsets of Rd.

Lemma 7.1. Let F : Open(Rd) → Set be a functor which maps an open set I, to a set
π0f

−1(
⋃
σ∈KI Uσ) with morphisms induced by π0 on the inclusions. Then, the functor PKCK(X, f)

is equivalent to F .

Proof. The functor CK(X, f) = CfK : Cell(K)op → Set is given by sending a cell σ to π0f
−1(Uσ),

and its composition with PK is given by PKCK(X, f) = PK(CfK) : Open(Rd) → Set defined by

PK(CfK)(I) = colimσ∈KI CfK(σ). To establish natural equivalence of functors, we will construct a
natural transformation ψ : F ⇒ PKCK(X, f) which is an isomorphism for each ψI .

As a roadmap, we can refer to the following diagram:
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CfK(σ) = π0f
−1(Uσ)

F(I) = π0f
−1(
⋃
σ∈KI Uσ) PKCfK(I) = colimσ∈KI CfK(σ)

CfK(τ) = π0f
−1(Uτ )

CfK [τ≤σ]

ϕσ

ησ

ψI

ϕτ

ησ

By definition of F , F(I) = π0f
−1(
⋃
σ∈KI Uσ) so there are obvious maps induced by inclusions

ϕσ : π0f
−1(Uσ) → F(I) which all commute; this gives us a cone (F(I), ϕσ) for the diagram

{CfK(σ)}σ∈KI . The colimit of this same diagram is a cocone denoted by (PKCfK(I), ησ). We will

construct a map ψI : π0f
−1(
⋃
σ∈KI Uσ) → colimσ∈KI CfK(σ) such that the colimit cocone factors

through the cocone (F(I), ϕσ) using ψI ; that is, ψI ◦ ϕσ = ησ for all σ ∈ KI . The universality of
the colimit then implies that ψI is an isomorphism.

π0f
−1(
⋃
σ∈KI Uσ) PKCfK(I)

π0f
−1(
⋃
σ∈KJ Uσ) PKCfK(J)

ψI

ψJ

Figure 8: The diagram showing that ϕ = {ϕI}
defines a natural transformation.

To construct ψI , consider any u in
π0f

−1(
⋃
σ∈KI Uσ). This set element represents

a connected component in f−1(
⋃
σ∈KI Uσ), and

thus there is at least one σ with an element
uσ ∈ CfK(σ) such that ϕσ(uσ) = u. Now we
define ψI(u) = ησ(uσ). Ensuring that ψI above
is well defined corresponds to ensuring that dif-
ferent elements mapping to u from possibly dif-
ferent cells τ must map to the same element of the colimit, but this is an immediate consequence
of the colimit properties.

Finally, we prove that the collection {ψI} defines a natural transformation. Since if I ⊆ J , then
KI ⊆ KJ . Then an exercise in colimit properties ensures that the diagram in Figure 8 commutes,
where the arrow on the left is the map induced by inclusions, and the map on the right is induced
by the colimit definition.

Proof of Theorem 4.1. Let ε = res(U). Combined with Lemma 7.1, we will construct an ε-
interleaving, ϕ : F ⇒ C(X, f) ◦ Tε and ψ : C(X, f) ⇒ F ◦ Tε. The constructed interleaving proves
the desired inequality following Definition 5.1.

F(I) C(Iε)

F(J) C(Jε)

ϕI

F [I⊆J ] C[Iε⊆Jε]
ϕJ

C(I) F(Iε)

C(J) F(Jε)

ψI

C[I⊆J ] F [Iε⊆Jε]
ψJ

F(I) C(Iε)

F(I2ε)

ϕI

F [I⊆I2ε]
ψIε

C(I) F(Iε)

C(I2ε)

ψI

C[I⊆I2ε]
ϕIε

Figure 9: Communicative diagrams showing ϕ and ψ
being natural transformations (top) and forming an ε
interleaving.

First, we prove the following state-
ment: if Uσ ∩ I 6= ∅, then Uσ ⊂ Iε.
Indeed, for any x ∈ Uσ, if x ∈ I then
x ∈ Iε. If x 6∈ I, then because there ex-
ists a y ∈ Uσ ∩ I, such that ‖x − y‖ ≤
diam(Uσ) ≤ res(U) = ε, so x ∈ Iε. This
statement implies that we have the inclu-
sion

⋃
σ∈KI Uσ ↪→ Iε.

We also have inclusions I ↪→⋃
σ∈KI Uσ ↪→

⋃
σ∈KIε Uσ, since any point

x ∈ I is contained in some Uα, for some
vertex α ∈ KI ⊆ KIε . We define ϕI :

π0f
−1
(⋃

σ∈KI Uσ
)
→ π0f

−1(Iε) and ψI :

π0f
−1(I) → π0f

−1
(⋃

σ∈KIε Uσ
)

to be the maps induced by the inclusions. Then applying the
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functor π0f
−1 to a diagram of these inclusions gives us the commutative diagrams in Figure 9 top.

Hence ϕ = {ϕI} and ψ = {ψI} are natural transformations as desired.
Similarly, the inclusions

⋃
σ∈KI Uσ ⊆ I

ε ⊆ ⋃σ∈KI2ε
Uσ and I ⊆ ⋃σ∈KIε Uσ ⊆ I

2ε imply that the

diagrams in Figure 9 bottom also commute, hence ϕ and ψ are an ε-interleaving.

8 Geometric Representations

We now leverage the results of [6] to make geometric statements connecting the mapper and the
Reeb space for d = 1. The main idea is to define a mapping that recovers the geometric repre-
sentation of the mapper from its categorical representation, and to establish convergence between
the mapper and the Reeb graph geometrically. Such a mapping relies on well behaved data, made
precise by the notion of constructibility.

R-Topc Reeb

SetCell(K)op Cshc

CK C

R

C

PK

D

Well behaved data Geometric Reeb graph

Categorical mapper Categorical Reeb graph

Figure 10: The diagram for connecting geometric
representations of the Reeb graph and the mapper.

Review of prior results. We will follow the
notations of [6] which occasionally can be tech-
nical. The categories and functors we will dis-
cuss can be summed up in the roadmap of Fig-
ure 10. Notice its lower left triangle resembles
that of Figure 4 with further restrictions. Re-
call the notation from Section 4; when d = 1,
the category R-Top is exactly the category
Rd-Top: an object of R-Top is an R-space (a
pair of a topological space X and a continuous
map f : X → R), and an arrow in R-Top is a
function-preserving map. An R-space (X, f) is constructible if it is given by the following data5:

• A finite set of critical values S ⊂ R, S = {a1 < · · · < an}.
• A locally path connected space Vi for each i = 1, · · · , n.

• A locally path connected space Ei for each i = 1, · · · , n− 1.

• A pair of attaching maps `i : Ei → Vi and ri : Ei → Vi+1 for i = 1, · · · , n− 1.

• X is isomorphic to the disjoint union of Vi × {ai} and Ei × [ai, ai+1] by making the identifi-
cations (x, ai) ∼ (`i(x), ai) and (x, ai+1) ∼ (`i+1(x), ai+1) for all i and all x ∈ Ei.

Since the geometric Reeb graph of a general R-space may be badly behaved, we restrict to
special classes of spaces [6], that is, we focus on well behaved subcategories. In particular, we
define the full subcategory R-Topc of R-Top where the objects are constructible R-spaces. This
collection includes, e.g., PL functions on triangulations of manifolds and Morse functions. Then
we define the full subcategory Reeb of R-Topc where each Vi and Ei is a finite, discrete set.
The Reeb category is exactly the category of Reeb graphs, viewed as a pair of a graph with a
real valued function which is monotone on edges, with arrows given by function preserving maps.
Subsequently, the construction of a (geometric) Reeb graph from well behaved data (a constructible
R-space) is captured by the functor R : R-Topc → Reeb.

We can similarly restrict our objects of interest in SetOpen(R) to be well behaved. A cosheaf
is a functor F : Open(R) → Set such that for any open cover U of a set U , the unique map
colimUα∈U F (Uα) → F (U) is an isomorphism. We further restrict the cosheaves to constructible

5See Section 2.2 and Figure 5 of [6] for illustrations and technical details, the definition of a constructible R-space
is given here for completeness.
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cosheaves; a cosheaf is constructible if there is a finite set S ⊂ R such that if A,B ∈ Open(R) with
A ⊆ B and S ∩ A = S ∩B, then F (A)→ F (B) is an isomorphism. In addition, we require that if
A∩ S = ∅ then F (A) = ∅. The category of constructible cosheaves with natural transformations is
denoted Cshc.

The work of [6] gives the equivalence of categories Reeb ≡ Cshc. In Figure 10, when d = 1, the

functor C : Rd-Top → SetOpen(Rd) (given in Figure 4) restricts to a functor C : R-Topc → Cshc.
Its further restriction C : Reeb → Cshc is exactly the functor used in [6] to give the equivalence
of categories. In addition, C has an “inverse” functor D : Cshc → Reeb which can turn a
constructible cosheaf back into a geometric object through the display locale construction [25].
This construction also satisfies the equality R = DC due to the commutativity of the upper right
triangle in Figure 10 (as proved in Section 3.5 of [6]). Therefore constructing the (geometric)
Reeb graph from well behaved data is the same as creating its categorical representation, and then
turning it back into a geometric object.

Our result. The above result implies that because we can turn any constructible cosheaf back
into a geometric Reeb graph, we can now turn the mapper, defined previously as a categorical
object, back into a geometric object. In this spirit, letMK(X, f) := DPKCK(X, f) be the geometric
representation of the mapper object, referred to as the geometric mapper (following the rectangular
diagram in Figure 10), and let R(X, f) be the geometric Reeb graph. Then, the equivalence of
categories gives us the following immediate corollary to Theorem 4.1.

Corollary 8.1. Given a constructible R-space (X, f) with f : X → R, let U = {Uα}α∈A be a good
cover of f(X) ⊆ R, and let K be the nerve of the cover. Then

dI(R(X, f),MK(X, f)) ≤ res(U).

In particular, because the interleaving distance is an extended metric when d = 1, this implies
that a sequence of mappers for more refined covers U converges to the Reeb graph geometrically.
Recent work has also investigated this convergence problem using the bottleneck distance for the
extended persistence diagrams [4]; instead, we use the interleaving distance.

Algorithm for geometric mapper. Constructing the geometric representation of 1-dimensional
mapper from its categorical representation follows a simple algorithm (as illustrated in Figure 5).
For the purpose of exposition, we assume that the mapper is constructed with a connected, minimal
cover; that is, a cover with no subcover. We further assume that the open sets (intervals) in
U = {Ui = (ai, bi)}ni=1 can be ordered and satisfy a1 < a2 < b1 < a3 < b2 < · · · < an−1 < bn−1 < bn.
For ease of notation, we assume there are extra intervals U0 = (a0, b0) with a0 < a1 < b0 < b1 and
Un+1 = (an+1, bn+1) with bn−1 < an+1 < bn < bn+1 and such that f−1(U0) = f−1(Un+1) = ∅. Let
M := M(U , f) be the mapper with the added property that for any cover element Ui, we store the
vertices corresponding to connected components of f−1(Ui) in the set F (i). Furthermore, let M [i]
be the subgraph of M induced by the collection of vertices F (i), and let M [i, i+1] be the subgraph
of M induced by the vertices F (i) ∪ F (i+ 1).

Note that for any small enough interval I ⊂ (ai+1, bi), the colimit construction for I gives
exactly the connected components over the union Ui ∪ Ui+1, which is equivalently represented by
the connected components of M [i, i+1]. For any small enough interval I ⊂ (bi−1, ai+1), the colimit
construction for I gives the connected components over Ui, and thus is represented by the connected
components of M [i], which are just the vertices.

Thus, the geometric mapper,MK(X, f) = (X′, f ′), a graph X′ equipped with a function f ′, can
be constructed based on a combinatorial structure described below. For each interval [bi−1, ai+1],
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add an edge uv with two new pink vertices for each vertex in M [i] (see Figure 5 Algorithm). Set
f ′(u) = bi−1 and set f ′(v) = ai+1. For each interval [ai+1, bi], add an edge wx with two new yellow
vertices for each connected component in M [i, i + 1]. Set f ′(w) = ai+1 and f ′(x) = bi. Now, we
have a combinatorial structure which consists of a collection of disjoint edges spread across each of
the intervals defined by the cover, and each edge has a top vertex and a bottom vertex given by the
function values. A pink and a yellow vertex are called equivalent if the vertex sets corresponding
to them in M [i] and M [i, i+ 1] respectively have a nontrivial intersection. The graph X′ resulting
from identifying (i.e. gluing) equivalent vertices with the same function value of f ′ is the geometric
mapper. Such an algorithm relies on subroutines of union-find, therefore it inherits the complexity
of union-find that varies depending on naive or advanced implementations.

9 Discussion

In this paper, we provided formal proofs that the categorical representation of mapper converges
to that of the Reeb space in terms of their interleaving distances (Theorem 4.1). In particular, we
showed that their interleaving distance is bounded by the resolution of the cover used to construct
the mapper. In addition, we gave the first definition of an interleaving distance on Reeb spaces
(Definition 5.1 and Theorem 5.2). When d = 1, we turned these category theoretic results into
concrete geometric ones. In particular, we showed that 1-dimensional mapper converges to the
Reeb graph as spaces, not only in the interleaving distance (Corollary 8.1). We also provided an
algorithm for constructing the newly defined, geometric mapper from its categorical representation.

The authors of [4] asked whether it is possible to describe the mapper as a particular con-
structible cosheaf. We addressed this question for d = 1 in Section 8 with our geometric results:
we described the mapper as a constructible cosheaf when it is passed to the continuous version.
We suspect that our geometric results hold in the case d > 1. That is, with the proper notion of
constructibility for Rd-spaces and cosheaves, we will have both an equivalence of categories, and a
proof that the interleaving distance is an extended metric, not just a pseudometric; and therefore
the mapper converges to the Reeb space on the space level. Additionally, the algorithm strategy
for building the associated geometric mapper may be generalized by considering k-dimensional
cover elements and their intersections. Our results are first steps towards providing a theoretical
justification for the use of discrete objects (mapper and JCN) as approximations to the Reeb space
with guarantees. Some future directions include creating categorical interpretation of multiscale
mapper [7] and studying distance metrics between Jacobi sets in the categorical setting.
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