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Fig. 1. With MSF Designer, users can interact with a Morse–Smale function f on the sphere visually and manipulate it structurally. The
interface consists of several panels. (A) Function and flow visualization panel supports modifying the topology and geometry of the
Morse–Smale graph of f and visualizes the dynamics of its underlying gradient vector field ∇f via animation. (B) Elementary moves
panel provides a set of elementary moves as fundamental building blocks of a Morse–Smale function. (C) Function adjustment panel
allows modifying the function values at singularities. (D) History panel provides undo and redo features to remove or repeat single or
multiple operations. (E) Barcode panel computes and displays persistent homology barcodes to guide persistence simplification.

Abstract— In this paper, we are interested in the characterization and classification of Morse–Smale functions. To that end, we
present MSF Designer, an interactive visualization tool that supports the combinatorial exploration of Morse–Smale functions on the
sphere. Our tool supports the design and visualization of a Morse–Smale function in a simple way using fundamental moves, which are
combinatorial operations introduced by Catanzaro et al. that modify the Morse–Smale graph of the function. It also provides fine-grained
control over the geometry and topology of its gradient vector field. The tool is designed to help mathematicians explore the complex
configuration spaces of Morse–Smale functions, as well as their associated gradient vector fields and Morse–Smale complexes.
Understanding these spaces will help mathematicians expand their applicability in topological data analysis and visualization. In
particular, our tool helps topologists, geometers, and combinatorialists explore invariants in the classification of vector fields and
characterize Morse functions in the persistent homology setting.
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1 INTRODUCTION

Many popular tools from topology in visualization—merge trees, con-
tour trees, Reeb graphs, Morse and Morse–Smale complexes—originate
from the Morse theory. In this paper, we help mathematicians explore
the interplay among Morse functions, their gradient vector fields, and
Morse–Smale complexes via interactive visualization.

Morse theory studies the relation between the shape of a space and
functions on the space. According to Matsumoto, it describes “how the
critical points of a function defined on a space affect the topological
shape of the space, and conversely, how the shape of a space controls
the distribution of the critical points of a function” [20]. A smooth func-
tion defined on a manifold is a Morse function if all its critical points
are nondegenerate. Morse theory associates the topological changes



of a manifold with the critical points of a Morse function defined on
the manifold. The gradient of a Morse function with respect to some
Riemannian metric on the manifold is a vector field. The Morse–Smale
complex [6, 7] of a Morse function captures the characteristics of this
vector field by decomposing the manifold into cells of uniform flow
behavior. The Morse–Smale complex is a type of topological descriptor
that provides a compact and abstract representation of scalar functions,
which has been shown to be effective for identifying, ordering, and
selectively simplifying features of data across a wide range of appli-
cations ranging from cosmology simulations [15] to material science
[13, 14]; see [46] for a survey.

Given the connections among Morse functions, their gradient vector
fields, and Morse–Smale complexes, we introduce a design tool that en-
ables mathematicians to perform fine-grained analysis and exploration
of these objects interactively.
Contributions. We present MSF Designer, a design tool that helps
mathematicians characterize and classify the spaces of Morse–Smale
functions (i.e., a more restricted version of a Morse function) on the
sphere, see Fig. 1 for its visual interface. Specifically,

• MSF Designer helps users design a Morse–Smale function on a
sphere using fundamental moves of Catanzaro et al. [3], thus ex-
ploring the space of these functions combinatorially and visually.

• MSF Designer provides fine-grained control over the topology and
geometry of a Morse–Smale function, and supports the exploration
of its associated gradient vector field and Morse–Smale complex.

• MSF Designer computes and visualizes the persistent homology bar-
code [11] of a Morse–Smale function to offer a global summary of
its features. It also allows the adjustment of function values at critical
points to explore diverse functions. Furthermore, it creates a one-to-
one mapping between the topological features in the domain with
bars in the barcode to guide interactive persistence simplification.

• MSF Designer offers a set of applications in mathematics, specifi-
cally, it helps mathematicians:

– Construct and explore topological invariants in the classification
of Morse–Smale flows on surfaces;

– Characterize various equivalence classes of Morse functions
through persistence;

– Study the inverse problem of generating Morse functions (and
their gradients) from a given barcode;

– Explore the combinatorics of gradient vector fields;
– Create collections of Morse–Smale functions/complexes for en-

semble analysis, uncertainty quantification, and visualization.

2 TECHNICAL BACKGROUND

We review relevant notions on Morse and Morse–Smale functions,
Morse–Smale complexes, vector field topology, and persistence.
Terminology. Some of the terminology used is unintuitive, so we
prepare the reader with a brief overview in Figure 2, ahead of detailed
definitions further in this section.

A smooth function is if
Morse [22] all its critical points are nondegenerate
Morse–Smale [5] it is Morse and its (un)stable manifolds

intersect transversally

A vector field is if
Morse–Smale [27] its trajectories satisfy three conditions
Morse [27] it is Morse–Smale and it has no periodic

trajectories
Fig. 2. An overview of some key terms. Our work is mostly concerned
with Morse–Smale functions and Morse vector fields.

Moreover, some authors consider “Morse vector fields” as gradient
vector fields of Morse functions [4], whereas others consider “Morse–
Smale vector fields” as gradient vector fields of Morse–Smale functions
[3]. We avoid this implied link and use precise definitions, which we
now introduce.

Morse functions and Morse–Smale functions. Given a smooth func-
tion f : M→ R defined on a manifold M, a point x ∈ M is a critical
point of f if and only if the partial derivatives at x are zero; otherwise,
it is regular. A critical point x is nondegenerate if the Hessian (the
matrix of second derivatives) at x is nonsingular. The function f is
a Morse function if all its critical points are nondegenerate. Morse
functions are considered to be a well-behaved functions, since their
critical points are isolated and stable with respect to small perturbations.
They play an essential role in helping mathematicians understand the
topology of a manifold.

Fig. 3. A Morse–Smale function f on a 2-dimensional manifold. The
stable manifolds of f surrounding local maxima (left) and unstable man-
ifolds surrounding local minima (middle) intersect transversally. These
intersections produce a Morse–Smale complex (right). Local maxima,
local minima, and saddles of f are in red, blue, and white, respectively.

Let f be a Morse function on M and∇f be its gradient. An integral
line at a regular point is a maximal path in M whose tangent vectors
agree with the gradient. The stable manifold S(x) ⊆ M of a critical
point x of f is the point itself together with all regular points whose
integral lines end at x. The unstable manifold U(x) ⊆ M of x is the
point itself together with all regular points whose integral lines originate
at x [5, page 131]. A Morse–Smale function is a Morse function whose
stable and unstable manifolds intersect transversally [5, page 132];
see Fig. 3 for an example.
Morse–Smale complexes. For a given Morse–Smale function f , by
intersecting the stable and unstable manifolds, we obtain the Morse–
Smale cells as the connected components of the set U(x) ∩ S(y) for
all critical points x, y ∈ M [7]. The Morse–Smale complex (MSC) is
the collection of Morse–Smale cells [7], shown in Fig. 3 (right).

We define the Morse–Smale graph of f to be the 1-skeleton of
the MSC, that is, the union of the 0-dimensional (vertices) and 1-
dimensional (edges) cells. The Morse–Smale graph of f is equivalent
to the topological skeleton [16] of the gradient vector field of f defined
below.
Vector field topology. A two-dimensional vector field v is a smooth
mapping v : M → R2 defined on a manifold M. Critical points (or
singularities) are elements of M at which the vector field values are
zero; they include sources, saddles, and sinks. A streamline is a line
that is tangential to the instantaneous velocity direction. A topological
skeleton [16] of a vector field consists of critical points and separatrices
(i.e., streamlines connecting the critical points), which decomposes the
domain into different modes of flow behavior.
Morse and Morse–Smale vector fields. Let TMp denote the tangent
space of M at p. A vector field v on M associates a vector v(p) ∈ TMp

to each point p ∈ M. An integral curve of v through a point p ∈ M
is a smooth map γ : I → M such that γ(0) = p and γ(t) = v(γ(t))
for all t ∈ I = [0, 1]. The image of an integral curve is called a trajec-
tory [28, page 10]. Two vector fields v1 : M1 → R2 and v2 : M2 → R2

are considered topologically trajectory equivalent if there is a homeo-
morphism h : M1 → M2 that transforms the trajectories of v1 into the
trajectories of v2, preserving the orientations of the trajectories [27, Def-
inition 1.1]. A vector field v is structurally stable if the topological
behavior of its trajectories is preserved under small perturbations of
v [27, Definition 1.2], that is, if the perturbed and the initial vector
fields are trajectory topologically equivalent.

Suppose M is compact. Then there exists a global flow φ : R ×
M→ M determined by v such that φ(0, p) = p and (∂/∂t)φ(t, p) =
v(φ(t, p)) [28, Proposition 1.3]. For each t ∈ R, the map vt : M→ M
is defined as vt(p) = φ(t, p). The ω-limit set of a point p ∈ M is
ω(p) = {q ∈ M | vtn(p) → q for some sequence tn → ∞}. The α-



limit set of p is α(p) = {q ∈ M | Xtn → q for some sequence tn →
−∞}.

A vector field v on a closed two-dimensional surface is called a
Morse–Smale vector field [27, Definition 1.4] if

• v has finitely many singular points and periodic trajectories, which
are all hyperbolic;

• There are no trajectories from a saddle to a saddle;
• The α-limit set and the ω-limit set of each trajectory of v is either a

singular point or a periodic trajectory (a limit cycle).

A vector field is a Morse vector field if it is a Morse–Smale vector field
without periodic trajectories.
Gradient vector fields of Morse–Smale functions. In this paper, we
focus on the gradient vector fields of Morse–Smale functions f on the
sphere M = S2, denoted as ∇f . These gradient vector fields are by
definition Morse vector fields. Although this formulation might seem
restrictive, the study of Morse–Smale functions on the sphere under the
persistence setting is nontrivial and under active investigation [3, 9, 25].

Fig. 4 (left) illustrates the topological skeleton of a gradient vector
field ∇f on the sphere, where the blue boundary indicates a (global)
sink. Here, and further in this paper, we follow [7] in using to
indicate a source, for a sink, and for a saddle. Separatrices are
either dashed lines (saddle-source connections) or solid lines (saddle-
sink connections). , , and also correspond to the local maxima,
local minima, and saddles of a Morse–Smale function f .

Fig. 4. Left: a topological skeleton of a gradient vector field ∇f on
the sphere with boundary identified to a point. Equivalently, this is a
Morse–Smale graph of f . Right: a quadrangle (or cell) of ∇f .

Finally, by [7, Quadrangle Lemma], every Morse vector field can
be decomposed into regions, referred to as quadrangles or cells, as
illustrated in Fig. 4 (right). In a nongeneric or boundary setting, a
quadrangle may become degenerate, that is, a separatrix may have the
same quadrangle on both of its sides. Equivalently, every cell of a
Morse–Smale graph has four edges, counting an edge twice if the face
is on both sides of the edge [3].
Persistence and persistence simplification. Persistent homology is a
powerful tool in topological data analysis that is applicable in both data
summarization and simplification. In its standard setting, persistent
homology can be considered as an extension of Morse theory, in the
sense that it studies homology groups of the sublevel sets connected
by inclusions, Ma ↪−→ Mb for a ≤ b, where Ma := f−1(−∞, a].
In other words, it computes and summarizes topological features of
a space across multiple scales. The importance of a feature can be
quantified via the notion of persistence, that is, the amount of change
to f necessary to eliminate the feature [9]. Persistence is also useful
in simplifying a function f in terms of removing topological noise as
determined by its persistence diagram or barcode [8, 9].

We consider only Morse–Smale functions f on the sphere and their
gradient vector fields ∇f (refer to as vector fields) throughout the
remainder of this paper. Given such a Morse–Smale function, we can
construct a hierarchy by successive simplification based on persistence.
Each step in the process cancels a pair of adjacent critical points and
the sequence of cancellations is determined by the persistence of the
pairs. A pair of critical points of f are adjacent if they are connected by
an edge in the Morse–Smale graph of f . Equivalently, a pair of critical
points of∇f are adjacent if they are connected by a separatrix.

Fig. 5. The topological skeleton and persistence barcodes before (left)
and after the cancellation (simplification) of critical points a and b. Bar-
codes before and after simplifications are shown vertically in purple. This
figure is an adaptation of [7, Figure 17].

We compute the pairing of critical points and their persistence using
algorithms in [7]. Heuristically, saddles of a Morse–Smale function
f cancel with local maxima or minimum; correspondingly, saddles of
∇f cancel with sources or sinks. The sequence of cancellations is in
the order of increasing persistence, and the process can be simulated
combinatorially. Fig. 5 illustrates the cancellation of a saddle-min
pair of f (equivalently, a sink-saddle of ∇f ). Note that for every
positive i, the i-th pair of critical points ordered by persistence forms
an arc in the topological skeleton obtained by canceling the first i− 1
pairs [7, Adjacency Lemma]. This means that, in general, not all critical
points paired by the persistence algorithm are adjacent; however, they
will become adjacent after enough cancellations of other pairs [7].
Persistence simplification provides an important functionality in our
interactive system.

3 RELATED WORK

Vector field design systems. A few vector field design systems
have been created for domain-specific applications, such as graph-
ics [17, 18, 31, 39, 43] and fluid simulation [35]. The techniques can
be roughly classified into projection, diffusion, and interpolation. In
the first approach, a three-dimensional vector field is specified and
projected onto the surface [41]. This approach is fast and simple, but
it is difficult to achieve fine-grained control. In the second approach,
the system performs relaxation based on a set of user-specified vectors,
where known vector values are propagated like diffusion across the
remaining surface [39, 43]. In the third approach, a global vector field
is built by interpolating a few user-specified vector values using basis
functions [31, 40].

To provide more control over vector field topology, other design
systems focus on specifying the number, types, and locations of singu-
larities or to a larger extent, the topological skeleton. A simple way to
design and control a vector field begins with a set of flow primitives or
building blocks [44], and such primitives are combined into a global
vector field. For instance, a primitive can be a simple vector field in the
local neighborhood of a user-specified singularity, and multiple primi-
tives can be combined using radial basis functions [40]. Furthermore,
singularities can be added, removed, or edited by users [32]. The users
can also specify the entire topological skeleton of the desired vector
field [36], although a complete specification may be inefficient.

In terms of vector field simplification, techniques are often based on
Laplacian smoothing [30, 37, 45], whereas topology-based techniques
originate from the study of Morse theory and gradient vector fields of
Morse functions. By specifying the number and configuration of the
critical points of a Morse function and running multi-grid relaxation,
the design of Morse functions over a surface is equivalent to the design
of their gradient vector fields [24]. The gradient vector field of a
scalar function can be simplified by modifying function values near
the singularity pair [7, 8]. A singularity pair can also be simplified
directly by performing nonlinear optimization surrounding the pair [38]
or using Conley index theory [47].

Our system is topology-based and shares some similarities with the
above systems, with three main distinctions:



1. Elementary moves (Sect. 4) are used as fundamental building
blocks in designing the Morse–Smale function and its gradient
vector fields incrementally.

2. Much finer control is given to the vector field topology (respec-
tively, Morse–Smale graph), in particular, adjusting the geometry
of separatrices (respectively, edges in a Morse–Smale graph).

3. Persistence barcodes are used explicitly to guide interactive sim-
plification and exploration.

Topological classification of vector fields. Our work is related to the
topological classification of Morse and Morse–Smale vector fields with
one crucial difference: we are interested in the equivalence classes
of Morse functions (and their gradient vector fields) that share the
same persistence barcode. That is, their Morse–Smale complexes are
topologically indistinguishable, and we work to distinguish them.

One of the first invariants defined for Morse–Smale vector fields on
a closed surface is Peixoto’s distinguished graph, that is, a graph to-
gether with a distinguished set of edges satisfying some conditions [29].
The distinguished graph provides an invariant for Morse–Smale vector
fields on a surface, but has a very technical description. The graph
corresponds to connected components of what is left after deleting
saddle singularities and their associated stable and unstable manifolds
from the surface. Several simpler invariants have been proposed based
on Peixoto’s work. Cyclic distributions of colored points introduced
by Fleitas are a simplification of the distinguished graph invariant [10],
and the colored dual graph by Wang is a variant for orientable closed
surfaces [42]. All three mentioned above are invariants of Morse–Smale
vector fields on closed surfaces, and they become complete invariants
when restricted to Morse vector fields (see [27] for an extended com-
parison of these invariants).

Related to classification of gradient-like vector fields on a surface
is the classification of functions themselves. An a-function is a Morse
function on a surface with exactly three critical values. The f -invariant
was constructed to classify a-functions up to conjugacy [26], and hence
their vector fields up to topological equivalence [26, Remark 2.8]. In
addition, there has been work classifying Morse functions on surfaces,
albeit from a much different perspective [2, 25, 33].

Some of the mentioned invariants could also be used in the design
of vector fields, left open as an avenue for future research; however,
they do not lead to as simple and efficient operations as the elementary
moves (Sect. 4) employed in this paper.

4 METHODS

To design a Morse–Smale function on a sphere, we describe the main an-
alytic components within MSF Designer, including elementary moves
as fundamental building blocks, vector field construction with basis
functions, and geometric control of Morse–Smale graphs using splines.

4.1 Elementary Moves
Since the Euler characteristic of the sphere is two, the simplest function
f on a sphere (that is not a constant function) is one with a single maxi-
mum and a single minimum. We visualize the minima as a boundary
cycle in blue: imagine “flattening” the sphere onto a disk by expanding
a rubber band surrounding the minimum; see Fig. 6 (left). Equivalently,
the gradient vector field∇f (and the simplest Morse vector field on a
sphere) is one with a single source and a single sink.

However, neither f nor∇f is Morse–Smale. A Morse–Smale func-
tion on the sphere must contain at least one saddle [7, Quadrangle
Lemma], which must have four edges coming out of it that cannot be
identified with each other. Such a configuration is realizable on the
sphere containing two local maximum, one local minimum, and one
saddle, shown in Fig. 6 (right), which we use as the default configura-
tion for MSF Designer.

Using MSF Designer, the design of a Morse–Smale function and
its gradient vector field could be done interchangeably, as the Morse–
Smale graph of f is the topological skeleton of∇f . Therefore, we first
describe the design of a Morse-Smale graph via elementary moves.

Our visualization framework is based upon understanding how cells,
generically as quadrangles, in Fig. 7 (top left), can fit together on a

Fig. 6. The simplest function that is not a constant on a sphere (left) and
the simplest Morse–Smale function on a sphere (right).

surface and how they change when a pair of singularities is added to
their interiors and boundaries; such operations are referred to as elemen-
tary moves. An elementary move is an action that initiates or advances
our design process. Elementary moves originate from a mathematical
framework of Catanzaro et al. [3] that studies different notions of equiv-
alence for Morse functions on the sphere in the context of persistent
homology. The following theorem [3, Theorem 3] describes all possible
ways to create a new Morse–Smale graph via elementary moves. These
moves are illustrated in Fig. 7.

Theorem 1 (Elementary Move Theorem). The Morse–Smale graph of
any two Morse–Smale functions is related by a sequence of elementary
moves [3, Theorem 3].

Fig. 7. A single cell (top left in black square) and elementary moves. The
elementary moves (left to right) comprise face-max and face-min moves
(top row), edge-max, and edge-min moves (middle row), and vertex-max
and vertex-min moves (bottom row).

By the Quadrangle Lemma [7], every cell of a Morse–Smale graph
is bounded by four edges (counting an edge twice if the cell is on both
sides of the edge). This lemma allows us to describe changes to the
Morse–Smale graph as a composition of moves. A face move adds one
saddle-maximum or saddle-minimum pair in the interior of a cell. An
edge move adds one saddle-maximum or saddle-minimum pair on the
edge of a cell. A vertex move adds one saddle-maximum or saddle-
minimum pair at an existing singularity. All moves add two cells to
the Morse–Smale graph. Everything outside the modified region stays
the same between moves. Notice that all moves are, in fact, reversible;
that is, the addition of a pair of singularities translates to the removal
of a pair of singularities in the reverse direction. The face, edge, and
vertex moves are ways of manipulating a Morse–Smale graph to obtain
a different Morse–Smale graph. These moves by themselves do not
have functional values associated with the singularities.

However, if we combine the modification of the Morse–Smale graph
with the modification of function values at the singularities (see Sect. 5),
we could now construct and explore the space of Morse–Smale func-
tions. We could equivalently construct and explore its gradient vector
field.



4.2 Initialization, Control, Debugging, and Simplification
Initial vector field design. Once the user specifies the types and lo-
cations of singularities via the elementary moves, we consider these
singularities as sources, sinks, and saddles of the vector field and we
use the framework of Zhang et al. [47] to construct an initial vector
field. The vector field is represented as a triangulated mesh with vector
values assigned at the vertices of the mesh. We attach a basis vector
field to each user-specified singularity, and construct a vector field as
the truncated sum of these basis vector fields. For instance, a basis
vector field centered at a source p0 = (x0, y0) is defined as:

V (p) = e−d‖p−p0‖
2
(
k 0
0 k

)(
x− x0
y − y0

)
,

for any point p = (x, y) ∈ R2, where d is a constant that is used to
control the amount of influence of the basis vector field, and the matrix(
k 0
0 k

)
indicates the type of the singularity. For sinks and saddles,

we replace this matrix with
(
−k 0
0 −k

)
and

(
k 0
0 −k

)
, respectively.

Geometric control. To provide a geometric control of the separatrices
(which correspond to edges of the Morse–Smale graphs), we approx-
imate their geometry using cubic cardinal splines with tension 0. In
addition to the initial vector field, we also generate another auxiliary
vector field that captures the flow along separatrices. The final vector
field is a weighted sum of the initial and the auxiliary vector field, where
the weight is computed from the distance between a mesh vertex and its
closest separatrix. We apply additional smoothing in the neighborhood
of separatrices to prevent the creation of spurious singularities, by re-
placing the function value of each mesh vertex in the neighborhood of
separatrices with the weighted average function value of its neighbors.
The weights are inversely proportional to the distances between the
vertex and its neighbors.
Debugger. MSF Designer provides great flexibility for a user to con-
trol geometric details involving separatrices (equivalently, edges from
Morse–Smale graphs). A key component is the debugger, which de-
tects invalid configurations. Invalid configurations may arise due to
user operations, semiautomatic modes, simplification, or boundary con-
ditions. Flow animation is not allowed when the debugger detects a
configuration to be invalid.

In this paper, we assume all saddles are simple and all higher-order
saddles can be unfolded into simple saddles. Every saddle, therefore,
is of degree four, and the endpoints of its four adjacent separatrices
alternate between connections with sources and sinks, as in Fig. 4, for
example. Sources and sinks may have arbitrary degrees. A debugger
will report an invalid configuration if:
• The separatrices adjacent to a saddle do not follow the appropriate

alternating order. Recall a saddle-source connection is indicated by
a solid line, and a saddle-sink connection is marked by a dashed line.
The configuration of a saddle is invalid if its adjacent separatrices are
not in alternating solid and dashed lines.

• The end point of a separatrix is not properly attached to a singularity
or the boundary (the global sink).

• The separatrices are crossing.
• A singularity is isolated without any separatrix attachment, with the

exception of the minimal configuration in Fig. 6 (left).
• There is a saddle-saddle separatrix.
• A singularity is dragged outside the boundary.

See Sect. 5 for examples of invalid configurations detected by the
debugger.
Persistence simplification. We use Perseus [23] for efficient compu-
tation of persistent homology, which gives rise to persistence pairings
of singularities. Since some of these pairs are in fact adjacent, based
on [7, Adjacency Lemma] (Sect. 2), they can be simplified by modify-
ing the basis functions defining these singularities. Each simplification
operation removes a pair of adjacent singularities ranked by persis-
tence, together with edges adjacent to the pair, resulting in a simplified

topological skeleton. See Fig. 5 for an example of simplifying a saddle-
minimum (equivalently saddle-sink) pair (a, b) connected by an edge.

4.3 System Design

MSF Designer is web-based and can be accessed from any mod-
ern web-browser (tested using Google Chrome and Mozilla Firefox).
MSF Designer is implemented in HTML, CSS, and JavaScript, with
Python and Flask as the backend server to handle requests from
the browser. The module collection D3.js is used for rendering
SVGs, and the flow animation is generated with a Canvas element.
Perseus [23] is used to compute persistence homology and produce
barcode. MSF Designer is provided open-sourced via GitHub1. We
also provide a supplementary video that demonstrates the capabilities
of MSF Designer.

5 MSF DESIGNER USER INTERFACE

The user interface of our design system is provided in Fig. 1; see the
supplementary video for a demo. The system contains five main inter-
active panels: the function and flow visualization panel, the elementary
moves panel, the function adjustment panel, the history panel, and the
barcode panel.
Function and flow visualization panel (A) supports modifying the
topology and geometry of the Morse–Smale graph of f (resp.the topo-
logical skeleton of∇f ). In particular, as illustrated in Fig. 8, users can
modify the locations of singularities using “drag and drop”. Since edges
of Morse–Smale graphs (resp., separatrices) are modeled as splines,
users can also modify their geometry using yellow control points of the
splines.

Fig. 8. Control points (in yellow) are used to modify (left to right) the
geometry of edges surrounding a saddle point.

The panel supports both static and dynamic flow visualization. The
topological skeleton, the (static) flow visualization, and the animation
of the current configuration can be enabled or disabled as desired. The
animation is particularly useful for the user to get an intuitive sense of
the dynamics of∇f , as in Fig. 1 (A).

(a)

(d)

(b)

(c)

Fig. 9. Various ways of connecting pairs of singularities. (a) A source is
attached to two saddles, and the attachment map is defined by gluing
the end points (in gray) of saddle-source connections. (b) A saddle is
attached to the boundary (the global sink). (c) A source is attached to
a saddle via a single attachment point. (d) This is an initialization of a
face-min move under manual mode.

1https://github.com/tdavislab/MSF-Designer



Elementary moves panel. Various elementary moves are provided via
the elementary moves panel of Fig. 1 (B). Under manual mode, a user
connects pairs of singularities manually and our system checks for valid
configurations. Using semiautomatic mode, edges of Morse–Smale
graphs are added automatically, followed by user adjustments. Fig. 9
shows various ways of connecting pairs of singularities. MSF Designer
provides fine-grained control in attaching edges to singularities. Specif-
ically, the end points (in gray) of each edge can be attached to the
circular boundaries of the glyphs representing different types of singu-
larities.

Fig. 10. Examples of invalid configuration, where invalid seperatrices are
highlighted in red.

For both manual and semiautomatic modes, a key component con-
necting the function and flow visualization panel with the elementary
moves panel is the debugger (Sect. 4). It detects invalid configurations
when a user is modifying the geometry of the topological skeleton
during the design process, or when the semiautomatic configuration
of an elementary move does not resolve all errors. When an invalid
configuration is detected, edges involved in the configuration are high-
lighted in red. Additional warning messages are provided to the user to
guide necessary correction and adjustment operations; see Fig. 10 for
an example, where blue boxes enclose regions of error either the edges
are intersecting, or the edges surrounding a saddle are not in alternating
order.
Function adjustment panel and history panel. Recall that the design
of a Morse–Smale function is equivalent to the design of its gradient
vector field, and a gradient vector field can be modified by modifying
function values at the singularities. The function adjustment panel in
Fig. 1 (C) enables a user to modify the function values at singularities.
Such modification does not necessarily change the flow directions,
but may change the flow magnitude. MSF Designer automatically
checks for constraints in terms of function values during the adjustment
operation, that is, it ensures the function value of saddle is bounded
above by function values of its adjacent local maxima, and bounded
below by its adjacent local minima. The history panel in Fig. 1 (D)
stores all valid and invalid operations during manipulations and supports
redo and undo operations.

Fig. 11. All simplification candidate pairs are connected by purple dotted
lines (left), any of which may be chosen for simplification (right).

Barcode panel. Finally, using the barcode panel in Fig. 1 (E), we
provide the persistence barcode of the current configuration, as well as
interactive capabilities for persistence-based simplification. As illus-
trated by a simple example in Fig. 11, when the simplification button is

clicked (left), the funding and flow visualization panel highlights adja-
cent pairs of singularities that are eligible for simplification, marked by
purple dotted lines. Selecting a particular bar leads to the highlighting
of a potential candidate pair, if one exists, and clicking on an eligible
pair will simplifying the underlying field (right). The remaining config-
uration contains a last candidate pair for simplification, and simplifying
it will result in the default configuration of Fig. 6 (left).

6 USAGE SCENARIOS

We describe various usage scenarios to illustrate the capabilities of
MSF Designer for mathematicians. These usage scenarios are created
with our collaborating mathematicians. The tool helps topologists,
geometers, and combinatorialists explore invariants in the classification
of flows and characterize Morse functions in the persistence setting.

6.1 Studying Topological Invariants in Flow Classification
Qualitative analysis of dynamical systems and the classification of such
systems is an active area of research, which has widespread applications
in mathematics, physics, biology, economics, and medicine. Users of
MSF Designer can study various topological invariants employed in the
classification of flows on surfaces, as the elementary moves give insight
into the construction of certain invariants and highlight the differences
between them (Sect. 3).
Three-color graphs. Oshemkov and Sharko [27] studied an invariant
of a Morse–Smale flow called a three-color graph and proved that such
an invariant classifies Morse flows on two-dimensional surfaces up to
trajectory topological equivalence. We replicate Example 1.8 of [27]
in Fig. 12 since it is simple, yet still shows enough complexity of the
general theory.

Fig. 12. The design of a vector field on the sphere. An example (left)
reproduced from [27, Example 1.8] used to study the three-color graph,
a construction (middle) of the same example using MSF Designer, and
its flow visualization (right).

Example 1.8 from [27], reproduced in Fig. 12 (left), is a flow defined
on a sphere containing two sources, two saddles, and two sinks. One
of the sinks is on the reverse side of the sphere, which is represented
by the blue boundary circle; separatrices are shown in bold. Here, we
demonstrate that MSF Designer can easily reconstruct interesting flows
in the literature. In this case, we use a single elementary move and a
face-min move on the default configuration, which is a standard height
function on the sphere (a pair of sources, a boundary sink, and a saddle),
to obtain a vector field with two sources, two sinks, and two saddles,
see Fig. 12 (middle). Its gradient vector field is visualized in Fig. 12
(right).
Colored dual graphs. Other authors have constructed different in-
variants for Morse and Morse–Smale flows on (orientable) surfaces.
In addition to the three-color graph, Peixoto [29] introduced a distin-
guished graph, Fleitas [10] introduced cyclic distributions of coloured
points, and Wang [42] introduced a coloured dual graph - all of which
may be described and their effects explored using MSF Designer.

We now replicate two examples of colored dual graphs, Example
2.6 and Example 2.14, from [42]. Example 2.6, which is reproduced
in Fig. 13 (left), is a flow defined on a sphere containing four sources,
three saddles and one sink. The configuration can be generated semiau-
tomatically by two edge-max moves; see Fig. 13 (middle). Its gradient
vector field is visualized in Fig. 13 (right). Example 2.14 is the “Mon-
key seat” containing two sources, two saddles and two sinks Fig. 14
(a). By unfolding the surface from the bottom, which is the sink, we



are able to visualize the configuration in a 2D circle; see Fig. 14 (b).
The configuration can then be generated using MSF Designer by a sin-
gle face-min move; see Fig. 14 (c). The flow visualization is shown
in Fig. 14 (d).
Distinguished graphs. We replicate an example from [29], which
studies two flows of the equivalence classes. Fig. 15 (a) and (d) are
reproduced from Figure 1 and 2 in [29], respectively, where vertex 1
stands for the North Pole, vertex 2 for the South Pole, and the dotted line
for the equator. Both flows contain seven sources, six saddles and one
sink. By unfolding the sphere from the sink, both configurations can
be generated using MSF Designer by five face-max moves; see Fig. 15
(b) and (e). The flow visualizations are shown in Fig. 15 (c) and (f),
respectively. By looking at the flow visualizations, the mathematicians
are able to better compare and distinguish the equivalence classes.

Fig. 13. An example (left) reproduced from [42, Example 2.6] used to
study the coloured dual graph, a construction (middle) of the example
using MSF Designer, and its flow visualization (right).

(a) (b)

(c) (d)

Fig. 14. An example (a) reproduced from [42, Example 2.14] used
to study the colored dual graph, a 2D visualization by unfolding the
surface from the bottom (b), a construction (c) of the example using
MSF Designer, and its flow visualization (d).

6.2 Characterizing Morse Functions Through Persistence
Our original motivation for developing MSF Designer was inspired
by a mathematical framework [3] that investigates different moduli
spaces of Morse functions from the perspective of persistence. In
this vein, we are interested in using MSF Designer to characterize
the set of Morse functions that give rise to the same barcode. Two
Morse functions may give rise to the same barcode, but they are not
necessarily considered equivalent if taking one function to another
requires a significant amount of deformation; see Fig. 16 for an example.
Recall two Morse–Smale functions f, g are graph equivalent if there
is a graph isomorphism between their Morse–Smale graphs. Consider

(a) (b) (c)

(d) (e) (f)

2

1

2

1

Fig. 15. Two examples (a, d) reproduced from [29, Figure 1, 2] used to
study the distinguished graph, the constructions (b, e) of the example
using MSF Designer, and their flow visualizations (c, f).

the two Morse functions on the sphere in Fig. 16, which have the same
barcode. Note that these functions are are not graph equivalent. That is,
a deformation from the function given in Fig. 16 (left) to the function
given in Fig. 16 (right) requires significant perturbation.
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Fig. 16. An example of two Morse functions on the sphere that have the
same sub-level set barcode, with critical values indicated. These are not
graph equivalent functions.

Using MSF Designer, Fig. 17 shows we can easily recreate the two
configurations. Starting from the default configuration, the configu-
ration of Fig. 16 (left) can be created under the semiautomatic mode,
using a face-max and an edge-min move, followed by geometric modi-
fications to the separatrices. The configuration Fig. 16 (right) can be
generated semiautomatically by an edge-min move and an edge-max
move, in combination with geometric operations. Notice that the semi-
automatic edge-max move creates an invalid configuration (detected by
the debugger), which is subsequently corrected.

Fig. 17. Using MSF Designer to recreate Morse functions on the sphere
that have the same barcode but are not graph equivalent.

Hence, through [3], we can explore the space of Morse functions



(that give rise to the same barcode) by putting different equivalence
relations on the space. Each choice of equivalence relation leads to a
different moduli space structure on the space of Morse functions, and
each equivalence class has an interesting combinatorial structure that
can be used practically to enrich the barcode. Given MSF Designer,
we can start to address the following question: Can we characterize
equivalence classes of Morse functions on the sphere that have the same
barcode?

6.3 Designing and Visualizing Morse–Smale Complexes
Given the connection between Morse functions, Morse vector fields,
and MSCs, MSF Designer can also be utilized to design MSCs. The
design process offers insights into structural variations of MSCs in
terms of persistence simplification, which is useful in constructing MSC
ensembles for uncertainty quantification and uncertainty visualization.

(a) (b)

Fig. 18. Using MSF Designer to design Morse–Smale complexes. A
Morse–Smale complex is shown together with its barcodes before (a)
and after (b) simplification.

An example is given in Fig. 18 where a MSC arises from some
underlying function. We illustrate the 1-skeleton of the MSC (equiv-
alently, the topological skeleton of its gradient field) before and after
simplification. Notice this approach is different from (and, in some
sense, complementary to) the work on conforming MSCs [12], which
focuses on constructing MSCs that conform with a user-specified map.

Related to the design of vector fields is the notion of persistence
simplification [8]. MSF Designer allows users to view and simplify
functions (resp., vector fields) with the simplification feature (high-
lighted in Sect. 4). This feature connects MSF Designer to persistence
simplification, one of the initial motivations for studying persistence.

6.4 Inverse Problem: From Barcodes to Vector Fields
We can also use MSF Designer to study the rich area of inverse prob-
lems in topological data analysis. Specifically, given a persistence
barcode, can we reverse engineer Morse functions or Morse vector
fields that give rise to the given barcode?

Authors in [3, Figure 13] studied an interesting combinatorial ques-
tion: Suppose a Morse function f has six distinct critical values and a
known zero-dimensional barcode consisting of three bars nested inside
each other. How many different ways can f be embedded into R3 while
preserving the given barcode? Here, let us ask a simpler, but equally
intriguing question: Given a barcode that consists of one, two, or three
nested bars as shown in Fig. 19, how many Morse functions (resp.,
Morse vector fields) on the sphere can we construct that give rise to the
same barcode, assuming the largest bar is an extended persistence pair
(that represents the connected component of a sphere)?

It turns out that there is only one valid configuration of Morse vector
field that gives rise to one, two, or three bars within the above bar-
codes, respectively. With MSF Designer, we illustrate in Fig. 20 that
we can easily construct these configurations using a few elementary
moves. From the default configuration in Fig. 20, we can construct
configuration Fig. 19 (middle) using an edge-min move, a persistence
simplification, and geometric modification. Moving from configuration
Fig. 19 (middle) to Fig. 19 (right) involves an edge-min move and

Fig. 19. Morse vector field configurations that give rise to one, two, and
three bars in the barcode.

geometric modification that do not affect the barcode. The immedi-
ate visualization of the barcode and function adjustment options give
the user direct control to construct a Morse function with the desired
barcode.

(a)

(b)

4
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5 6

7 8 9

Fig. 20. Two Morse vector field configurations (a, b) that give rise to two
or three nested bars in a given barcode, respectively.

6.5 Combinatorics of Vector Fields
Another inverse approach facilitated by MSF Designer is the following:
given a fixed number and types of singularities, how many different
Morse–Smale vector fields are there with this number and type of
critical points? The option to disconnect and reconnect max-saddle and
min-saddle edges to and from singularities allows for an interactive
search for the desired vector fields.

Figure 21 shows the use of edge connecting and disconnecting, made
easier by the “Undo” button, and ensured to be correct, rather than just
abstract combinatorial objects, by the debugger. The option to save
every configurations helps in more complex scenarios, as does the json
format in which configurations are saved, which, in a future version
of MSF Designer, would allow for easy passing to other tools to check
for graph isomorphism.

7 DISCUSSION

Inspired by topological data analysis, MSF Designer enables mathe-
maticians to design and visualize Morse–Smale functions on the sphere.
It also supports the exploration of their associated Morse–Smale com-
plexes and gradient vector fields. Our work also applies to the more



Fig. 21. Vector fields as combinatorial objects.

general setting of vector fields that are gradient-like for Morse–Smale
functions [34, Theorem B]. A vector field is gradient-like for f if it
is topologically trajectory equivalent to the gradient vector field ∇f
of a function f and a Riemannian metric gij on M. Morse vector
fields are precisely the gradient-like vector fields without saddle-saddle
connections (separatrices from a saddle to a saddle) [34].
Limitations. We limit our work to vector fields of Morse–Smale func-
tions on the sphere, as functions on the sphere are well-studied [25]
and the sphere is a simple, yet not trivial 2-manifold. Visualization of
the surface of the sphere is also relatively easy, as the square boundary
in the visuals created by MSF Designer represents a single point on
the sphere. Due to the classification of 2-dimensional manifolds [19],
any such manifold may be presented as a square, though with parts
of the boundary identified, not necessarily contracted to a point. This
would necessitate more work in ensuring a proper visualization for
MSF Designer.
Extensions. A future mathematical application is to visualize the Wang,
Fleitas, and Peixoto invariants (discussed in Sect. 6.1) directly alongside
the barcode invariant. Such an application would allow mathematicians
to see the effect of the elementary moves on these existing invariants,
giving a unified language for working with different objects. A possi-
ble direction for broader impact is to develop an interface with other
mathematical tools, such as those that check for graph isomorphism
(see Sect. 6.5), for example, SageMath [1], nauty and Traces [21].

To enrich the visualization in the future, the graph of a Morse–Smale
function could be visualized in real-time (e.g., Fig. 3). MSF Designer
could be further extended to support the design of general Morse–Smale
vector fields by allowing periodic trajectories. Such an extension is
nontrivial as quadrangles alone are not sufficient to describe the domain
decomposition with periodic trajectories, and we can no longer use the
gradient of a function to approximate the vector fields.
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