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Abstract: Given a set of data points sampled from some underlying space,
there are two important challenges in geometric and topological data anal-
ysis when dealing with sampled data: reconstruction – how to assemble
discrete samples into global structures, and inference – how to extract ge-
ometric and topological information from data that are high-dimensional,
incomplete and noisy. Niyogi et al. (2008) have shown that by constructing
an offset of the samples using a suitable offset parameter could provide re-
constructions that preserve homotopy types therefore homology for densely
sampled smooth submanifolds of Euclidean space without boundary. Chazal
et al. (2009) and Attali et al. (2013) have introduced a parameterized set of
sampling conditions that extend the results of Niyogi et al. to a large class
of compact subsets of Euclidean space. Our work tackles data problems
that fill a gap between the work of Niyogi et al. and Chazal et al. In par-
ticular, we give a probabilistic notion of sampling conditions for manifolds
with boundary that could not be handled by existing theories. We also give
stronger results that relate topological equivalence between the offset and
the manifold as a deformation retract.
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1. Introduction

In manifold learning, a topic of high interest is to understand the structure of
low-dimensional objects embedded in high-dimensional space. Such objects are
typically assumed to be (sub)manifolds of Euclidean spaces. In recent years, it is
becoming clear that the offsets of sampled data points on a manifold can reflect
the geometric and topological structure of the manifold itself (e.g. [1, 11, 21]).
In particular, given sampled points drawn from a probability distribution that
has support on or near a submanifold without boundary, Niyogi et al. [21] have
shown that one can learn the homology of the submanifold with high confidence.
More specifically, for a compact manifold M embedded in Euclidean space RN
and a set of randomly sampled data points x “ tx1, ..., xnu on M, let U “
Ť

xPxBεpxq be the offset of the data set x, where ε is chosen to be small relative
to the minimum local feature size of M. Then for any p P p0, 1q, there is a
number m such that for all n ą m, with probability p, M is a deformation
retract of U . Therefore the homology of U equals the homology of M (see [21,
Theorem 3.1] for details).

Data that arise from smooth compact manifolds have been well-studied. How-
ever, the study of more complex spaces that are not necessarily manifolds via
data samples seems much more difficult. When samples arise not from mani-
folds but from mixtures of manifolds with possible singularities, we are dealing
with the notion of stratification learning. Roughly speaking, a stratified space
is a space that can be decomposed in to manifold pieces (referred to as strata)
that are glued together in a nice way. The study of stratified spaces is a classic
topic in pure mathematics [16, 24]. Statistical approaches rely on inferences of
mixture models, local dimension estimation and subspace clustering [17, 18, 23].
In geometric and topological data analysis, progress has been made recently in
the study of stratified spaces in the discrete and noisy settings [6, 8, 22, 4, 20, 9],
which draw inspirations from computational topology [13], intersection homol-
ogy [5, 7, 15], graph theory and sheaf theory.

Among stratified spaces, manifolds with boundary is one of the simplest
forms. A manifold with boundary is a stratified space: one stratum is its bound-
ary, and the other stratum is the complement.

In this paper, we study the topology of offsets of data points on compact dif-
ferentiable manifolds with boundary. We give a probabilistic notion of sampling
conditions for manifolds with boundary that could not be handled by existing
theories. In particular, we show that, with some care, a similar statement as
[21, Theorem 3.1] holds for manifolds with boundary. We also demonstrate via
simple examples how our sampling lower bounds could be derived in practice.

The main result of this paper, Theorem 3.1, is proved by following the frame-
work of [21]. First, we prove that the offset of data points deformation retracts to
the manifold if the sample is sufficiently dense with respect to the local feature
size of the manifold and the radius of the offset (Theorem 3.2). Second, we show
that such density is achieved with high confidence when the data points are suf-
ficiently abundant (Theorem 3.3). However, our proof in detail is very different
from that of [21]: particular efforts have been made to overcome the complexity
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caused by the boundary. When a data point is near or on the boundary, the local
geometry around it is more complicated, and the original ways [21] of perform-
ing deformation retract and estimating distances and volumes no longer work.
We found that, through our arguments, such issues can be resolved by imposing
concise and reasonable requirements regarding the minimum local feature size
of both the manifold and its boundary and the (local) projection of the manifold
to its tangent spaces (see Condition (2.1) and (2.2)).

It is worth noting that Chazal et al. [10] and Attali et al. [2] have extended the
results of Niyogi et al. to a large class of compact subsets of Euclidean space.
Specifically, [10] shows that the offset Kβ of a compact set K is homotopy
equivalent to the offset K 1α of another compact set K 1, for sufficiently small
β ą 0, if α satisfies some inequality involving the µ-reach ofK 1 and the Hausdorff
distance between K and K 1; [2] shows that the offset Xη of a compact set X
is homotopy equivalent to the Čech (respectively the Rips) complex of certain
radius of a point cloud P in X if some inequality involving η, the radius and
the µ-reach of X holds. Compared to the result of [10] and [2], the one in this
paper only deals with compact manifolds with boundary. However, our result
does have its own advantages. First of all, the topological equivalence between
the offset of data points and the manifold we get here is a deformation retract,
which is stronger than homotopy equivalence derived in [10] and [2]. Next, we
get a probability estimate for the topological equivalence which is not provided
in [10] and [2]. Last but not least, it appears that there are elementary cases
of data on manifolds with boundary where the result in [10] does not apply, as
the parameters associated with the data are completely outside the scope of [10,
Theorem 4.6] and [2, Theorem 13 and 14]. A scenario is discussed in Section 3
(Example 3.4), where our Theorems 3.1 and 3.2 become applicable and work
well.
Result at a glance. In short, this paper improves our understanding of topolog-
ical inference for manifolds with boundary and therefore enriches the toolbox
for topological data analysis. Given a sample of n points from a differentiable
manifold M with boundary in a high-dimensional Euclidean space, for a suf-
ficiently large n, the ε-offset of the sample points is shown to have the same
homotopy type as and deformation retracts to M. The homotopy equivalence
result has been proved by Niyogi et al. [21] for manifolds without boundary.
Chazal et al. [10] have extended the result of Niyogi et al. to manifolds with
boundary, however with weaker conclusions than the original paper. The current
paper, instead, reaches the same conclusion as Niyogi et al. [21] for manifold
with boundary, but under two mild conditions for the boundary (i.e., regarding
the minimum feature size of the boundary and the uniform smoothness of the
tangent bundle). A specific example shows that the new method is more power-
ful than that of Chazal et al. [10]. Therefore, our results fill a gap between the
original work of Niyogi et al. [21] and the broader but weaker result of Chazal
et al. [10]. Our proof techniques are nontrivial, although they frequently use the
results of Niyogi et al. and make necessary adjustments. The theoretical results
are complemented by experiments that confirm the theoretical findings.
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2. Notations and preliminaries

2.1. Basics on manifolds

In this paper, for two points p, q P RN , we use |pq| to denote the line segment
connecting p and q, ÝÑpq to denote the vector from p to q, and }p´q} to denote the
Euclidean distance between p and q. For a set K Ă RN , dpp,Kq :“ inft}p´ q} :
q P Ku denotes the distance from p P RN to K. Moreover, for a non-negative
real number α P Rě0, we use Kα to denote the offset of K with radius α,
Kα “ tp P RN | dpp,Kq ď αu. Brppq denotes the open ball with center p and
radius r.

Let M Ď RN be a compact, differentiable, k-dimensional manifold possibly
with boundary. Let BM denote the boundary of M. Then BM is a compact
manifold. Let M˝ denote the interior of M.

The local feature size of M is the function lfs : M Ñ Rě0 defined by the
distance from a point x PM to its medial axis. The infimum of lfs is the reach of
M, reachpMq. For every number 0 ă r ă reachpMq, the normal bundle about
M of radius r is embedded in RN . In the same way we define reachpBMq, and
since BM is also a compact manifold, reachpBMq is well-defined.

We use ϕp,M to denote the natural projection from M to TppMq, the tangent
space to M at the point p. That is, ϕp,M : M Ñ TppMq. Conversely for any
point q P TppMq we use ϕ´1

p,Mpqq to denote the set of points in M which maps
to q via ϕp,M.

We take δ “ δpMq P Rě0 to be any non-negative real number such that for
any p PM, the following Condition 2.1 and Condition 2.2 are satisfied:

δ ă mintreachpMq, reachpBMqu, (2.1)

ϕp,M|BδppqXM is a diffeomorphism onto its image. (2.2)

Finally, suppose x “ tx1, ..., xnu is a set of sampled data points from a
compact, differentiable manifold M with boundary. x is ε-dense if for any p PM,
there is a point x P x such that x P Bεppq. Let U “

Ť

xPxBεpxq denote the offset
of x. We also define the canonical map π : U ÑM by

πpxq :“ arg min
pPM

}x´ p}.

By Condition (1) and the definition of reach, π is well-defined.

2.2. Volume of a hyperspherical cap

Let S be a k-dimensional hypersphere of radius r. Let H be a hyperplane that
divides S into two parts. We take the smaller part as a hyperspherical cap. Let

a be the radius of the base of the cap, and φ :“ arcsinp
a

r
q. Then by [19], the

volume of the hypershperical cap is

V “
2π

k´1
2 rk

Γpk`1
2 q

“
1

2
VkprqIsin2 φp

k ` 1

2
,

1

2
q,
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where Γpxq is the Gamma function, Vkprq is the volume of the k-dimensional
sphere with radius r and Ixpa, bq is the regularized incomplete beta function.

3. The main results

The main theorem of this paper (Theorem 3.1) is centered around a probabilistic
notion of sampling conditions for manifolds with boundary, which relates the
topological equivalence between the offset (of samples) and the manifold as a
deformation retract. To the best of our knowledge, such a result has not been
addressed by existing theories.

Theorem 3.1. Let M Ď RN be a compact differentiable k-dimensional man-
ifold possibly with boundary. Let x “ x1, x2, ..., xn be drawn by sampling M
in i.i.d fasion according to the uniform probability measure on M. Let ε P

p0,
1

2
δpMqq and U “

Ť

xPxBεpxq. Then for all

n ą βpεqplnβp
ε

2
q ` lnp

1

γ
qq,

U deformation retracts to M with probability ą 1 ´ γ. In particular, with
such confidence, the homology of U is the same as that of M. Here, βpxq :“

volpMq

cosk θ
2k`1 I1´ x2 cos2 θ

16δ2
pk`1

2 , 1
2 qvolpBkxq

and θ “ arcsinp x4δ q.

Theorem 3.1 is implied by combining Theorems 3.2 and 3.3 below.

Theorem 3.2. Let x̄ be any finite collection of points x1, ..., xn P RN such that

it is
ε

2
-dense in M. Then for any ε ă

δ

2
, we have that U deformation retracts

to M.

Theorem 3.3. Let x be drawn by sampling M in i.i.d fasion according to the
uniform probability measure on M. Then with probability 1´ γ, we have that x

is
ε

2
-dense (ε ă δ

2 q in M provided

|x| ě βpεqplnβp
ε

2
q ` lnp

1

γ
qq.

As is mentioned in Section 1, compared to [10, Theorem 4.6] and [2, Theorem
13], Theorem 3.2 only deals with manifolds with boundary, but it establishes a
criterion for deformation retract, which is stronger than homotopy equivalence
as in [10]. The following is an example where neither [10, Theorem 4.6] or [2,
Theorem 13] applies but Theorem 3.2 does.

Example 3.4. Let C be a semi-unit-circle. Then C is a manifold with boundary
and its boundary consists of the two end points which are also the end points
of a diameter. Let the data be the points A1, A2, ..., A8 which divide the semi-
circle evenly into 7 arcs, with A1 and A8 being the end points. Denote A :“
tA1, ..., A8u.
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We first treat this case with the result in [10]. We adopt the notations there.
[10, Theorem 4.6] is the main reconstruction theorem, and it requires the in-
equality

4dHpK,K
1q

µ2
ď α ă rµpK

1q ´ 3dHpK,K
1q (3.1)

in order for the offset Kα to be homotopy equivalent to K 1. Here we let K 1 “ C

and K “ A. It is easy to see that dHpK,K
1q “ 2 sin

π

28
« 0.223928, and

rµpK
1q “ rµpCq “

#

0 µ ą 1

1 0 ă µ ď 1.

If µ ą 1, then as rµpK
1q “ 0, the right half of (3.1) does not make sense. If

0 ă µ ď 1, then

4dHpK,K
1q

µ2
ě 4dHpK,K

1q “ 8 sin
π

28
ą 1´ 6 sin

π

28
“ rµpK

1q ´ 3dHpK,K
1q.

This is a contradiction to (3.1). Therefore in this case, [10, Theorem 4.6] does
not apply.

Next we try [2, Theorem 13 and 14]. [2, Theorem 13] requires that

dHpA,Cq ď ε ă λcechpµqrµpCq,

where

λcechpµq “
´3µ` 3µ2 ´ 3`

a

´8µ2 ` 4µ3 ` 18µ` 2µ4 ` 9` µ6 ´ 4µ5

´7µ2 ` 22µ` µ4 ´ 4µ3 ` 1

We have dHpK,K
1q “ 0.223928 as well as the value of rµpCq as is deduced

above. On the other hand, from [2, Fig. 9] we see that λcechpµq is increasing on

(0,1], hence λcechpµq ď λcechp1q “
´3`

?
22

13
« 0.130032. So it is easy to see

that dHpA,Cq ą λcechpµqrµpCq for all µ P R`. Therefore [2, Theorem 13] does
not apply. [2, Theorem 14] requires that

dHpA,Cq ď ε ă λrips
n pµqrµpCq.

But by [2, Fig. 9], λrips
n pµq is always smaller than λcechpµq, so [2, Theorem 14]

does not apply either.
Finally we try to apply Theorem 3.2 to this case. It is easy to see that

reachpCq “ reachpBCq “ 1, and it also satisfies Condition (2.2) to let δpCq “ 1.

Now let ε “ 0.48 ă
1

2
“
δpCq

2
. Since dHpA,Cq “ 2 sin

π

28
« 0.223928 ă 0.24 “

ε

2
as is calculated above, A is

ε

2
-dense. Therefore Theorem 3.2 applies.
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4. Proofs of the main results

To prove our main results, we begin with a series of lemmas. Recall the canonical
map π : U Ñ M is defined by πpxq :“ arg minpPM }x ´ p}. Lemmas 4.1-
4.5 contribute to the proof of Theorem 3.2. Roughly speaking, they show that
π´1ppq is star-shaped for every p P M, hence the deformation retract is well-
defined. Lemmas 4.6-4.8 contribute to the proof of Theorem 3.3 by giving a
lower bound to the volume of M X Bεppq for every p PM in terms of ε. Then
by directly applying results in [21], we get the estimation of the number of data
points as in Theorem 3.3.

Lemma 4.1. Choose δ “ δpMq ą 0 as in Section 2. Then for any λ P p0, δq,
any point q such that }q´πpqq} ă λ and any q1 P |qπpqq|, we have πpq1q “ πpqq.

Proof. Suppose that this is not the case. Then

}q ´ πpqq} “ }q ´ q1} ` }q1 ´ πpqq} ą }q ´ q1} ` }q1 ´ πpq1q} ě }q ´ πpq1q}.

This is a contradiction to Condition 2.1.

Suppose a certain point q P U deformation retracts to a point πpqq PM. Let
|qπpqq| be the path of the deformation retract for q. Lemma 4.1 tells us that
along the path |qπpqq|, all the points deformation retracts to πpqq.

From now on we set ε ă
δ

2
. For a point p PM and a point p1 P BM we define

stMppq and stBMpp1q as

stMppq :“
ď

xPx̄;xPBεppq

pBεpxq X TppMqKq.

stBMpp
1q :“

ď

xPx̄;xPBεpp1q

pBεpxq X Tp1pBMqKq.

For convenience, we also define stBMpp1q :“ H if p1 PM˝. We present the next
lemma, whose proof is exactly the same as those corresponding ones in [21],
although the statements are somewhat different.

Lemma 4.2 ([21], Proposition 4.1). stMppq (resp. stBMppq) is star-shaped for
any p PM (resp. p P BM).

Lemma 4.3. π´1ppq Ď stMppq (resp. π´1ppq Ď stBMppq) for any p PM (resp.
p P BM).

Proof. If p PM˝, this is already proven in [21, Proposition 4.2]. So for the rest
of the proof we assume that p P BM.

Let v be an arbitrary point in π´1ppq. By the definition of stBM, we only
need to consider the case where there is a point q P x̄ such that q R Bεppq and

v P Bεpqq. In this case, the distance between v and p is at most
ε2

δ
, and the proof
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is exactly the same as that of [21, Lemma 4.1]. Now by the
ε

2
-dense condition,

there is a point x P x such that }x´ p} ď
ε

2
. Therefore

}v ´ x} ď }v ´ p} ` }p´ x} ď
ε2

δ
`
ε

2
ă
ε

2
`
ε

2
“ ε.

p

v

M
@M

x

Fig 1. The worse case for Lemma 4.3, where ||v ´ p|| “ ||p´ x|| “ ε
2

.

Remark 4.4. We note that the worst case in Lemma 4.3 can happen when p lies
on the boundary of M. This is illustrated in Fig. 1, where M is a plane region
with boundary, v is also inside the plane, and |vp| and |xv| are both perpendic-

ular to BM. This is why we require that ε ă
δ

2
, which is more restrictive than

the requirement ε ă

c

5

3
δ in [21].

Lemma 4.5. For any p PM, π´1ppq is star-shaped with respect to p.

Proof. If p PM˝, we have by Lemma 4.2 and 4.3 that π´1ppq “ stMppq which
is star-shaped. So for the rest of the proof we assume that p P BM. By Lemma
4.2, stBMppq is star-shaped; by Lemma 4.1, for any ray l Ă TppBMqK starting
from p, either π´1ppq X l “ tpu or stBMppq X l Ď π´1ppq X l; by Lemma 4.3 we
know that π´1ppq Ď stBMppq. So if q P π´1ppq, then |pq| Ď π´1ppq.

Then Theorem 3.2 generalizes [21, Proposition 3.1] to compact manifolds
with boundaries. Its proof is as follows.

Proof. We define the deformation retract F px, tq : U ˆ r0, 1s Ñ U as F px, tq “
tx ` p1 ´ tqπpxq. By Lemma 4.1 and Lemma 4.5, this deformation retract is
well-defined. Moreover since U is contained in Mδ, there is no critical point for
distance functions, we get that U deformation retracts to M.

Lemma 4.6. Let p P BM and A “MXBεppq, where ε P p0, δq. Then

volpAq ą
cosk θ

2
I
1´ ε

2 cos2 θ
4δ2

p
k ` 1

2
,

1

2
qvolpBkε ppqq,

where I is the regularized incomplete beta function, Bkε ppq is the k-dimensional

ball in Tp centered at p, and θ “ arcsinp
ε

2δ
q.
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Proof. Let p1 P TppMq be the point such that
ÝÑ
pp1 is perpendicular to TppBMq

and points to the inside of M, and }p´ p1} “ δ. We first want to show that

Bkε cos θppq XB
k
δ pp

1q Ď ϕp,MpAq. (4.1)

By Condition (2.2), ϕp,M|A is a homeomorphism onto its image. In particular,

ϕp,MpBAq “ Bpϕp,MpAqq.

It is easy to see that Bks ppq XB
k
δ pp

1q X ϕp,MpAq ‰ H for any s ą 0. Let q PM
be a point on the boundary of A. Then q P BM Y BBεppq. We prove (4.1) by
proving the claim that no matter whether q P BM or q P BBεppq, ϕp,Mpqq is
outside Bkε cos θppqXB

k
δ pp

1q. Indeed, if there exists a point q1 P Bkε cos θppqXB
k
δ pp

1q

such that q1 R ϕp,MpAq, we choose a point o P Bkε cos θppq X Bkδ pp
1q X ϕp,MpAq.

Then the line segment connecting o and q1 must intersect with the Bpϕp,MpAqq.
But on the other hand, by the convexity of Bkε cos θppqXB

k
δ pp

1q, any intersection
point is inside Bkε cos θppq XB

k
δ pp

1q. This is a contradiction.
To prove the claim, we first suppose that q P BM. Let p2 be the point where

ÝÑ
pp2 is in the same direction with

ÝÝÝÝÝÝÝÑ
ϕp,BMpqqq and }p2 ´ p} “ δ (if ϕp,BMpqq “ q,

then set p2 “ p1). By Condition (2.1), q is outside Bδpp
2q. Now q, ϕp,Mpqq and

ϕp,BMpqq form a right-angled triangle where |qϕp,BMpqq| is the hypotenuse, so
}ϕp,Mpqq ´ϕp,BMpqq} ď }q´ϕp,BMpqq}. Therefore ϕp,Mpqq is certainly outside
Bkδ pp

1q. This case is illustrated in Fig. 2.

M

@M

p
00

q

p

'p,M(q)

Tp(M)

Tp(@M)

'p,@M(q)

p0

Fig 2. An illustration for Lemma 4.6 for the case when q P BM, where ||p1 ´ p|| “ δ,

||p2 ´ p|| “ δ, ||p
2
´ q|| ą δ, ||q ´ ϕp,BMpqq|| ď δ, therefore ||p1 ´ ϕp,Mpqq|| ě ||p

2
´ q|| ą δ.

Next suppose that q P BBεppq, which implies that }q ´ p} “ ε. We have that
}ϕp,Mpqq ´ p} “ ε cospφq where φ is the (smallest nonnegative) angle between
ÝÑpq and

ÝÝÝÝÝÝÑ
pϕp,Mpqq. Let p2 be the point where

ÝÑ
pp2 is in the same direction with

ÝÝÝÝÝÝÑ
ϕp,Mpqqq (if ϕp,Mpqq “ q, then choose an arbitrary p2 such that pp2KTppMq)
and }p2´ p} “ δ. Then by Condition (2.1), }p2´ q} ą δ. So by the definition of
θ we see that φ ă θ, and }ϕp,Mpqq ´ p} “ ε cospφq ą ε cospθq. Hence ϕp,Mpqq is
outside Bkε cos θppq. This is illustrated in Fig. 3.

So we have volpAq ě volpBkε cos θppqXB
k
δ pp

1qq. The right-hand side consists of
two hyperspherical caps. For convenience we choose the lower bound of the right
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M

@M p
00

�

q

p
'p,M(q) �

Tp(M)

Tp(@M)

Fig 3. An illustration for Lemma 4.6 for the case when q P BBεppq, where ||p´q|| “ ε, φ ă θ,

|p
2
´ p|| “ δ and ||p

2
´ q|| ą δ.

side to be the hyperspherical cap that belongs to Bkε cos θppq. By 2.2, the volume

of this hyperspherical cap is
1

2
I
1´ ε

2 cos2 θ
4δ2

p
k ` 1

2
,

1

2
qvolpBkε cos θppqq. Moreover we

know that volpBkε cos θppqq “ cosk θvolpBkε ppqq, so we are done.

Using the same argument as in the third paragraph of the proof of the last
lemma, we actually have

Lemma 4.7. Let p P M and ε ą 0 such that BM X Bεppq “ H. Let A :“
MXBεppq. Then

volpAq ě volpBkε cos θppqq “ cosk θvolpBkε ppqq.

Combining Lemma 4.6 and 4.7, we have

Lemma 4.8. Let p PM and A “MXBεppq, where ε P p0, δq. Then

volpAq ě
cosk θ1

2k`1
I
1´ ε

2 cos2 θ1

16δ2
p
k ` 1

2
,

1

2
qvolpBkε ppqq,

where θ1 :“ arcsinp
ε

4δ
q.

Proof. If dpp, BMq ą
ε

2
, then BMXB ε

2
ppq “ H. So by Lemma 4.7,

volpAq ě cosk θ1volpBkε
2
ppqq

and we are done. If dpp, BMq ď
ε

2
, let p1 be a point on BM that has minimum

distance from p. Then B ε
2
pp1q Ă Bεppq. So

volpAq ě volpB ε
2
pp1q XMq ě

cosk θ1

2
I
1´ ε

2 cos2 θ1

16δ2
p
k ` 1

2
,

1

2
qvolpBkε

2
ppqq

“
cosk θ1

2k`1
I
1´ ε

2 cos2 θ1

16δ2
p
k ` 1

2
,

1

2
qvolpBkε ppqq,

where the last inequality is by Lemma 4.6.
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We observe that the right side of the inequality in Lemma 4.8 is
volpMq

βpεq
,

where the function β is defined in Theorem 3.1 (note that the θ1 here corresponds
to the θ in Theroem 3.1). By [21, Lemma 5.1 and 5.2], a satisfactory number

of points |x| as in Theorem 3.3 is of the form
1

α
pln l ` ln

1

γ
q, where α is any

lower bound of
volpAq

volpMq
and l is any upper bound of

ε

2
-packing-number. So

by Lemma 4.8, it suffices to take α and l to be
1

βpεq
and βp

ε

2
q, respectively.

Therefore we obtain Theorem 3.3. Finally, combining Theorems 3.2 and 3.3, we
arrive at Theorem 3.1.

5. Experiments

In this section, we work on two typical examples of manifolds with boundary.
The first example is a cylindrical surface, referred to as the cylinder dataset,
which has radius 1 and height 1. More precisely, it can be expressed as

tpx, y, zq P R3 : x2 ` y2 “ 1, z P r0, 1su.

The second example is a torus with a cap chopped off, referred to as the torus
dataset. In R3, it can be expressed as the torus with inner circle x2 ` y2 “ 1
and the outer circle x2 ` y2 “ 9, and the part with x ě 2 is chopped off.
Sampling parameters. As stated in the main Theorem 3.1, the lower bound of
sampling that guarantees deformation retraction with probability 1´ γ can be
expressed as

n˚ “ βpεqplnβp
ε

2
q ` lnp

1

γ
qq,

where βpxq :“
volpMq

cosk θ
2k`1 I1´ x2 cos2 θ

16δ2
pk`1

2 , 1
2 qvolpBkxq

and θ “ arcsinp x4δ q.

For cylinder, volpMq “ 2π, k “ 2, volpB2
xq “ πx2, δ “ 1. For instance, setting

ε “ 0.49, γ “ 0.1 gives rise to n˚ “ 638, as illustrated in Fig. 4 (a).
For torus, volpMq “ p8 ´ 0.522q ¨ 2π, k “ 2, volpB2

xq “ πx2, δ “ 1. For
instance, setting ε “ 0.49, γ “ 0.1 gives rise to n˚ “ 9809, as illustrated in
Fig. 4 (b).
Distribution of lower bounds. For a fixed sample quality ε, we demonstrate
the distribution of lower bounds n˚ as γ increases from 0.05 to 0.95 (that is,
confidence ranges from 95% to 5%). This is shown in Fig. 5. Intuitively, for
a fixed sample quality, we need more point samples in order to obtain higher
confidence in topological inference.

Meanwhile, for a fixed γ “ 0.1, which corresponds to a confidence of 90%,
we illustrate the distribution of lower bounds n˚ as ε increases from 0.15 to 0.5.
By Theorem 3.1, it is rather obvious that we need more points to have higher
quality samples for a fixed confidence level. This is shown in Fig. 6.
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(a) (b)

Fig 4. Point cloud samples for cylinder (a) and torus (b).

(a) (b)

Fig 5. Lower bounds for cylinder (a) and torus (b) for a fixed ε “ 0.49, x-axis corresponds
to γ while y-axis corresponds to n˚.

(a) (b)

Fig 6. Lower bounds for cylinder (a) and torus (b) for a fixed γ “ 0.1, x-axis corresponds
to the ε while y-axis corresponds to n˚.

Homology computation. Finally we can perform homology computation on the
above point clouds; in particular, for a given sample x and its corresponding
U , we show that the homology of U equals the homology of M. Admittedly,
homology is a very weak verification of our main sampling theorem. In fact,
if one’s goal is only to recover the same homology of a manifold with point
samples, our estimation from Theorem 3.1 is an obvious overestimation. In other
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(a) (d)

(b) (e)

(c) (f)

Fig 7. Persistent barcodes for cylinder. Each plot only shows the top 20 most persistent
(longest) cycles. For a fixed ε “ 0.49, r P r0, 2.2s: (a) γ “ 0.1, n˚ “ 638; (b) γ “ 0.1,
n˚ “ 583; and (c) γ “ 0.3, n˚ “ 551. For a fixed γ “ 0.1 (90% confidence), r P r0, 0.5s: (d)
ε “ 0.2, n˚ “ 4160; (e) ε “ 0.3, n˚ “ 1763; and (f) ε “ 0.4, n˚ “ 967. Notice different
scales between the plots on the left and on the right.

words, our estimation of the lower bound n˚ has to account for the boundary
condition and to guarantee deformation retract (not just homology or homotopy
equivalence).

Nevertheless, we show the results of homology inference across multiple γ with
a fixed ε, as well as the results across multiple ε with a fixed γ. We rely on the
computation of persistent homology to recover the homological information of a
point cloud sample. Persistent homology, roughly speaking, operates on a point
cloud sample x and tracks how the homology of Uprq “

Ť

xPxBrpxq changes
as r increases (where typically r P rr0 “ 0, rks, for some positive real value
rk). Specifically, it applies the homology functor H to a sequence of topological
spaces connected by inclusions,

Upr0q Ñ ¨ ¨ ¨ Ñ Upriq Ñ Upri`1q Ñ ¨ ¨ ¨ Ñ Uprkq,

and studies a multi-scale notion of homology,

HpUpr0qq Ñ ¨ ¨ ¨ Ñ HpUpriqq Ñ HpUpri`1qq Ñ ¨ ¨ ¨ Ñ HpUprkqq,

see [12, 13, 14] for introduction to persistent homology. We use the software
package Ripser [3] for the computation of persistent homology. Given a point
cloud sample x, Ripser computes its persistent homology using Vietoris–Rips
complexes formed on x and encodes the homological information using persis-
tence barcodes. In a nutshell, each bar in the persistence barcodes captures the
time when a homology class appears and disappears as r increases. As the ho-
mology of a union of balls is guaranteed (by the Nerve Lemma) to be the one
of a Čech complex, the results of [2] could be utilized to deduce results on a
Vietoris–Rips complex from a Čech complex.

For cylinder dataset, the 1-dimensional homology of its underlying manifold
should be of rank one, as the dataset contains one significant cycle (tunnel). For
a fixed ε “ 0.49, we compute the 1-dimensional persistent homology of the point
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clouds at parameter γ “ 0.1, 0.2, 0.3 respectively. Their persistent barcodes are
shown in Fig. 7(a)-(c) respectively. For each plot, the longest bar corresponds to
the most significant 1-dimensional cycle, which clearly corresponds to the true
homological feature of the underlying manifold.

Meanwhile, the 1-dimensional homology of the manifold underlying the torus
dataset (with a cap chopped off) should be of rank two, as the dataset contains
two significant cycles (same as the classic torus dataset). We have similar results
as in the case of cylinder dataset. For simplicity, we give the persistent barcodes
for ε “ 0.49, γ “ 0.2, n˚ “ 9157 in Fig. 8. Here, the first two longest bars
correspond to the two most significant 1-dimensional cycles, which again clearly
correspond to the true homological features of the underlying manifold.

Fig 8. Persistent barcodes for torus, for ε “ 0.49, γ “ 0.2, n˚ “ 9157, r P r0, 0.8s. Only the
top 20 most persistent (longest) cyclesare shown.

6. Discussions

Given a point cloud sample of a compact, differentiable manifold with boundary,
we give a probabilistic notion of sampling condition that is not handled by exist-
ing theories. Our main results relate topological equivalence between the offset
and the manifold as a deformation retract, which is stronger than homological
or homotopy equivalence. Many interesting questions remain.

First, while our sampling condition considers differentiable manifolds with
boundary, it cannot be trivially extended to handle manifolds with corners.
The fundamental difficulty arises because the reach becomes zero in the case of
manifolds with corners. We suspect that deriving practical sampling conditions
for manifolds with corners, and in general, for stratified spaces, is challenging
and requires new way of thinking.

Second, we have conducted experiments that verify homological equivalence
between the offset of samples and the underlying manifold. However, such an
experiment is a very weak verification of our main inference theorem. Experi-
mentally computing or verifying deformation retract in the point cloud setting
(as stated in Theorem 3.1), possibly via the study of discrete gradient fields,
remains an open question.
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